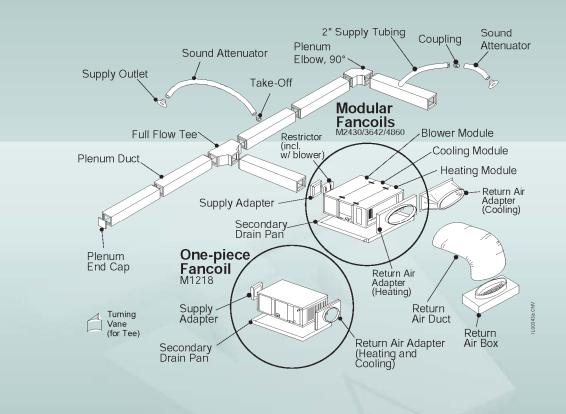
MINI DUCT SYSTEM

FLOOR AIR SUPPLY APPLICATION

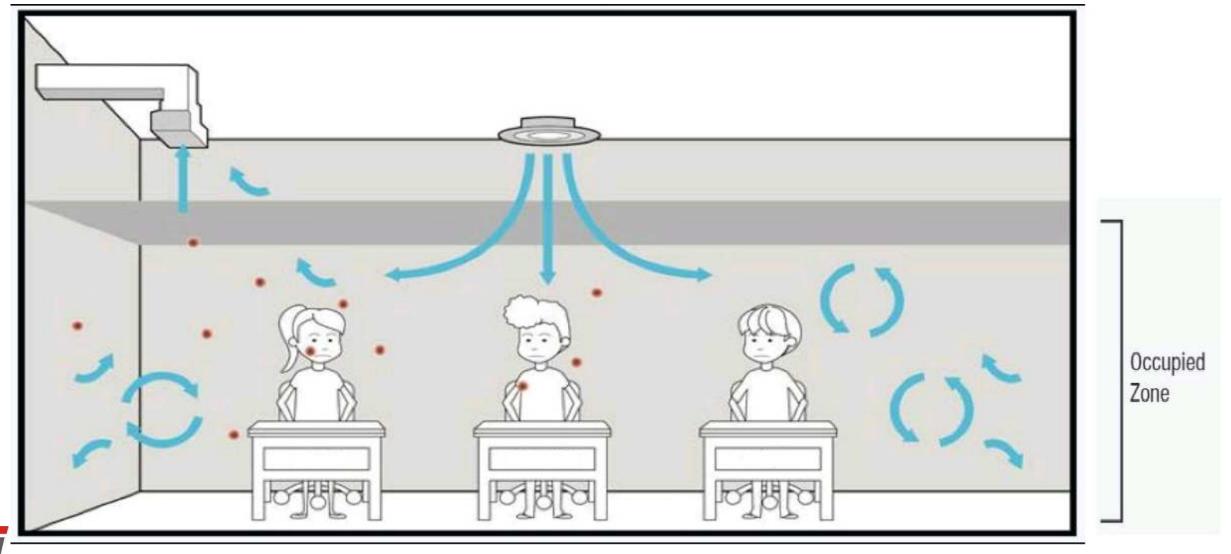
POWER SAVING APPLICATION FOR

- OFFICES
- SCHOOLS
- SPORTS
- LARGE HALLS
- GYMNASIUMS
- THEATERS


COMPARISON WITH STANDARD AC UNITS ADVANTAGES OF MINI DUCT SYSTEM

WOLF INTERNATIONAL

WOLF INTERNATIONAL


Marketed By

HOW DOES STANDARD DUCTED AC UNIT WORKS?

STANDARD AC SYSTEM

- TYPICAL ROOM OF 10M X 10M.
- AIR SUPPLY & RETURN FROM CEILING.


- ROOM TEMP 75 °F (23.9 °C) / 50% RH
- AMBIENT TEMP 115 °F (46 °C) / 30% RH

STANDARD AC SYSTEM – HEAT LOAD CALCULATION – AMBIENT DATA

	Design Temperature Profile	
MINI DUCT SYSTEM SAMPLE WOLFrost INTERNATIONAL		12/12/2020 05:59PM

Design Temperature Profiles for July

Design Weather Parameters & MSHGs MINI DUCT SYSTEM SAMPLE WOLFrost INTERNATIONAL

Design Parameters:

City Name	Dubai	
Location		
Latitude	25.2	Deg.
Longitude		Deg.
		m
Summer Design Dry-Bulb		°C
Summer Coincident Wet-Bulb		°C
Summer Daily Range		°K
Winter Design Dry-Bulb	12.2	°C
Winter Design Wet-Bulb		°C
Atmospheric Clearness Number	1.00	
Average Ground Reflectance		
Soil Conductivity	1.385	W/(m-°K)
Local Time Zone (GMT +/- N hours)	-4.0	hours
Consider Daylight Savings Time		
Simulation Weather Data	noneN/A	
Current Data is	User Modified	
Design Cooling Months	January to December	

Design Day Maximum Solar Heat Gains

(The MSHG values are expressed in W/m²)

Month	N	NNE	NE	ENE	E	ESE	SE	SSE	5
January	83.3	83.3	133.2	372.2	613.4	753.3	795.4	760.0	724.
February	93.6	93.6	261.5	493.0	686.2	783.7	759.5	678.5	616.1
March	104.9	121.0	398.8	607.3	719.6	752.9	681.8	543.3	449.{
April	115.5	266.1	501.3	659.0	717.2	665.7	544.3	356.3	252.8
May	133.5	361.1	561.4	676.1	690.0	600.2	432.2	227.3	155.0
June	170.9	398.7	581.4	675.8	669.3	563.3	384.2	185.0	138.2
July	137.2	366.6	558.6	664.5	671.2	577.3	422.5	221.2	153.0
August	120.5	262.5	492.2	637.4	687.4	639.5	524.6	343.4	244.7
September	108.7	126.7	370.0	579.0	696.4	710.9	657.4	528.5	442.8
October	96.7	96.7	235.2	495.3	664.5	742.1	745.7	663.7	603.5
November	84.8	84.8	123.8	389.0	581.8	740.8	785.2	754.7	717.0
December	78.8	78.8	90.9	326.4	569.5	732.5	790.0	779.8	756.0
Month	SSW	SW	WSW	W	WNW	NW	NNW	HOR	Mul
January	765.2	801.4	738.3	614.3	390.7	120.8	83.3	654.8	1.00
February	677.8	763.0	781.9	692.7	495.7	258.1	93.6	765.0	1.00
March	536.7	672.6	759.2	731.7	592.3	393.8	135.5	855.5	1.00
April	350.8	535.7	676.0	716.5	648.2	491.0	278.1	887.4	1.00
May	223.8	430.0	604.6	687.3	667.6	551.0	372.5	887.8	1.0
June	181.7	384.7	569.0	664.5	662.5	573.6	406.6	878.9	1.0
July	218.8	420.8	589.0	667.9	648.6	551.3	373.4	872.8	1.0
August	338.4	514.5	650.9	691.0	627.6	478.2	276.3	866.9	1.0
September	527.6	656.5	714.6	699.8	577.8	363.3	130.6	830.8	1.0
October	663.5	744.4	750.1	653.8	494.0	245.2	96.7	756.1	1.0
November	753.8	782.7	742.5	587.2	386.3	126.9	84.8	654.8	1.0
December	785.6	797.3	728.3	555.8	345.8	80.4	78.8	608.3	1.0

Mult. = User-defined solar multiplier factor

Page 1 of 1

12/12/2020 05:59PM

Standard DX Unit System Input Data

Available

....

