
A Low Carbon Non-
Functional Requirement
for the Agile Delivery
Model
Introducing a Low Carbon NFR into Agile Delivery

Author: Eric Zie

Defining a Low Carbon Non-Functional Requirement
(NFR) as standard in the Agile Delivery Process

Why Does Low Carbon Software Matter?

Software runs our digital lives and businesses, but we use lots of energy
to build it and need hardware, data centres and networks to keep it
running. All of this consumes even more energy. The sector created 1.4
billion tonnes CO2e or 2.5% of global emissions in 2020 and consumed
4% of global energy – the same as all the air travel taken in the world in
a year. Data centres use about 1% of global electricity – 160TWh of
energy. That’s the same as powering 32 million homes. And these
numbers are increasing every year as our usage of digital services
continues to grow.

We can help by lowering the energy demands of software on the
technology value chain and reduce the creation of millions of tonnes of
CO2e. By making more efficient use of ICT we not only lower energy
consumption but also extend the lifespan of the embodied carbon in all
devices and infrastructure components needed to run software. By
designing and building carbon efficient software we can reduce total
energy demands of the entire technology value chain.

Including the Low Carbon requirements defined below as an NFR into
the specification of a new software product at design stage and as part
of the agile delivery process can be a major influencer on
decarbonisation and help us move toward a lower carbon IT future.
Please consider doing this in any new project, it is a simple way to
ensure that sustainability is at the core of your delivery, and not seen as
‘something extra to do’. You will not only gain the benefits of applying
the rigour of agile practices but also enable your quality assurance
processes to help track and measure compliance and progress. This is
an action that will immediately help make a fundamental difference in
the way we build more carbon awareness into our digital products and
services and truly embed a culture of decarbonisation within the
software development process.

Copyright © 2023 Eric Zie. All rights reserved. 2

Section 1: Low Carbon as a Non-Functional Requirement

Non-functional Requirements (NFRs)

Understanding why NFRs are vital to the delivery of customer-centric,
reliable and robust software products is an important place to begin.
The summarised points below cover the key definition and attributes:

• NFRs commonly define system attributes such as security,
reliability, performance, maintainability, scalability, and usability. They
serve as constraints or restrictions on the design of the system across
the different backlogs. Also known as system qualities, non-functional
requirements are just as critical as functional Epics, Capabilities,
Features, and Stories. We believe that Low Carbon is now a key NFR
that will have implications across all requirements.

• NFRs ensure the usability and effectiveness of the entire system.
Failing to meet any one of them can result in systems that fail to
satisfy internal business, user, or market needs, or that do not fulfil
mandatory requirements imposed by regulatory or standards
agencies. In some cases, non-compliance can cause significant legal
issues (for example, privacy, security and safety).

• NFRs are persistent qualities and constraints that, unlike functional
requirements, are typically revisited as part of the Definition of Done
(DoD) for each Iteration, Program Increment (PI), or release. NFRs

Copyright © 2023 Eric Zie. All rights reserved. 3

influence all backlogs: Team, Program, Solution, and Portfolio. It is
therefore critical that proper definition and implementation of NFRs is
undertaken. Over-specification, and the solution may be too costly to
be viable; under-specify or underachieve them, and the system will be
inadequate for its intended use.

• NFRs are not themselves backlog items. They are constraints on
development that limit some degree of design freedom for those
building the system. These constraints are often defined in the
acceptance criteria for multiple backlog items. In a Low Carbon IT
example, reducing image sizing whilst maintaining an acceptable UI
experience but balanced to achieve a target carbon intensity per
software unit is a requirement for all products in the suite. A user
friendly UI is a functional requirement, while reduced image sizing is a
constraint to achieve the desired Low Carbon NFR outcome. Any
backlog item building UI functionality would reference the reduced
image sizing constraint in its acceptance criteria.

We believe that a Low Carbon requirement needs to be defined and
incorporated alongside other traditional NFRs, and that the approach to
introducing sustainability based qualities and constraints highlighted
above become standard in the agile delivery process.

Low Carbon NFR and Software Quality

To deliver sustainably minded software products it is key to build a set
of Low Carbon specifications that describe the system’s operational
capabilities and constraints and attempt to maintain its functionality.
These are basically the requirements that outline how well it will operate
alongside ‘standard’ NFRs like speed, security, reliability, data integrity,
etc.

Note: the focus here is on a Low Carbon NFR for a software
product. It is not intended to cover sustainability based
functionality from a user perspective, e.g., a user story related to
delivering a carbon footprint calculation for a client. The focus here
is on managing the carbon impact of the software product itself.

Non-functional requirements specify the quality attributes of the system,
hence their second name — quality attributes. Continuing the reduced

Copyright © 2023 Eric Zie. All rights reserved. 4

image sizing example, a non-functional requirement can be the Kb
sizing constraints with which a system must perform visuals to satisfy
user expectations, “The standard image size across UI components
must be limited to 50Kb, and use the appropriate caching techniques to
reduce superfluous reloading of images once displayed”.

