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 Abstract: This review explores the current concepts in aging and then goes on to describe a novel, 
ground-breaking technology which will change the way we think about and manage aging. The founda-
tion of the review is based on the work carried out on the QiLaser activation of human Very Small Em-
bryonic Like (hVSEL) pluripotent stem cells in autologous Platelet Rich Plasma (PRP), known as the 
Qigeneration Procedure. The application of this technology in anti-aging technology is discussed with an 
emphasis on epigenetic changes during aging focusing on DNA methylation. 
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“When I was younger, I could remember anything, whether it had happened or not; but my faculties  
are decaying now and soon I shall be so I cannot remember any but the things that never happened. 

It is sad to go to pieces like this, but we all have to do it”. 

1. INTRODUCTION 

 There are two certainties in life: death and taxes. A third 
certainty is aging because, from the moment we are born, we 
age until the moment of our death. This death can of course 
be at any age. In 1935 it was discovered that a reduction in 
calorific intake in rodents may increase lifespan [1]. More 
recently, it has been suggested that aging has many complex 
and interacting factors associated with it including the de-
creasing effectiveness of intercellular communications [2], 
stem cell ‘exhaustion’ [3], mitochondrial dysfunction [4], 
epigenetic alterations [5], telomere shortening [6], proteosta-
sis [7] and genomic instability [8]. Aging is clearly a multi-
system process in adults and in premature aging in children 
the focus seems to be on atherosclerosis and stroke but with 
no cognitive damage [9] suggesting that the protein which 
causes premature aging in children, progerin, does not inter-
act with the central nervous system. This may be due to the 
inability of progerin to cross the blood-brain barrier. 

 A particularly interesting area in the subject of aging is 
the data which are related to aging in astronauts who experi-
ence long periods in space in zero gravity [10]. Many astro-
nauts have shown advanced aging on return to Earth (or fol-
lowing simulated space flight) with many reports of diseases 
related to the elderly such as a decline in the immune system 
[11], bone loss with the risk of premature osteoporosis [12], 
muscle degeneration [13] and problems associated with the 
cardiovascular system [14]. 
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 Many of these changes associated with aging, either on 
Earth or in space, may be due to one common factor which is 
the natural or induced aging of stem cells. This stem cell 
aging is often attributed to the decreased efficacy of mito-
chondria within the stem cells and to a disruption of the stem 
cell niche [15, 16]. The haemopoietic stem cell has often 
been the focus of stem cell aging since it is known that the 
incidence of pathologies such as myelodysplastic syndrome 
and acute myeloid leukaemia increase with age [17]. Dam-
age or mutations to genomic DNA within the stem cell is 
another mechanism by which the aging process may mani-
fest itself [18].  

2. OXIDISED NICOTINAMIDE ADENINE DINUCLEO-
TIDE (NAD+) AND AGING 

 NAD+ is a vital redox co-factor in metabolism and ATP 
production in human cells [19]. As well as being critical in 
cellular metabolism in normal health, NAD+ is a substrate 
for proteins that catabolize NAD+ to nicotinamide including 
ADP ribosyl-cyclases (CD38/CD157) [20], NADase sterile 
alpha [21], TIR motif-containing 1 (SARM1) [22] and poly 
(ADP-ribose) polymerases (PARPs) [23]. This group of sub-
strates are known as sirtuins and they are implicated in both 
health and disease [24]. NAD+ is also suspected to be a key 
player in the process of natural brain aging and in the devel-
opment of neurodegenerative disease [25]. It is also im-
portant to note that reduced levels of NAD+ are seen not only 
in natural aging of the central nervous system [26] but also 
in accelerated aging diseases such as ataxia telangiectasia 
(AT) [27] which can be modulated by NAD+ supplementa-
tion, Cockayne syndrome (CS) [28] and xeroderma pigmen-
tosum group A (XPA) [29]. It is interesting that a high 
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NAD+/NADH ratio has been shown in pluripotent human 
embryonic stem cells (ESC) and induced pluripotent stem 
cells (iPSC) [30] which are candidate stem cells for the 
treatment of neurodegenerative diseases. ESC and iPSC are 
noted for their complexity, cost, and safety concerns which 
up to now were the reason that kept them out of the clinic. It 
is likely, but as yet unproven, that easy-to-obtain, cheap, and 
safe autologous pluripotent hVSEL stem cells may have sim-
ilar increased NAD+/NADH ratios and can easily cross the 
blood-brain barrier to have a beneficial effect on neuro-
degenerative disease. 