Project : Standard DX Unit Vs Mini Duct System

1. General Details:

Air System Name	STANDARD FCU
Equipment Type	Terminal Units
Air System Type	
Number of zones	1
Ventilation	Direct Ventilation

2. Ventilation System Components:

(Common Ventilation System not used: no inputs)

3. Zone Components:

Space Assignments:

Zone 1: Zone 1	
STANDARD AC	x1

Thermostats and Zone Data:

Zone	All	
Cooling T-stat: Occ.		°C
Cooling T-stat: Unocc.		°C
Heating T-stat: Occ.		°C
Heating T-stat: Unocc.		
T-stat Throttling Range		°K
Thermostat Schedule	Schedule 4	

Unoccupied Cooling is	

Common Terminal Unit Data: Cooling Coil:

Thermostat Schedule

Design Supply Temperature14.4	°C
Coil Bypass Factor 0.100	-
Cooling Source Air-Cooled DX	
Schedule JFMAMJJASOND	
For Control	

Ventilation Sizing Method	Sum of Space OA Airflows

Terminal Units Data:

Zone		
Terminal Type	Fan Coil	
Minimum Airflow	0.00	L/s/person
Fan Performance	0	Pa
Fan Overall Efficiency		%

4. Sizing Data (Computer-Generated):

System Sizing Data:	
Cooling Supply Temperature	 °C

Hydronic Sizing Specifications:

Chilled Water Delta-T		°K
Hot Water Delta-T	11.1	°K

Safety Factors:

Cooling Sensible1	U	%
Cooling Latent	5	%
Heating	0	%
Heating	5 0	% %

Zone Sizing Data:

Zone Airflow Sizing Method Sum of space airflow rates Space Airflow Sizing Method. Individual peak space loads

Zone	Supply Airflow	Zone Htg Unit	Reheat Coil	Ventilation
	(L/s)	(kW)	(kW)	(L/s)
1	1003.2	-	-	55.0

5. Equipment Data Terminal Cooling Units - Air-Cooled DX

Zone	Estimated Maximum Load (kW)	Design OAT (°C)	Equipment Sizing	Gross Cooling Capacity (kW)	Capacity Oversizing Factor (%)	Compressor + OD Fan Power (kW)	ARI Performance Rating (EER)	Conventional Cutoff OAT (°C)
All	14.7	35.0	Auto-Sized	-	0	Λf		RNATION

Standard DX Unit Space Input Data

Project : Standard DX Unit Vs Mini Duct System

STANDARD DX UNIT

12/14/2020

07:53AM

1. General Details:	_
Floor Area 100.0	m²
Avg. Ceiling Height	m
Building Weight 498.0	kg/m²
1.1. OA Ventilation Requirements:	
Space Usage OFFICE: Office space	
OA Requirement 1	L/s/person
OA Requirement 20.30	L/(s-m²)
Space Usage Defaults ASHRAE Std 62.1-2004	

2. Internals: 2.1. Overhead Lighting:

. I. Overneau Lighting.			
Fixture Type			
Wattage		W/m²	
Ballast Multiplier			
Schedule	LIGHTING SCHEDULE		

2.2. Task Lighting:		
Wattage		W/m²
Schedule	None	

2.4. People:

Occupancy		People
Activity Level	Sedentary Work	
Sensible		W/person
Latent	79.1	W/person
Schedule	EQUIP.SCHEDULE	•

2.5. Miscellaneous Loads:

Sensible	
Schedule	None
Latent	0
Schedule	None

2.3. Electrical Equipment:

Wattage	25.00	W/m ²
Schedule	EQUIP.SCHEDULE	

3. Walls, Windows, Doors:

Exp.	Wall Gross Area (m²)	Window 1 Qty.	Window 2 Qty.	Door 1 Qty.
Ν	30.0	1	0	0
Е	30.0	1	0	0
S	30.0	1	0	0
w	30.0	1	0	0

3.1. Construction Types for Exposure N

Wall Type	Default Wall Assem	bly
1st Window Type		W1

3.2. Construction Types for Exposure E

Wall Type	Default Wall Assembly
1st Window Type	

3.3. Construction Types for Exposure S

Wall Type	Default Wall Assembly
1st Window Type	W1

3.4. Construction Types for Exposure W

Wall Type	Default Wall Asse	nbiy
1st Window Type		. W1

4. Roofs, Skylights:

Exp.	Roof Gross Area (m²)	Roof Slope (deg.)	Skylight Qty.
Н	100.0	0	0

4.1. Construction Types for Exposure H

Roof Type . Light Weight Roof

Design Cooling	1.00	L/s
Design Heating	0.00	L/s
Energy Analysis	0.00	L/s
Infiltration occurs only when the fan is off.		

6. Floors:			
Туре	Floor Above Uncond	itioned Space	
Floor Area			m²
Total Floor U-\	/alue	0.568	W/(m²-°K)
Unconditioned	Space Max Temp	23.9	°C
Ambient at Spa	ace Max Temp.		°C
Unconditioned	Space Min Temp.	23.9	°C
Ambient at Spa	ace Min Temp.		°C

5

12/14/2020 07:53AM

12/12/2020

Hourly Analysis Program v.4.4

Page 1 of 1

5. Infiltration:

Standard DX Unit - Air System Design Load Summary Project : Standard DX Unit Vs Mini Duct System

	D	ESIGN COOLIN	G	D	ESIGN HEATING		
	COOLING DATA	AT Jul 2000		HEATING DATA AT DES HTG HEATING OA DB / WB 12.2 °C / 7.4 °C			
	COOLING OA D	B/WB 41.4 °C	/ 28.4 °C				
		Sensible	Latent		Sensible	Laten	
ZONELOADS	Details	(W)	(W)	Details	(W)	(W	
Window & Skylight Solar Loads	12 m²	305	-	12 m²	-		
Wall Transmission	108 m²	1187	-	108 m²	511		
Roof Transmission	100 m²	4071	-	100 m²	675		
Window Transmission	12 m²	399	-	12 m²	203		
Skylight Transmission	0 m²	0	-	0 m²	0		
Door Loads	0 m²	0	-	0 m²	0		
Floor Transmission	100 m²	-1	-	100 m²	0		
Partitions	0 m²	0	-	0 m²	0		
Ceiling	0 m²	0	-	0 m²	0		
Overhead Lighting	1000 W	1000	-	0	0		
Task Lighting	0 W	0	-	0	0		
Electric Equipment	2500 W	2500	-	0	0		
People	10	821	791	0	0		
Infiltration	-	0	0	-	0		
Miscellaneous	-	0	0	-	0	(
Safety Factor	10% / 5%	1028	40	0%	0		
>> Total Zone Loads	-	11311	831	-	1389	l	
Zone Conditioning	-	11274	831	-	-174		
Plenum Wall Load	0%	0	-	0	0		
Plenum Roof Load	0%	0	-	0	0		
Plenum Lighting Load	0%	0	-	0	0		
Exhaust Fan Load	0 L/s	0	-	0 L/s	0		
Ventilation Load	55 L/s	1124	1427	55 L/s	204		
Ventilation Fan Load	0 L/s	0	-	0 L/s	0		
Space Fan Coil Fans	-	0	-	-	0		
Duct Heat Gain / Loss	0%	0	-	0%	0		
>> Total System Loads	-	12399	2258	-	30		
Terminal Unit Cooling	-	12399	2266	-	0		
Terminal Unit Heating	-	0	-	-	0		
>> Total Conditioning	-	12399	2266	-	0		
Key:	Positiv	e values are clg	loads	Positiv	e values are htg	loads	
	Negativ	ve values are ht	loads	Negativ	e values are clg	loads	

	Standard DX Unit Ventilation Sizing Summary	
Project : Standard DX Unit Vs Mini Duct System		12/14/2020
		01:47PM