NFRs are therefore implicit attributes of software quality. The IEEE
standard 1061-1998 (Standard for a quality metrics methodology) states
that “Software quality is the degree to which software possesses a
desired combination of quality attributes” where the definition of these
qualities depends on what is required of the system to be built. By
incorporating a Low Carbon NFR into the specification and measuring
delivery according to the overall quality criteria of the software product
being developed, it will be possible to ensure that sustainability is at the
heart of new product delivery.

The Impact of a Low Carbon NFR on Solution Development

Non-functional requirements can have a substantial impact on solution
development and testing. Architects and developers should be aware
of the implications when specifying them. For example, a statement like
“0.0145 carbon intensity” may increase development effort
exponentially more than “0.0156 carbon intensity.” The impact of the
NFR must be well understood by those defining requirements.

In many cases, applying Set-Based Design can keep options open by
initially specifying NFRs as a range, and that is why we recommend
setting a target rating (e.g., A … E) to aid boundary and target setting.
Teams explore the solution space and gain additional knowledge that
leads to a better economic and climate based decision. This is a new
paradigm and some education and understanding of the implications of
these choices from a sustainable IT perspective may well be required.
Imagine a future where carbon impact and availability are both
considered with equal importance, that is what we are attempting to
achieve with the Low Carbon NFR.

There will always be value in achieving the highest performing Low
Carbon measure - and the value is beyond traditional economic
indicators. We do however recognise that achieving the highest levels of
performance may not always be achievable or cost-effective for a
particular product in a specific scenario, and may require adjustments

Copyright © 2023 Eric Zie. All rights reserved. 5

elsewhere in the system’s operational environment. The solution’s
Economic Framework should contain criteria to evaluate the Low
Carbon NFR, and this should be viewed in the context of trade-offs with
costs and other considerations.

NFRs will and should affect Suppliers and their knowledge and ability to
achieve performance targets should inform NFR specifications and the
Economic Framework applied to software selection. For more
information on the GoCodeGreen Low Carbon Software Specification,
aimed specifically at low carbon software vendor selection contact
connect@gocode.green.

Specifying a Low Carbon NFR

Like all other requirements, NFRs must be quantified for clarity to
ensure stakeholders’ needs are clearly understood by everyone. The
following steps should be considered as part of a Low Carbon NFR
specification:

• Define the NFR’s quality, including its name, scale, and method to
measure.

• Quantify the NFR’s measurable values, including the current
measured value (baseline), the value to achieve (target), and the value
that becomes unacceptable (constraint).

• Bounded – When they lack bounded context, NFRs may be irrelevant
and lead to significant additional work.

• (Inter)dependent – Generally, NFRs should be independent of each
other so that they can be evaluated and tested without consideration
of, or impact from, other system qualities. However, for a Low Carbon
NFR there will be balances and interactions to be made against other
NFRs - this will make specification more challenging but is a necessity
as compromises across both functionality and other NFR targets will
be required.

• Negotiable – Understanding NFR business drivers and bounded
context mandates negotiability.

• Testable – NFRs must be stated with objective, measurable, and
testable criteria.

In addition to the steps above, two further additional considerations are
key when writing and setting a Low Carbon NFR:

Copyright © 2023 Eric Zie. All rights reserved. 6

mailto:connect@gocode.green

• Customer Concern - sustainability is increasingly becoming a key
customer need - and demonstrating the low carbon credentials of the
software products that now deliver so many of the digital services
being consumed will be scrutinised and valued. A future where
customer decisioning and choice will be based on the low carbon
rating of a digital service is becoming a reality. To this end, it is critical
that the Low Carbon NFR is introduced into projects early in the
design so that customer expectations can be understood, validated
and met.

• Design Criteria - to ensure correctness of approach (completeness,
consistency, traceability, verifiability) it is important that clear metrics
and measurement criteria are set to support the solution design to
achieve the NFR requirement. It is highly recommended that
appropriate measurement, baselining and tracking capabilities are
identified at design stage and selection of tooling made to ensure
targets can be managed through the software delivery process.

• Quality Control - being clear on the quality criteria to achieve the low
carbon targets for a software product are key, and will ensure that the
specification is being met through the lifecycle of the software delivery
process as well as in use stage. Inserting the quality attributes and
metrics into the overall project requirement will enable quality
managers and product owners to track and trace appropriately as an
embedded part of the agile delivery process.

These different aspects of a Low Carbon NFR specification will be
demonstrated in the example in Section 2. It is recommended that this
is directly inserted into the NFR specifications of your next project.

Copyright © 2023 Eric Zie. All rights reserved. 7

Section 2: A Low Carbon NFR

Low Carbon NFR Scope & Definition

The scope of a Low Carbon NFR should cover:

The Production and Use lifecycle stages of the software
product being designed, built (covering both original
construction and revisions) and operated.

The Low Carbon NFR should ultimately be defined as:

The ability of the system to behave consistently in a user-
acceptable manner whilst minimising energy consumption and
therefore its carbon impact within the environment in which it
was intended.