3. SENOLYTICS AND AGING 

 Recent publications suggest that the use of senolytics 
(molecules that induce apoptosis of senescent cells such as 
Dasatinib [31], Quercetin [32], and Fisetin [33]) may be able 
to extend health, quality of life, and possibly even lifespan. 
Obesity-induced cellular senescence has been associated 
with anxiety and impaired neurogenesis [34]. In renal aging 
and disease, it is thought that cellular senescence plays a 
considerable aetiological role and that senotherapy (using 
senolytics) to reduce or remove senescent cells may lead to 
both renal anti-aging and therapeutic benefits in renal disease 
[35]. Type 2 diabetes is another disease in which senolytics 
may be useful in either the prevention or moderation of the 
disease [36]. Similar reports have been made on the use of 
senolytics for anti-aging and in the treatment of chronic dis-
ease [37]. More recently, Quercetin has been associated with 
possible therapeutic effects in patients suffering from 
Covid19 by providing anti-inflammatory action and throm-
bin inhibition [38]. Overall, senolytics seem to have some 
potential in terms of removing senescent cells with the asso-
ciated benefits to disease progression but their role (either 
alone or in combination with other therapies) is still to be 
determined in anti-aging. 

4. PYRUVATE AND AGING 

 Perhaps the most recent and interesting publication about 
the role of pyruvate and the related molecules in aging is that 
of the Hydride Transfer Complex (HTC) [39]. The HTC is 
repressed in senescent cells and induced by p53 inactivation. 
This raises the possibility that exogenous expression of HTC 
may be able to inhibit senescence which may represent a 
multi-enzymatic complex to inhibit cellular senescence and 
consequently minimise aging. Animal studies have shown 
that pyruvate can prevent oocyte aging [40], suggesting that 
pyruvate is involved in anti-aging processes from the point 
of female gametogenesis. This is, of course, a negative ob-
servation because if oocytes do not mature then they cannot 
be fertilised. In terms of male gametogenesis it has been re-
ported that pyruvate is an essential component in the capaci-
tation of spermatozoa [41] and that in the absence of py-
ruvate and related metabolites, human spermatozoa cannot 
become capable of fertilisation. These observations are not 
classical anti-aging processes, but they illustrate the critical 
importance of pyruvate from the point of gametogenesis. 
Pyruvate, along with nucleotides, is also essential for the 
early metabolism of human embryos [42]. Pyruvate-enriched 
fluids may in the future prove to be valuable in disease inter-
vention and also in aspects of anti-aging [43]. The role of 

pyruvate in the diseased or aging brain, in relation to glycol-
ysis dysfunction, is also an area of considerable research [44] 
in the field of schizophrenia. In addition, pyruvate appears to 
be protective in the senescence of skin cells through a mech-
anism of control of mitochondrial and lysosomal function 
[45], emphasising the importance of the role of the lysoso-
mal-mitochondrial axis in cellular senescence [46]. 

5. THE MAMMALIAN TARGET OF RAPAMYCIN 
(MTOR PATHWAY) AND PLASMA EXCHANGE IN 
AGING 

5.1. The mTOR Pathway 

 The mTOR pathway is a protein kinase that was first 
identified in the 1990s and has been shown to be important 
in the growth factor signals to direct eukaryotic cell growth 
to maintain homeostasis [47-49]. The mTOR pathway is now 
recognised as making a major contribution to the aging pro-
cess [50]. Inhibition of the mTORC1 (mTOR Complex 1) 
[51] pathway by depletion of the mTOR or raptor [52] has 
been shown to extend the life span in mammals [53]. The 
‘exhaustion’ of stem cells has been implicated in mTORC1 
which is thought to hinder tissue repair by stem cells and 
therefore enhance the aging process [54, 55]. It has also been 
shown that low doses of mTOR inhibitors may improve im-
mune function in elderly patients [56]. The modulation of the 
mTOR pathway, possibly by the administration of Rapamy-
cin, may in the future become a useful tool in the overall 
management of the aging process [57]. 