1. Summary

Ventilation Sizing Method _____ Sum of Space OA Airflows

2. Space Ventilation Analysis Table

		Floor		Maximum	Required	Required	Required	Required	Uncorrected
		Area	Maximum	Supply Air	Outdoor Air	Outdoor Air	Outdoor Air	Outdoor Air	Outdoor Air
Zone Name / Space Name	Mult.	(m²)	Occupants	(L/s)	(L/s/person)	(L/(s-m²))	(L/s)	(% of supply)	(L/s)
Zone 1									
STANDARD AC	1	100.0	10.0	1003.2	2.50	0.30	0.0	0.0	55.0
Totals (incl. Space Multipliers)				1003.2					55.0

Standard DX Unit - Zone Sizing Summary

Project : Standard DX Unit Vs Mini Duct System

12/14/2020 07:51AM

Air System Information

12/14/2020 07:51AM

Air System Name	STANDARD FCU
Equipment Class	TERM
Air System Type	SPLT-FC

 Number of zones
 1

 Floor Area
 100.0
 m²

 Location
 Dubai, United Arab Emirates

Sizing Calculation Information

Zone and Space Sizing Method:

Zone L/s	Sum of space airflow rates	Calculation Months	Jan to Dec
Space L/s	Individual peak space loads	Sizing Data	Calculated

Zone Sizing Data

	Maximum	Design	Minimum	Time	Maximum	Zone	
	Cooling	Air	Air	of	Heating	Floor	
	Sensible	Flow	Flow	Peak	Load	Area	Zone
Zone Name	(kW)	(L/s)	(L/s)	Load	(kW)	(m²)	L/(s-m²)
Zone 1	11.4	1003	1003	Jul 2100	1.4	100.0	10.03

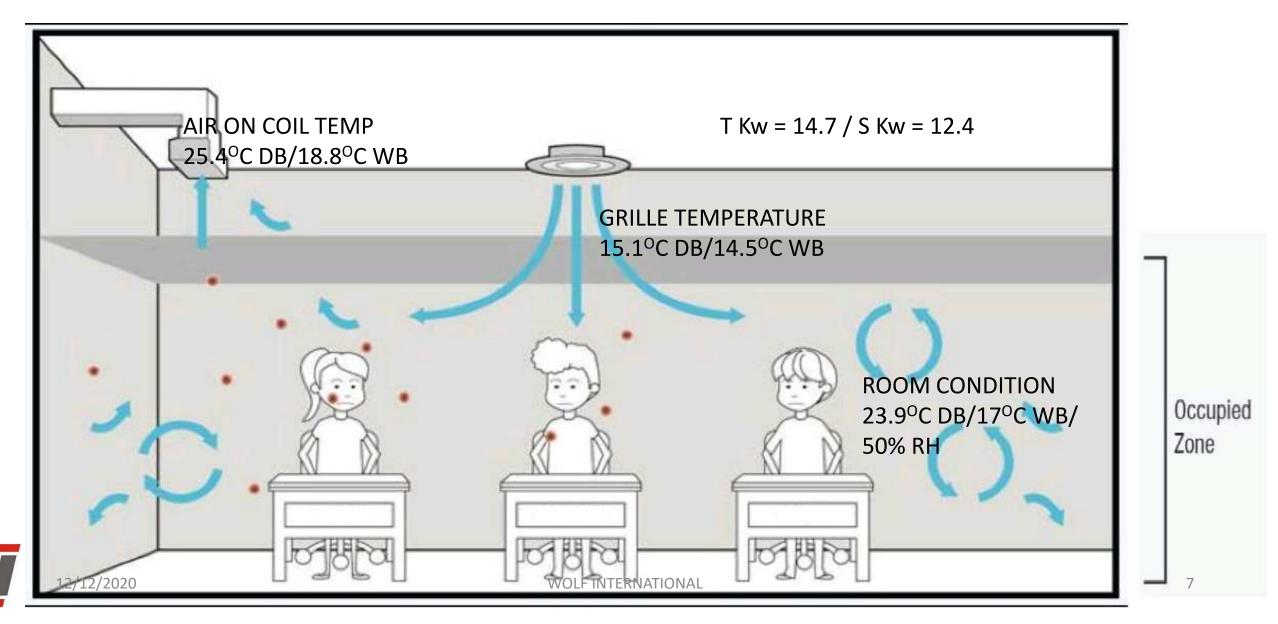
Terminal Unit Sizing Data - Cooling

	Total	Sens	Coil	Coil	Water	Time
	Coil	Coil	Entering	Leaving	Flow	of
	Load	Load	DB / WB	DB / WB	@ 5.6 °K	Peak
Zone Name	(kW)	(kW)	(°C)	(°C)	(L/s)	Load
Zone 1	14.7	12.4	25.4 / 18.8	15.1 / 14.5	-	Jul 2000

Space Loads and Airflows

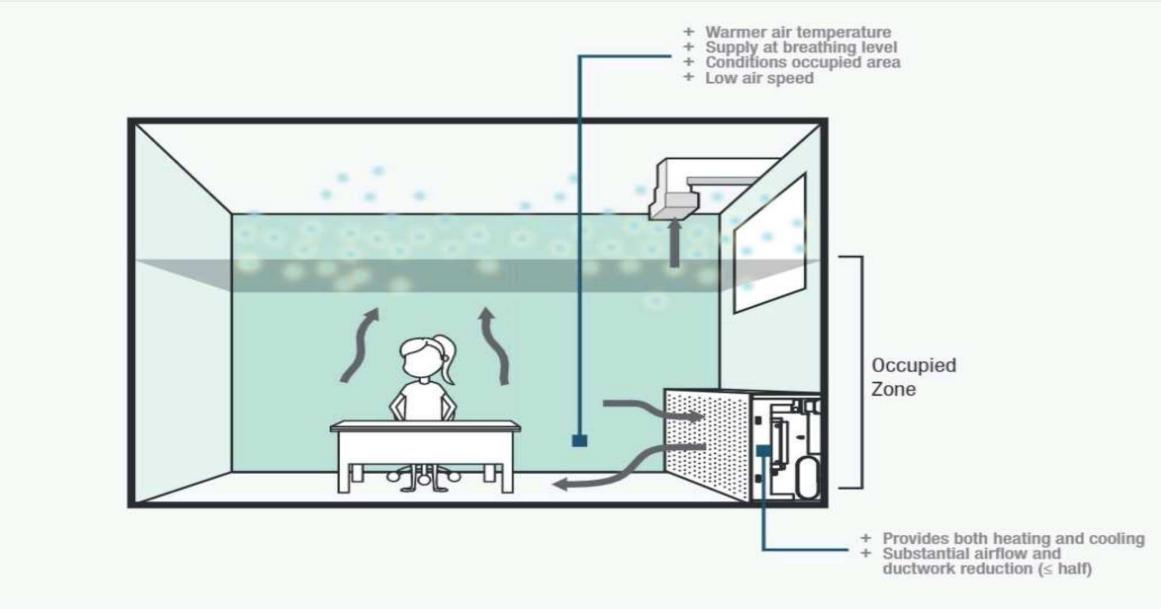
		Cooling	Time	Air	Heating	Floor	
Zone Name /		Sensible	of	Flow	Load	Area	Space
Space Name	Mult.	(kW)	Load	(L/s)	(kW)	(m²)	L/(s-m²)
Zone 1							
STANDARD AC	1	11.4	Jul 2100	1003	1.4	100.0	10.03