Minimising energy consumption and carbon impact can be defined in
terms of the following quality attributes and metrics:

Ref Low Carbon Quality Attribute Metric & Quantification

1A Baseline Carbon Impact Rating for
Production - Build

Standardised rating system aligned to
characteristics of the software product
being assessed for baseline
measurement, example:

‘A’ Rated = #Software units x
Complexity/Time x Specific Parameter
Selection for Software Product being
assessed / Software Carbon Intensity
Score

1B
Baseline Carbon Impact Rating for
Production - Release / per
Increment of Change

Standardised rating system aligned to
characteristics of the software product
being assessed for baseline
measurement, example:

‘B’ Rated = #Software units x
Complexity/Time x Specific Parameter
Selection for Software Product being
assessed / Software Carbon Intensity
Score

Copyright © 2023 Eric Zie. All rights reserved. 8

2 Baseline Carbon Impact Rating for
Use - Operate

Standardised rating system aligned to
characteristics of the software product
being assessed for baseline
measurement, example:

‘C’ Rated = #Software units x
Complexity/Time x Specific Parameter
Selection for Software Product being
assessed / Software Carbon Intensity
Score

3A Baseline Carbon intensity cost per
unit of software in Production

Production Carbon Intensity Rating per
unit of software during the
development of the core software
product. Clear boundaries and
allocations should be identified to
enable consistency of calculation.

Example:

Carbon intensity = tCO2e per
identifiable unit of software

3B
Baseline Carbon cost per unit of
software in Release / per Increment
of Change

Production Carbon Intensity Rating per
unit of software during the
development of each release of the
software product. Clear boundaries
and allocations should be identified to
enable consistency of calculation.

Example:

Carbon intensity = tCO2e per
identifiable unit of software

4 Baseline Carbon cost per unit of
software in Use

Production Carbon Efficiency Rating
per unit of software during the
operation of the software product.
Clear boundaries and allocations
should be identified to enable
consistency of calculation.

Example:

Carbon Efficiency = tCO2e per
identifiable unit of software

5A Target Rating for Core Build

Standardised rating system aligned to
characteristics of the software product
being assessed for target
measurement, example:

‘A’ Rated = #Software units x
Complexity/Time x Specific Parameter
Selection for Software Product being
assessed / Software Carbon Intensity
Score

Copyright © 2023 Eric Zie. All rights reserved. 9

5B Target Rating per Release /
Increment

Standardised rating system aligned to
characteristics of the software product
being assessed for target
measurement, example:

‘B’ Rated = #Software units x
Complexity/Time x Specific Parameter
Selection for Software Product being
assessed / Software Carbon Intensity
Score

6 Target Rating for Use / Operation

Standardised rating system aligned to
characteristics of the software product
being assessed for target
measurement, example:

‘C’ Rated = #Software units x
Complexity/Time x Specific Parameter
Selection for Software Product being
assessed / Software Carbon Intensity
Score

7A Target Carbon intensity cost per
unit of software in Production

Production Carbon Intensity Rating per
unit of software during the
development of the core software
product. Clear boundaries and
allocations should be identified to
enable consistency of calculation.

Example:

Carbon intensity = tCO2e per
identifiable unit of software

7B
Target Carbon cost per unit of
software in Release / per Increment
of Change

Production Carbon Intensity Rating per
unit of software during the
development of each release of the
software product. Clear boundaries
and allocations should be identified to
enable consistency of calculation.

Example:

Carbon intensity = tCO2e per
identifiable unit of software

8 Target Carbon cost per unit of
software in Use

Production Carbon Efficiency Rating
per unit of software during the
operation of the software product.
Clear boundaries and allocations
should be identified to enable
consistency of calculation.

Example:

Carbon Efficiency = tCO2e per
identifiable unit of software

Copyright © 2023 Eric Zie. All rights reserved. 10

These quality attributes are considered to be universal and should
persist across the entire product development journey, with baselining
and then targets for each being set and tracked for the duration of
delivery and key to the final definition of done. They should be
considered distinct and different to the underlying technical techniques
for achieving the quality attribute, these will have their own measures as
part of the software engineering approaches undertaken during product
development. Consider these to be the master Low Carbon constraints
supporting the NFR.

The quality attributes must be measurable and quantifiable if to be of
value. To this end it is recommended that appropriate measurement and
baselining capabilities focused on the carbon impact of software are
selected and deployed. These must be selected based on cost of use,
consistency and repeatability of measurement.

The metric targets should form part of the overall definition of done for
the project, and where appropriate individual program increments (PI) if
specific Low Carbon deliverables have been included in the PI.

Find out More

To discuss how to implement a Low Carbon NFR and gain access to an
example NFR specification, contact connect@gocode.green, who will
be happy to discuss an example of how to implement this in practice
and methods for measuring and tracking performance against your Low
Carbon NFR.

Copyright © 2023 Eric Zie. All rights reserved. 11

mailto:connect@gocode.green