5.2. Plasma Exchange 

 Extracorporeal plasma exchange by apheresis is a proce-
dure that can reduce circulating auto-antibodies and has been 
shown to be effective in Guillain-Barré syndrome and myas-
thenia gravis [58]. The potential of plasma exchange as part 
of an anti-aging regime resulting in a decrease in age-related 
disease has been supported through studies using plasma 
exchange in the treatment of Alzheimer’s disease [59]. 

 Double filtration plasmapheresis has been shown to be 
potentially effective in promoting anti-aging and longevity 
[60] although the effects are expected to be transient and 
may need repeat treatments to maintain any benefit. It is also 
possible that plasma exchange may dilute the inflammatory 
molecules produced by senescent cells [61]. This novel ap-
plication of plasma exchange as an anti-aging protocol needs 
much further research before it can be brought into main-
stream use to ensure safety and efficacy. 

5.3. Calorific Intake Reduction and Aging 

 Intermittent fasting and reduced calorific intake have 
originated to be interesting areas of research in anti-aging 
technology with hypotheses about stem cell regeneration 
being one of the benefits [62]. Other workers have shown 
that alternative day fasting results in a change in the physio-
logical and molecular markers of aging [63] suggesting that 
diet and fasting may have an impact on the aging process. 

5.4. Epigenetic Clocks 

 Perhaps the best current way of studying aging is by the 
use of what has become known as ‘epigenetic clocks’. There 
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are 4 such epigenetic clocks that assess the extent of DNA 
methylation at Cytosine phosphate Guanosine (CpG) sites in 
the DNA. These epigenetic clocks are: 

• The Horvath epigenetic clock [64] assesses DNA 
methylation at 353 CpG sites which predict chrono-
logical age with a mean absolute deviance of 3.6 
years. This epigenetic analysis can be applied to a 
range of body tissues, including blood, whereas the 
Hannum and Weidner epigenetic clocks are only val-
id when using blood. 

• The Hannum epigenetic clock [65] based on 71 CpG 
sites with a mean absolute deviance of 4.9 years 

• The Weidner epigenetic clock [66] is based on 3 CpG 
sites with a mean absolute deviance of 3.3 years. 

• The DNAm PhenoAge epigenetic clock [67] based on 
the measurement of DNA methylation (DNAm) is 
claimed to be ‘a highly robust predictor of both mor-
bidity and mortality outcomes and represents a prom-
ising biomarker of aging’. 

 These epigenetic clocks all have pros and cons, but the 
overall message is that the measurement of epigenetic 
changes is an accurate method to assess biological age and 
potentially future-related morbidity and mortality [68]. This 
in turn could initiate preventative measures before disease or 
problems occur thus reducing morbidity and mortality and 
optimising the quality of life for the global population. 

5.5. The Role of Stem Cells and Exosomes in the Anti-
Aging Process 

5.5.1. Stem Cells 

 The basic function of stem cells in normal health is to 
repair or regenerate diseased or physically ‘worn-out’ tis-
sue/cells and at the same time to self-replicate [69]. In this 
way, the stem cell pool is preserved and the tissue becomes 
repaired or replaced e.g. the production of blood by the hae-
mopoietic stem cells [70]. Since the discovery of haemopoi-
etic stem cells by Steensma et al. [71] stem cells have been 
identified in almost all tissues of the body with perhaps the 
most notable being Mesenchymal Stem Cells (MSC) [72]. 
These MSC have been shown to be capable of differentiating 
into osteoblasts, chondrocytes, and adipocytes (multipotent) 
making them an obvious choice for the development of re-
generative medicine procedures [73]. Nevertheless, because 
of technical problems with MSC process optimisation the 
collection and use of MSC in clinical trials have been slow 
and inconclusive [74]. 