12/12/2HouhyAhalysis Program v.4.4


VVOL Regential TERNATIONAL

6

STANDARD DX SYSTEM - ISSUES

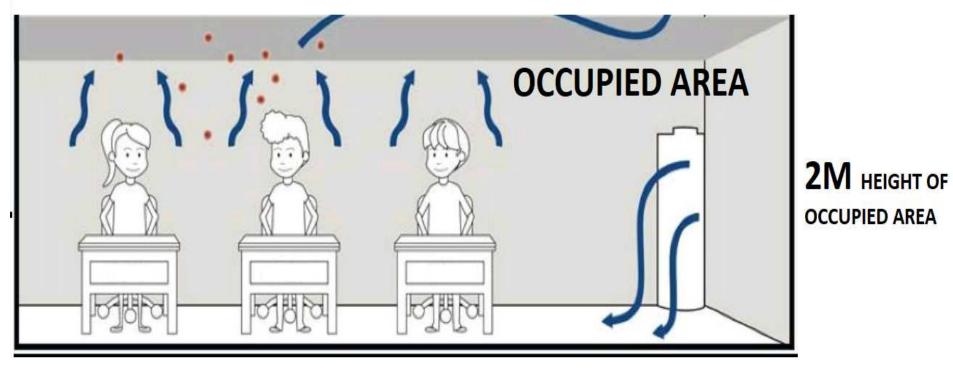

- UNEVEN AIR DISTRIBUTION
- UNEVEN TEMPERATURE IN ROOM

- CONTAMINATION OF AIR LINGERS IN ROOM
- HIGHER POWER CONSUMPTION

<u>SOLUTION – ALTERNATIVE AIR DISTRIBUTION METHOD</u> <u>MINI DUCT SYSTEM - HOW DOES IT WORK?</u>

SOLUTION – AIR SUPPLY AT OCCUPIED LEVEL

APPLICATION


- FOR ESTIMATING HEAT LOAD CONSIDER TOTAL AREA SPLIT INTO 2 PARTS.
 - OCCUPIED AREA.
 - UNOCCUPIED PLENUM AREA.
- AIR SUPPLIED AT FLOOR LEVEL.
 - COLLECTS HEAT AT OCCUPIED LEVEL.
- QUICKLY MOVES TO UNOCCUPIED AREA.
 - REMOVES AIR CONTAMINATION FAST.
- SEPARATE HEAT LOAD CALCULATION
 - OCCUPIED AREA
 - UNOCCUPIED PLENUM AREA
- CALCULATE
 - AIR QUANTITY REQUIRED
 - TEMPERTURE
 - GRILLES
 - PLENUM
 - RETURN AIR

EFFECT ON UNIT SELECTION & NET POWER CONSUMPTION

UNOCCUPIED AREA HEAT GAINS FROM ROOF, WALLS, OVERHEAD LIGHTS, VENTILATION LOAD.

ON OCCUPIED AREA HEAT GAINS FROM FLOOR, WALLS, EQUIPMENT, PEOPLE LOAD.

12/12/202⁽¹⁾ partition data). Hourly Analysis Program v.4.4

7. Partitions:

Occupied Area Space Input Data

2.5. Miscellaneous Loads: Sensible ...

Schedule

Schedule

Latent.

Project : Standard DX Unit Vs Mini Duct System

MINI DUCT SYSTEM-OCCUPIE

1.	Ger	neral	Detai	ls:

100.0 m² Floor Area Avg. Ceiling Height ...**2.0** m Building Weight 498.0 kg/m² 1.1. OA Ventilation Requirements: OFFICE: Office space Space Usage OA Requirement 1 0.30 L/(s-m²) OA Requirement 2 ASHRAE Std 62.1-2004 Space Usage Defaults

2. Internals:

2.1. Overhead Lighting:			2.4. People:		
Fixture Type			Occupancy		People
Wattage		W/m²	Activity Level	Sedentary Work	
Ballast Multiplier			Sensible		W/person
Schedule	None		Latent		W/person
			Schedule	EQUIP.SCHEDULE	

2.2. Task Lighting:

Wattage		W/m ²
Schedule	None	

2.3. Electrical Equipment:

V	/attage		W/m ²
S	chedule EQUIF	SCHEDULE	

3. Walls, Windows, Doors:

Exp.	Wall Gross Area (m²)	Window 1 Qty.	Window 2 Qty.	Door 1 Qty.
Ν	20.0	1	0	0
Е	20.0	1	0	0
S	20.0	1	0	0
W	20.0	1	0	0

3.1. Construction Types for Exposure N

Wall Type	Default Wall Assembly
1st Window Type	

3.2. Construction Types for Exposure E

Wall Type	Default Wall Assembly	
1st Window Type		

3.3. Construction Types for Exposure S

Wall Type ... Default Wall Assembly 1st Window Type ... W1

3.4. Construction Types for Exposure W

Wall Type	Default Wall Assembly
1st Window Type	W1

4. Roofs, Skylights: (No Roof or Skylight data).

5. Infiltration:

Design Cooling	1.00	L/s
Design Heating	0.00	L/s
Energy Analysis	0.00	L/s
Infiltration occurs only when the fan is off		

6. Floors:

Type Floor Above Unconditioned Space	
Floor Area 100.0	m²
Total Floor U-Value0.568	W/(m²-°K)
Unconditioned Space Max Temp	°C
Ambient at Space Max Temp 35.0	°C
Unconditioned Space Min Temp	°C
Ambient at Space Min Temp. 12.8	°C

Page 1 of 1

12/14/2020 07:54AM

...**0** W

... O W

None

None

Occupied area System Input Data

Project : Standard DX Unit Vs Mini Duct System

12/14/2020 08:00AM

1. General Details:

Air System Name	MINI DUCT SYSTEM OCCUPIED
Equipment Type	Terminal Units
Air System Type	Split DX Fan Coil
Number of zones	
Ventilation	Direct Ventilation

2. Ventilation System Components: (Common Ventilation System not used: no inputs)

3. Zone Components:

Space Assignments:

Zone 1: Zone 1	
MINI DUCT SYSTEM-OCCUPIE	x1

Thermostats and Zone Data:

Zone	All	
Cooling T-stat: Occ.	23.9	°C
Cooling T-stat: Unocc.		°C
Heating T-stat: Occ.	21.1	°C
Heating T-stat: Unocc.	15.6	°C
T-stat Throttling Range	0.83	°K

Thermostat Schedule Schedule 4 Unoccupied Cooling is Available

Common Terminal Unit Data: Cod

Cooling Coil:		
Design Supply Temperature		°C
Coil Bypass Factor		
Cooling Source		
Schedule	JFMAMJJASOND	
Fan Control		

Ventilation Sizing Method Sum of Space OA Airflows

Terminal Units Data:

Zone	All	
	Coil	
Minimum Airflow	0.00	L/s/person
Fan Performance	0	Pa
Fan Overall Efficiency	50	%

4. Sizing Data (User-Modified): System Sizing Data:

Cooling Supply Temperature	°C
Hydronic Sizing Specifications:	
Chilled Water Delta-T5.6	°K
Hot Water Delta-T	°K
Safety Factors:	
Cooling Sensible10	%
Cooling Latent5	%
Heating 0	%

Zone Sizing Data:

Zone Airflow Sizing Method Sum of space airflow rates Space Airflow Sizing Method Individual peak space loads

Zone	Supply Airflow (L/s)	Zone Htg Unit (kW)	Reheat Coil (kW)	Ventilation (L/s)
1	698.0	-	-	55.0

Page 1 of 1

Ocuujed Area - Air System Design Load Summary Project : Standard DX Unit Vs Mini Duct System

 \sim JAC ZONE Windo Wall T Roof Skylig Door I Floor Partiti Ceiling Overh Task I Electri People Infiltra \triangleleft 11 Misce Safety >> To Zone Plenui Plenui Plenui Exhau Ventila Space Duct H >> To Termir Termir >> To ARI CUPIE \triangleleft Key: AL(

	DE	SIGN COOLING		DE	SIGN HEATING	
	COOLING DATA	AT Jul 1600	HEATING DATA AT DES HTG			
	COOLING OA DB	/ WB 45.7 °C /	29.3 °C	HEATING OA DB	/WB 12.2 °C / 7.4	°C
		Sensible	Latent		Sensible	Laten
ELOADS	Details	(W)	(W)	Details	(W)	(W
low & Skylight Solar Loads	12 m²	310	-	12 m²	-	
Transmission	68 m²	722	-	68 m²	322	
f Transmission	0 m²	0	-	0 m²	0	
low Transmission	12 m²	461	-	12 m²	203	
ight Transmission	0 m ²	0	-	0 m²	0	
· Loads	0 m ²	0	-	0 m²	0	
r Transmission	100 m²	0	-	100 m²	0	
tions	0 m²	0	-	0 m²	0	
ng	0 m ²	0	-	0 m²	0	
head Lighting	0 W	0	-	0	0	
Lighting	0 W	0	-	0	0	
tric Equipment	2500 W	2500	-	0	0	
ble	10	821	791	0	0	(
ration	-	0	0	-	0	(
ellaneous	-	0	0	-	0	(
ty Factor	10% / 5%	481	40	0%	0	(
otal Zone Loads	-	5295	831	-	524	(
e Conditioning	-	5295	831	-	-292	(
um Wall Load	0%	0	-	0	0	
um Roof Load	0%	0	-	0	0	
um Lighting Load	0%	0	-	0	0	
aust Fan Load	0 L/s	0	-	0 L/s	0	
ilation Load	0 L/s	0	-	0 L/s	0	(
ilation Fan Load	0 L/s	0	-	0 L/s	0	
e Fan Coil Fans	-	0	-	-	0	
Heat Gain / Loss	0%	0	-	0%	0	
otal System Loads	-	5295	831	-	12	(
ninal Unit Cooling	-	5295	831	-	0	(
ninal Unit Heating	-	0	-	-	0	
otal Conditioning	-	6023	831	-	0	(
	Positive	values are clg	loads	Positive	values are htg loa	ds
		values are htg			values are clg loa	

Occupied Area Zone Sizing Summary

Project : Standard DX Unit Vs Mini Duct System

12/14/2020 07:59AM

Air System Information

12/14/2020 07:59AM

Air System Name	MINI DUCT SYSTEM OCCUPIED
Equipment Class	
Air System Type	SPLT-FC

Number of zones		1	
Floor Area			m²
Location	_Dubai,	United Arab Emirates	

Sizing Calculation Information Zone and Space Sizing Method:

Zone L/s	Sum of space airflow rates	Calculation Months	Jan to Dec
Space L/s	Individual peak space loads	Sizing Data	User-Modified

Zone Sizing Data

	Maximum	Design	Minimum	Time	Maximum	Zone	
	Cooling	Air	Air	of	Heating	Floor	
	Sensible	Flow	Flow	Peak	Load	Area	Zone
Zone Name	(kW)	(L/s)	(L/s)	Load	(kW)	(m²)	L/(s-m²)
Zone 1	5.3	698	698	Jul 0000	0.5	100.0	6.98

Terminal Unit Sizing Data - Cooling

	Total	Sens	Area	Area	Water	Time
	Coil	Coil	Leaving	Entering	Flow	of
	Load	Load	DB / WB	DB / WB	@ 5.6 °K	Peak
Zone Name	(kW)	(kW)	(°C)	(°C)	(L/s)	Load
Zone 1	6.1	5.3	23.9 / 17.0	17.3 / 14.7	-	Jul 1600

Space Loads and Airflows

		Cooling	Time	Air	Heating	Floor	
Zone Name /		Sensible	of	Flow	Load	Area	Space
Space Name	Mult.	(kW)	Load	(L/s)	(kW)	(m²)	L/(s-m²)
Zone 1							
MINI DUCT SYSTEM-OCCUPIED	1	6.0	Jul 0000	696	-	100.0	6.96

Unoccupied area Space Input Data

Project : Standard DX Unit Vs Mini Duct System

12/14/2020 07:56AM

w W

MINI DUCT SYSTEM-UNOCCUP

1. General Details: Floor Area 100.0 Avg. Ceiling Height 1.0	m² m
Building Weight	kg/m²
1.1. OA Ventilation Requirements:	
Space Usage OFFICE: Office space	
OA Requirement 1	L/s/person
OA Requirement 2 0.30	L/(s-m ²)
Space Usage Defaults ASHRAE Std 62.1-2004	. ,

2. Internals: 2.1. Overhead Lighting

Fixture Type		
Wattage	1.00	W/m²
Ballast Multiplier		
Schedule	LIGHTING SCHEDULE	

2.2. Task Lighting:		
Wattage	0.00	W/m²
Cabadula	Mana	

23	Electrical	Equipment
2.5.	Liecuica	Equipment

Wattage 0.00	W/m ²
Schedule None	

3. Walls, Windows, Doors:

Exp.	Wall Gross Area (m²)	Window 1 Qty.	Window 2 Qty.	Door 1 Qty.
Ν	10.0	0	0	0
Е	10.0	0	0	0
S	10.0	0	0	0
W	10.0	0	0	0

3.1. Construction Types for Exposure N

Wall Type Default Wall Assembly

3.2. Construction Types for Exposure E

Default Wall Assembly Wall Type

3.3. Construction Types for Exposure S Wall Type ... Default Wall Assembly

3.4. Construction Types for Exposure W Default Wall Assembly

Wall Type ...

4. Roofs, Skylights:

Exp.	Roof Gross Area (m²)	Roof Slope (deg.)	Skylight Qty.
н	100.0	0	0

4.1. Construction Types for Exposure H

Roof Type ... Light Weight Roof

5. Infiltration:

Design Cooling	1.00	L/s
Design Heating	0.00	L/s
Energy Analysis	0.00	L/s
Infiltration occurs only when the fan is off.		

6. Floors:

Туре Floor Above Conditioned Space (No additional input required for this floor type).

7. Partitions: 12/12/2020

Hourly Analysis Program v.4.4

4. People:		
Occupancy		Person
Activity Level		
Sensible		W/person
Latent	79.1	W/person
Schedule	None	

2.5. Miscellaneous Loads:

Sensible	0
Schedule	None
Latent	0
Schedule	None

Unoccupied Area System Input Data

Project : Standard DX Unit Vs Mini Duct System

12/14/2020 07:56AM

1. General Details:

Air System Name	MINI DUCT SYSTEM UNOCCUPIED
Equipment Type	Terminal Units
Air System Type	Split DX Fan Coil
Number of zones	
Ventilation	Direct Ventilation

2. Ventilation System Components:

(Common Ventilation System not used: no inputs)

3. Zone Components:

Space Assignments:

Zone 1: Zone 1	
MINI DUCT SYSTEM-UNOCCUP	x1

Thermostats and Zone Data:

AII -	
.4	°C
.4	°C
.1	°C
.6	°C
33	°K
	.4 .4 .1 .6

Thermostat Schedule Schedule 4 Unoccupied Cooling is Available

Common Terminal Unit Data: Coolin

coling Coll:		
Design Supply Temperature	23.9	°C
Coil Bypass Factor		
Cooling Source	Air-Cooled DX	
Schedule	JFMAMJJASOND	
Fan Control		

Ventilation Sizing Method Sum of Space OA Airflows

Terminal Units Data:

Zone	All	
Terminal Type		
Minimum Airflow		L/s/person
Fan Performance	0	Pa
Fan Overall Efficiency		%

4. Sizing Data (User-Modified): System Sizing Data:

Cooling Supply Temperature	23.9	°C
Hydronic Sizing Specifications:		
Chilled Water Delta-T		°K
Hot Water Delta-T	. 11.1	°K
Safety Factors:		
Cooling Sensible	10	%
Cooling Latent	5	%
Heating	0	%

Zone Sizing Data:

Zone Airflow Sizing Method Sum of space airflow rates Space Airflow Sizing Method Individual peak space loads

Zone	Supply Airflow Zone Htg Unit (L/s) (kW)		Reheat Coil (kW)	Ventilation (L/s)
1	698.0	-	-	30.0