 In terms of anti-aging adipose-derived MSC have been 
investigated as a possible anti-aging treatment for facial skin 
[75], as a modulator of the immune system (termed inflam-
maging) during aging [76] and studies of the molecular 
mechanisms controlling MSC aging may also add to the fur-
ther potential of MSC in anti-aging procedures [77]. MSC 
may have a future in anti-aging technology if the current 
difficulties surrounding collection, processing, safety, stand-
ardisation, and mechanism of action can be resolved. There 
is also the fact that MSC ages with the patient [78] which 
means that any future anti-aging technology based on MSC 
may require donated ‘young’ allogeneic MSC. 

5.5.2. Exosomes 

 Exosomes are vesicles secreted by possibly all cells 
which carry lipids, RNA, and proteins and are thought to be 
important in intercellular communications [79]. Exosome-
based therapeutics for the disease are a possibility but at pre-
sent much more work needs to be carried out to fully under-
stand the importance and possible clinical applications of 
exosomes [80]. Exosomes are being investigated for their 
potential anti-aging properties especially in skin regeneration 
[81] and possibly extending the lifespan in animal models 
[82]. Once again, much research and future clinical trials are 
needed to fully exploit exosome technology in the context of 
anti-aging. A particular concern is the current batch-to-batch 
consistency of exosome preparations [83] which can be vari-
able resulting in both clinical and regulatory challenges. 

5.5.3. Human Very Small Embryonic Like (hVSEL) Stem 
Cells 

 A very different stem cell has been discovered from those 
mentioned above which could revolutionise Regenerative 
Medicine. The presence of pluripotent hVSEL stem cells has 
been shown in Platelet Rich Plasma (PRP) and the process of 
collecting, concentrating, and enumerating hVSEL stem cells 
has been well described [84]. These hVSEL stem cells, cir-
culating in the peripheral blood, are thought to be quiescent 
[85] in normal physiology but there are reports of increased 
numbers of circulating hVSEL stem cells in some disease 
states such as Chronic Obstructive Pulmonary Disease 
(COPD) and Pulmonary Hypertension (PH) [86]. Similar 
reports indicate an increase in circulating hVSEL stem cells 
in Crohn’s disease [87]. These observations suggest that plu-
ripotent hVSEL stem cells are being mobilised (probably 
from the bone marrow) in disease states to assist in the repair 
of damaged tissue in Chronic Obstructive Pulmonary Dis-
ease (COPD), Pulmonary Hypertension (PH), Crohn’s dis-
ease and cardiac disease [88].  

5.5.4. QiLaser Activation of hVSEL Stem Cells in Autolo-
gous PRP (The Qigeneration Procedure) 

 The fact that hVSEL stem cells appear to be quiescent in 
normal physiology and increase in numbers in some diseases 
is interesting. Nevertheless, the increased number of hVSEL 
stem cells in the disease does not seem sufficient on their 
own to inhibit the progress of the disease or to repair dam-
aged tissue. This raises the question of whether or not these 
increased numbers of mobilised hVSEL stem cells are actu-
ally still quiescent which may explain the lack of tissue re-
pair despite high hVSEL stem cell numbers. These facts 
need an assessment of whether or not an activation process 
for hVSEL stem cells would increase the efficacy of hVSEL 
stem cells in disease states. 

 Our data has shown very clearly that the activation of 
hVSEL stem cells in autologous PRP using a QiLaser (The 
Qigenix Procedure) does produce hVSEL stem with in-
creased expression of CXCR4+, Oct 3/4+, SSEA4+ and are 
CD45-, CD34- and Lin- [84]. We have also been able to pro-
pose a theoretical mechanism of action of the QiLaser on 
hVSEL stem cells using principles from Quantum Mechan-
ics [89]. It has also been shown that the QiLaser can activate 
expanded allogeneic Mesenchymal Stem Cells (MSC). The-
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se MSC were derived from umbilical cord blood and given 
to patients intravenously to restore the Left Ventricular Ejec-
tion Fraction (LVEF) in patients suffering from end-stage 
heart failure. The patients received an application of the Qi-
Laser to their heart region following intravenous administra-
tion of QiLaser-activated MSC. These patients all showed an 
increase in LVEF but two subsequently died from heart fail-
ure resulting in an 80% success rate [90]. The application of 
the QiLaser to the patient is thought to enhance the migration 
of activated stem cells to the area where repair is needed. In 
the same study, we have shown that end-stage heart failure 
patients benefit in the same way in terms of an increase in 
LVEF when they receive autologous QiLaser-activated 
hVSEL stem cells in PRP. 