Hourly Analysis Program v.4.4

Page 1 of 2

ZONELOADS

Wall Transmission

Roof Transmission

Door Loads

Task Lighting

Electric Equipment

>> Total Zone Loads

Plenum Lighting Load

Zone Conditioning

Plenum Wall Load Plenum Roof Load

Exhaust Fan Load

Ventilation Load

Ventilation Fan Load

Space Fan Coil Fans Duct Heat Gain / Loss

Terminal Unit Cooling

Terminal Unit Heating >> Total Conditioning

Key:

>> Total System Loads

Partitions

Ceiling Overhead Lighting

People

nfiltration Miscellaneous

Safety Factor

Window Transmission

Skylight Transmission

Floor Transmission

Window & Skylight Solar Loads

Unoccupied Air System Design Load Summary Project : Standard DX Unit Vs Mini Duct System

DESIGN COOLING

Sensible

(W)

444

4071

1000

552

6067

6067

1124

7091

7091

7091

Positive values are clg loads

Negative values are htg loads

Laten

(W)

1427

1427

1427

COOLING OA DB / WB 41.4 °C / 28.4 °C

COOLING DATA AT Jul 2000

Details

0 m²

40 m²

100 m²

0 m²

0 m²

0 m²

0 m²

0 m²

0 m²

0 W 0

0 W 0

0

0%

0%

0%

0 L/s

55 L/s

0 L/s

0%

1000 W

10%/5%

12/14/2020 07:57AM

Latent

(W)

DESIGN HEATING

Sensible

(W)

189

675

865

-110

204

10

Positive values are htg loads

Negative values are clg loads

HEATING OA DB / WB 12.2 °C / 7.4 °C

HEATING DATA AT DES HTG

Details

0 m²

40 m²

100 m²

0 m²

0 m²

0 m²

0 m²

0 m²

0 m²

0

0

0

0

0%

- 01

0

0 L/s

55 L/s

0 L/s

0%

Unoccupied Area Zone Sizing Summary

12/14/2020 07:57AM

Project : Standard DX Unit Vs Mini Duct System

Air System Information

Air System Name MINI DUCT S	YSTEM UNOCCUPIED
Equipment Class	TERM
Air System Type	SPLT-FC

Number of zones 100.0 m² Floor Area Location _ Dubai, United Arab Emirates

Sizing Calculation Information

Zone and Space Sizing Method:

Zone L/s	Sum of space airflow rates	Calculation Months	Jan to Dec
Space L/s	Individual peak space loads	Sizing Data	User-Modified

Zone Sizing Data

	Maximum	Design	Minimum	Time	Maximum	Zone	
	Cooling	Air	Air	of	Heating	Floor	
	Sensible	Flow	Flow	Peak	Load	Area	Zone
Zone Name	(kW)	(L/s)	(L/s)	Load	(kW)	(m²)	L/(s-m ²)
Zone 1	7.1	698	698	Jul 2100	0.9	100.0	6.98

Terminal Unit Sizing Data - Cooling

	Total	Sens	Coil	Area	Water	Time
	Coil	Coil	Entering	Entering	Flow	of
	Load	Load	DB / WB	DB / WB	@ 5.6 °K	Peak
Zone Name	(kW)	(kW)	(°C)	(°C)	(L/s)	Load
Zone 1	8.5	7.1	32.3 / 20.2	23.9 / 17.0	-	Jul 2000

Space Loads and Airflows

		Cooling	Time	Air	Heating	Floor	
Zone Name /		Sensible	of	Flow	Load	Area	Space
Space Name	Mult.	(kW)	Load	(L/s)	(kW)	(m²)	L/(s-m ²)
Zone 1							
MINI DUCT SYSTEM-UNOCCUP	1	5.6	Jul 2100	698	-	100.0	6.90

MINI DUCT SYSTEM – UNIT SELECTION

- STANDARD HEAT LOAD OCCUPIED AREA HEAT LOAD CALCULATION
- T kW = 14.7
- S kW = 12.4
- L/s = 1003
- External Static ٠ Pressure = 50 Pa
- Design Condition ٠
 - Room $Db = 23.9 \, {}^{\circ}C$ • Room Wb = 16.9 °C
- Air Entering Room
 - Room Db = $15.1 \, {}^{\circ}C$
 - Room Wb = $14.5^{\circ}C$
- Air Leaving Room
 - Room $Db = 25.4 \, {}^{\circ}C$
 - Room Wb = 18.8 ^oC

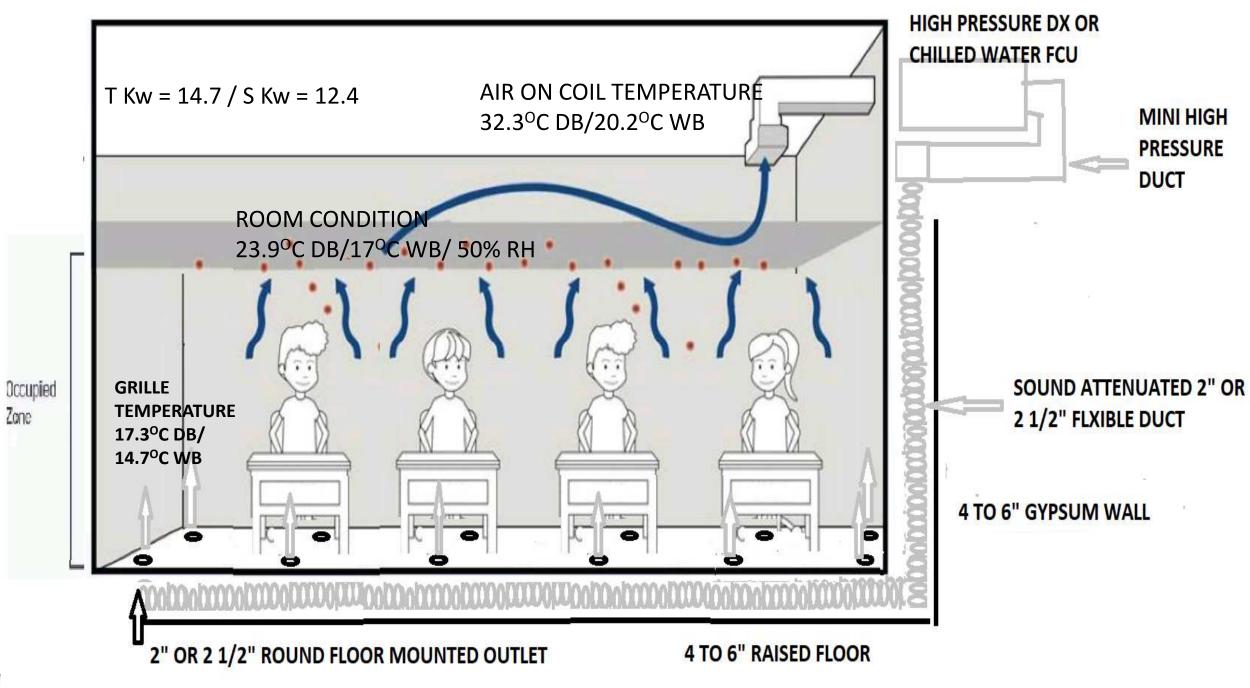
- T kW = 6.1
 - S kW = 5.3
 - L/s = 698
 - External Static Pressure = 1"
 - **Design Condition** ٠ • Room Db = 23.9
 - Room Wb = 16.9•
 - Air Entering Room $Db = Room Db - (SkW \times 1000/1.006 \times 1.202 \times L/s)$ $Db = 23.9 - (5.3 \times 1000 / 1.006 \times 1.202 \times 698)$
 - Db = 17.62 °C
 - Air Entering Room
- Enthalpy = Room E–(TkW x 1000 /1.202 x L/s)
 - $= 47.8 (6.1 \times 1000 / 1.202 \times 0.698)$
 - = 40.5 KJ/kg d.a
 - Wb = 14.7 °C

- UNOCCUPIED AREA HEAT LOAD
- T kW = 8.52
- S kW = 7.1
- L/s = 698
- External Static Pressure = 1"
- Design Condition
 - Room Db = 23.9
 - Room Wb = 16.9
- Air Leaving Room

 $Db = Room Db + (SkW \times 1000/1.006 \times 1.202 \times L/s)$ $Db = 23.9 + (7.1 \times 1000 / 1.006 \times 1.202 \times 698)$

$Db = 32.3 \,^{\circ}C$

Wb = 20.2 °C


• Air Leaving Room Enthalpy = Room $E+(TkW \times 1000/1.202 \times L/s)$ $= 47.8 + (8.52 \times 1000/1.202 \times 698)$ = 57.96 KJ/kg d.a

UNIT SELECTION PARAMETERS

- T kW = 14.62
- S kW = 12.4
- L/s = 698
- External Static
 - Pressure = 1''
- **Design Condition** ٠
 - Room Db = 23.9 ^oC •
 - Room Wb = 16.9 °C
- Air Entering Room
 - Room Db = 17.62 ^oC
 - Room Wb = $14.7 \circ C$
- Air Leaving Room
 - Room Db = 32.2 °C
 - Room Wb = $20.2 \circ C$

Application I The Unico system

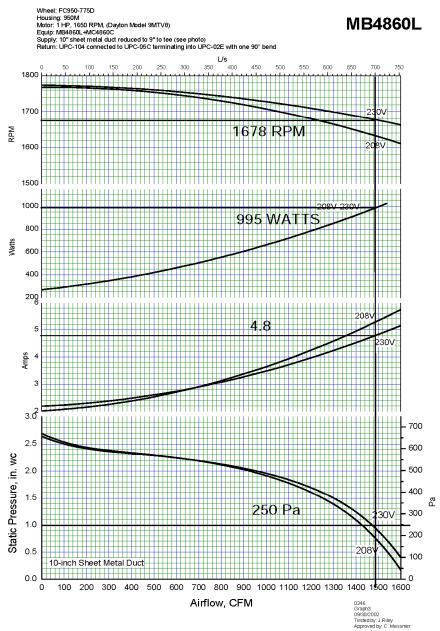
<u>SOLUTION – ALTERNATIVE AIR DISTRIBUTION METHOD</u> <u>MINI DUCT SYSTEM – UNIT SELECTION?</u>

ENGINEERING SPECIFICATIONS

The Unico System®

Blower Module Specifications – 60 Hz

Model No. Electrical Characteristics		M2430B-	M3642BL	M4860BL		
		208 – 230 Volts / 60 / 1 phase				
Motor Size, HP (kW)		1/2 (0.37) 1 (0.75)				
Manhara Tauna	-STD, -ACB		PSC			
Motor Type	-SCB	EC (variable speed)				
Motor Capacitor, mfd.	-STD, -ACB	10				
Motor Capacitor, mfd.	-SCB	none				
Motor Full Load Amps	-STD	3.0	6.2	6.2		
	-ACB	3.3	4.8	4.8		
	-SCB	3.2	6.1	6.1		
Motor Speed, RPM	-STD	1700				
	-ACB	1700/800				
	-SCB	400-1800				
Blower Wheel Nom. Diameter, in. (mm)		9.5 (241)				
Blower Wheel Width, inch (mm)		3.75 (95)	5.0 (127)	/./5 (197)		
*Nominal Air Flow Rate, CFM (L/s)		600 (283)	900 (425)	1250 (590)		
*Plenum Static Pressure, in. water (Pa)		1.5 (373)	1.5 (373)	1.5 (373)		
Minimum Plenum Size, ID, inch (mm)		7 (178)	9 (229)	10 (254)		
dB(A)		56	56	58		
Sound Pressure Level	NC	50	47	50		
Shipping Weight, Ib (kg)		62 (28)	72 (33)	72 (33)		

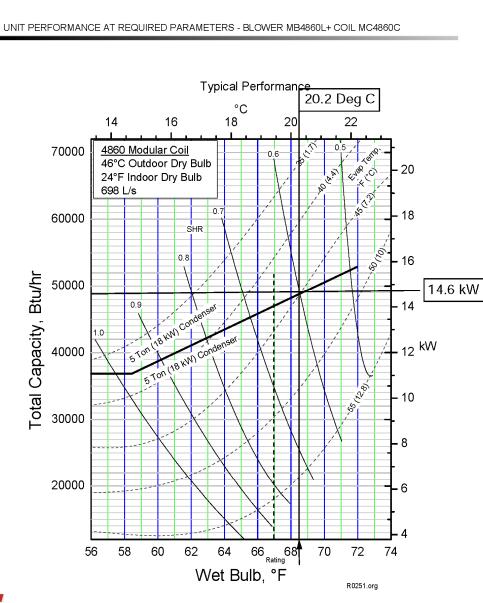

* based on full open restrictor and minimum plenum size at 230 V

Measuring airflow.

To determine the airflow when using the single or two-speed motors (-STD, -ACB models), measure the amperage and look up the airflow in the following table. This is not necessary for the variable speed motors because they are programmed to deliver the airflow that you need.

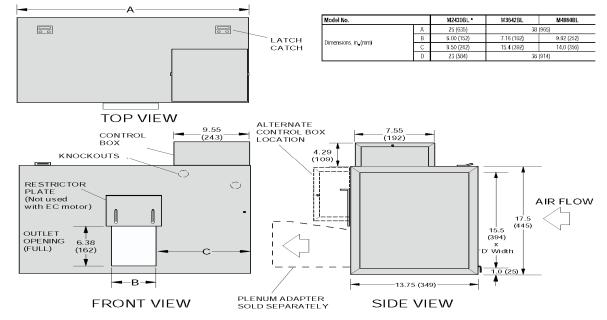
External Static Pressure, in. water (Pa)	1.0 (2	50)	1.25 (3	10)	1.5 (37	70)	1.75 (4	35)	2.0 (50	00)
Model	CFM (L/s)	Amps	CFM (L/s)	Amps						
				60 H	z – 230V					
STD models										
M2430LB	870 (410)	3.1	810 (383)	2.9	740 (351)	2.7	660 (310)	2.4	510 (240)	2.0
M3642LB	1240 (585)	4.8	1170 (552)	4.5	1070 (505)	4.1	925 (437)	3.6	745 (352)	3.1
M4860LB	1472 (695)	4.7	1400 (660)	4.5	1300 (610)	4.2	1162 (548)	3.9	953 (450)	3.4
ACB models										
M2430LB+ACB	760 (360)	2.3	700 (330)	2.1	640 (302)	2.0	550 (260)	1.7	450 (212)	1.5
M3642LB+ACB	1380 (617)	5.2	1300 (613)	4.9	1200 (566)	4.5	1090 (514)	4.0	950 (448)	3.6
M4860LB+ACB	1480 (698)	5.0	1430 (674)	4.4	1360 (642)	4.5	1220 (575)	4.0	930 (439)	3.1

The Unico System®



12/12/2020

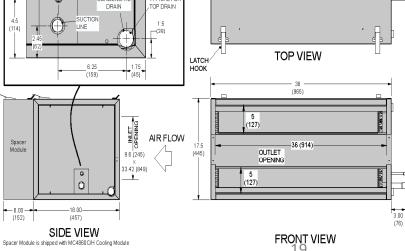
ENGINEERING SPECIFICATIONS


\leq SEI UNIT MINI DUCT SYSTEM

M SERIES COOLING MODULE REFRIGERANT COILS for R-22, R-407C, R-410A

ENGINEERING SPECIFICATIONS

Dimensional Data



ALL DIMENSIONS IN inches (mm)