5.5.5. The Qigeneration Procedure and Aging 

 It is clear that the Qigeneration Procedure is beneficial to 
heart failure patients, and we have considered very encourag-
ing as yet unpublished data on the use of the Qigeneration 
Procedure in patients suffering from neurological disease, 
neurological trauma, and type 2 diabetes. 

 The fact that hVSEL stem cells appear to be quiescent in 
normal physiology suggests that they would not be aging at 
the same chronological rate as the cells in the rest of the 
body [91]. This may represent an epigenetically ‘young’ 
source of pluripotent stem cells which once activated could 
have a powerful effect on the aging process. We hypothesise 
that pluripotent hVSEL stem cells, once activated by the 
QiLaser and administered by the intravenous route, are capa-
ble of regeneration of the stem cell niche in any tissue [92, 
93]. The QiLaser-activated pluripotent hVSEL stem cells are 
also capable of repopulating the aging stem cell pool (which 
contains stem cells with increased DNA methylation) in all 
tissues, therefore, producing daughter cells with much re-
duced epigenetic aging. The biological age and the chrono-
logical age may become two very different parameters with 
the overall benefit to health and the reduction in chronologi-
cal age-related disease. 

 We have preliminary unpublished data which shows that 
the Qigenix Procedure results in a reduction in DNA methyl-
ation using the Horvath epigenetic clock. This reduction in 
DNA methylation means that the epigenetic age of treated 
individuals is less than their actual chronological or biologi-
cal age. This Qigeneration Procedure, therefore, represents a 
possible anti-aging or ‘rejuvenative’ process [94] that could 
be used to delay the diseases of old age and decrease human 
morbidity and mortality [95]. The cost related to the treat-
ment of the diseases of old age such as dementia and Alz-
heimer’s disease alone has a global impact of $600 billion 
[96]. The Qigeneration Procedure may also improve the bio-
logical age and healthspan of many people which alone 
would be a massive benefit to society [97]. 

5.5.6. Lifespan and Healthspan Extension 

 There have been studies on the extension of the overall 
lifespan, but these have often used animal models such as 
alpha-ketogluterate to extend murine lifespan [98] and the 
use of Resveratrol to extend the lifespan of worms, flies, and 
yeast[99]. In terms of extending the human lifespan, there 
have been various interesting publications including the use 
of nutritional and pharmacological life-extending interven-

tions [100] and the use of Metformin to extend the human 
healthspan [101]. At the time of writing this article, there 
were no reports on the fully validated use of cell therapy to 
extend the human lifespan but there are interesting ideas 
about the genetics of lifespan [102] which when fully under-
stood may lead to cell therapy interventions to extend the 
human lifespan in the future. This will not only reduce mor-
bidity and mortality but also increase the useful working 
lives of individuals to create new concepts in healthspan and 
lifespan. 

CONCLUSION 

 There are many approaches to possible future anti-aging 
procedures including medication, therapeutics, and cell ther-
apy. The reasons for this need for anti-aging may be purely 
cosmetic, but the true benefit will be in the delay or preven-
tion of age-related disease with the subsequent reduction of 
morbidity and mortality and lowering of the associated costs 
of treating age-related disease. The Qigeneration Procedure 
is a safe, cost-effective method of introducing QiLaser-
activated autologous hVSEL stem cells as an ‘anti-aging’ 
intervention. Much more basic research and clinical trials are 
needed to fully understand the technology, but the prelimi-
nary data seem to be very promising. If the Qigeneration 
Procedure can truly have an anti-aging effect due to the acti-
vation of ‘young’ quiescent pluripotent hVSEL stem cells, 
then this will represent a new era in how we understand and 
manage the aging process. 
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