MC4860x Specifications

Type of Syst	em	Cooling Only	Heat Pump		
Model No.		MC4860C	MC4860H		
Compatible (Condenser Size, Ton (kW)	4-5	(14-17.6)		
	Net Face Area, ft ² (m ²)	7.44 (0.69)			
	Tube diameter, in. (mm)	3/8 (9.5)			
Evaporator	Number of rows	3	4		
	Fins per inch (m)	14 (551)			
	Suction line, in. (mm) OD	7/8 (22.2)			
Coil	Liquid line, in. (mm) OD	3/8 (9.5)			
	Fin Type	sinewave	sinewave		
	Number of Circuits	10	8		
	Valve, R-22, Part No.	A00805-005	A00808-005		
	Valve, R-410A, Part No.	A00805-015	A00808-015		
Design Pres	sure, psig (kPa)	50	0 (3447)		
Condensate	Connection, in. (mm) FPT	3	3/4 (19)		
Refrigerant		R-22, R-	407C, R-410A*		
Coil Shipping Weight, lb. (kg)		88 (40)			
Factory Insta	alled Expansion Device	TXV	TXV with Check Valve		

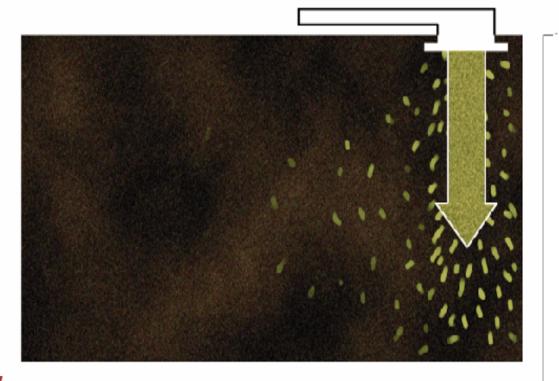
DETAIL OF PIPING (202) LINE TYPICAL FOR DNDENSAT DRAIN TOP DRAIN 1.5 6.25 1.75 (45) (159)

.

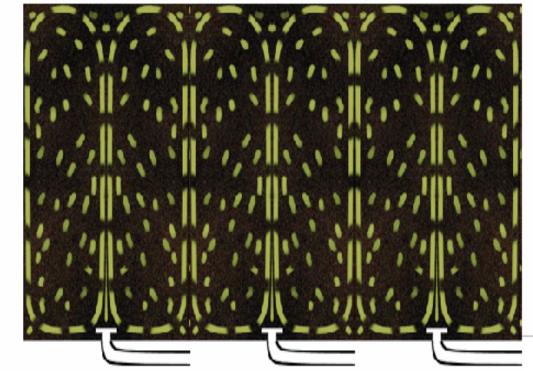
.

12/12/2020

The Unico System®


WOLF INTERNATIONAL

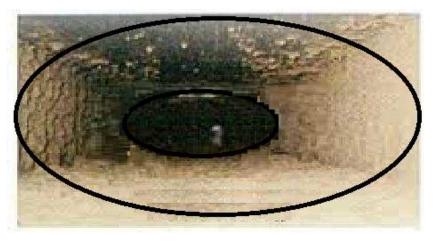
UNIT SHOWN FOR HORIZONTALAIRFLOWARRANGEMENT. ALL DIMENSIONS IN INCHES (mm)


ADVANTAGES OF FLOOR SUPPLY OVER CEILING SUPPLY

CEILING SUPPLY AIR vs FLOOR SUPPLY AIR

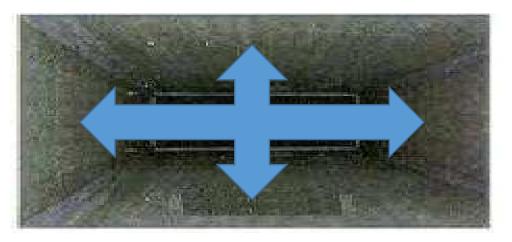
- <u>STANDARD AC UNITS AIR DUMPING IN</u> <u>CONDITIONED SPACE</u>
 - The conventional AC system is designed to dump air into the room, causing uncomfortable drafts, hot and cold spots.

- <u>MINI DUCT UNITS ASPIRATION WAY OF AIR</u> <u>MOVEMENT IN CONDITIONED SPACE</u>
 - The Unico System gently circulates air throughout each room, eliminating drafts, and thermal shocks, providing even temperatures from ceiling to floor and in each room corner.
 - LOWER ENERGY CONSUMPTION.
 - FOR DX NEED 1 SIZE LOWER CONDENSER UNIT.



12/12/2020

STANDARD DX UNITS VS MINI DUCT UNITS


• STANDARD AC UNITS – AIR DISTRIBUTION

- High Volume Low External Static Fan.
- Air is pushed through low pressure ducting. Fan is the source of Air. Air terminal units are the Air Exit point.

• Air moves in elliptical path in Rectangular duct. It leaves corners in most condition forming fungus. Dry fungus drops in duct, get carried in AC are causing allergies to occupants.

- MINI DUCT UNITS AIR DISTRIBUTION
 - Low Volume High External Static Fan.
 - Main Duct is closed form all sides. Air is delivered under high pressure in the duct. Once desired pressure is built, air moves our through tapings into flexible duct, the delivered into conditioned area. Small Air terminal units are the exit points.

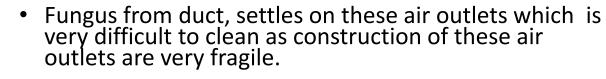
• Due to High pressure Air is filled in Duct completely leaving no space for fungus to form.

STANDARD DX UNITS VS MINI DUCT UNITS

- <u>STANDARD AC UNITS TERMINAL UNITS</u>
- The conventional AC system provides similar looking grilles / diffusers taking prominent position in your room décor with identical finish in any premises.
- Any attempt to change the look proves expensive to buy and to maintain later on.

- MINI DUCT UNITS TERMINAL UNITS
 - Outlets are small, subtle and blend into any décor.
 - For the look that best suits your needs, a variety of styles and finishes are available.
 - Choose from while or black plastic, chrome, brass and several wood species or simply paint or stain the outlet to perfectly match room color scheme.

ORIGINAL 5" Outer Diameter Plastic Outlet for Ceiling Applications (Available in white, black, brass or chrome finishes)


WOODEN 5" Outer Diameter Wood Outlet for Hardwood Floor Applications (Available in a variety of wood species)

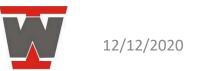


SLOPED 15° and 25° Angled Outlets for Sloped Ceilings and Walls

\$ **[**

SLOTTED $1/2" \times 8"$ Slotted Outlet for Sidewall Applications (Available in a variety of finishes and wood species)

STANDARD DX UNITS VS MINI DUCT UNITS


- STANDARD AC UNITS AIR FILTRATION
 - Limited Filtration options.
 - Due to low static fans, filtration ints will increase external static pressure and reduce air volume
 - This will affect cooling and increase power consumption.

- MINI DUCT UNITS AIR FILTRATION
 - Due to High External Static fans its possible to add any Electrostatic or Electronic filter with out any effect on Air Volume.
 - So no effect on cooling hence power consumption

STANDARD UNITS VS MINI DUCT UNITS

• <u>STANDARD AC UNITS – OPTIONS</u>

- ----
- ____
- ----
- NA
- Capillary expansion.
- Single module.
- Standard Filtration option
- Due to dirty ducts, in long run Unhygienic operation
- Interior design needs to be adjusted based on Air terminal unit design. No design freedom.

- MINI DUCT UNITS OPTIONS
 - DX UNITS R22/407C/410A
 - Matching Single Split / VRV system
 - CHILLED WATER COIL Chiller / District Cooling Application.
 - MOTOR with Variable speed EC Motor & SMART CONTROL BOX.
 - Thermostatic Expansion valve for precise control.
 - Modular Construction.
 - Multiple Filtration Options
 - Hygienic operation due to pressurized duct
 - Aesthetically pleasant Air terminal units. Interior design freedom get preference
 - Reduced power consumption.

