Physics data booklet

For use during the course and in the examinations
First assessment 2025

International Baccalaureate
Baccalauréat International
Bachillerato Internacional

Contents

Introduction 1
Mathematical equations 2
Uncertainties 3
Fundamental constants 3
Metric (SI) multipliers 4
Unit conversions 4
Electrical circuit symbols 5
Electromagnetic spectrum 5
A. Space, time and motion 6
B. The particulate nature of matter 8
C. Wave behaviour 10
D. Fields 12
E. Nuclear and quantum physics 13

Mathematical equations

Area of a triangle	$A=\frac{1}{2}(b h)$ where b is the base, h is the height
Area of a circle	$A=\pi r^{2}$ where r is the radius
Circumference of a circle	$C=2 \pi r$
Volume of a cuboid	$V=l w h$ where l is the length, w is the width, h is the height
Volume of a cylinder	$V=\pi r^{2} h$
Volume of a prism	$V=A h$ where A is the area of cross-section
Volume of a sphere	$V=\frac{4}{3} \pi r^{3}$
Area of the curved surface of a cylinder	$A=2 \pi r h$
Vectors	
	$\begin{aligned} & A_{\mathrm{H}}=A \cos \theta \\ & A_{\mathrm{V}}=A \sin \theta \end{aligned}$
Trigonometric relationships	$\begin{aligned} & \tan \theta=\frac{\sin \theta}{\cos \theta} \\ & \sin ^{2} \theta+\cos ^{2} \theta=1 \end{aligned}$

Uncertainties

If: $y=a \pm b$	then: $\Delta y=\Delta a+\Delta b$	Δy : absolute/raw uncertainty in y $y:$ value of y
If: $y=\frac{a b}{c}$	then: $\frac{\Delta y}{y}=\frac{\Delta a}{a}+\frac{\Delta b}{b}+\frac{\Delta c}{c}$	 sa: absolute/raw uncertainty in a a: value of a
If: $y=a^{n}$	then: $\frac{\Delta y}{y}=\left\|n \frac{\Delta a}{a}\right\|$	$\Delta b:$ absolute/raw uncertainty in b b: value of b
		$\Delta c:$ absolute/raw uncertainty in c c: value of c

Fundamental constants

Quantity	Symbol	Approximate value
Acceleration of free fall	g	$9.8 \mathrm{~ms}^{-2}$ (Earth's surface)
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
Avogadro constant	$N_{\text {A }}$	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Gas constant	R	$8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Boltzmann constant	$k_{\text {B }}$	$1.38 \times 10^{-23} \mathrm{JK}^{-1}$
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Coulomb constant	k	$8.99 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$
Permittivity of free space	ε_{0}	$8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
Permeability of free space	μ_{0}	$4 \pi \times 10^{-7} \mathrm{TmA}^{-1}$
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck constant	h	$6.63 \times 10^{-34} \mathrm{Js}$
Elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$
Electron rest mass	$m_{\text {e }}$	$9.110 \times 10^{-31} \mathrm{~kg}=0.000549 \mathrm{u}=0.511 \mathrm{MeV} \mathrm{c}^{-2}$
Proton rest mass	$m_{\text {p }}$	$1.673 \times 10^{-27} \mathrm{~kg}=1.007276 \mathrm{u}=938 \mathrm{MeV} \mathrm{c}^{-2}$
Neutron rest mass	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}=1.008665 \mathrm{u}=940 \mathrm{MeV} \mathrm{c}^{-2}$
(Unified) atomic mass unit	u	$1.661 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV} \mathrm{c}^{-2}$
Solar constant	S	$1.36 \times 10^{3} \mathrm{~W} \mathrm{~m}^{-2}$
Fermi radius	R_{0}	$1.20 \times 10^{-15} \mathrm{~m}$

Metric (SI) multipliers

Prefix	Abbreviation	Value
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	n	10^{-6}
nano	p	10^{-9}
pico	f	10^{-12}
femto	10^{-15}	

Unit conversions

1 radian $(\mathrm{rad}) \equiv \frac{180^{\circ}}{\pi}$
Temperature $(\mathrm{K})=$ temperature $\left({ }^{\circ} \mathrm{C}\right)+273$
1 light year $(\mathrm{ly})=9.46 \times 10^{15} \mathrm{~m}$
1 parsec (pc) $=3.26 \mathrm{ly}$
1 astronomical unit $(A U)=1.50 \times 10^{11} \mathrm{~m}$
1 kilowatt-hour $(\mathrm{kWh})=3.60 \times 10^{6} \mathrm{~J}$
$h c=1.99 \times 10^{-25} \mathrm{Jm}=1.24 \times 10^{-6} \mathrm{eVm}$

Electrical circuit symbols

Electromagnetic spectrum

A. Space, time and motion

Standard level and higher level

x':position of an event in an inertial frame of reference moving with relative speed v to the original frame of reference
x:position of the same event in the original frame of reference
v: relative speed between the two inertial frames of reference
t': time of an event in an inertial frame of reference moving with relative speed v to the original frame of reference
t: time of the same event in the original frame of reference
u^{\prime} : velocity of body in n inertial frame of reference moving with relative speed v to the original frame of reference
u : velocity of the same body in the original frame of reference
γ : the Lorrentz factor
c: speed of light in vacuum (constant)
Δt : time interval between two observed events (2 different clocks)
γ : the Lorrentz factor
Δt : : proper time (time interval measured by same clock)

θ : angle of worldline from the vertical axis in a space-time diagram v : speed of the body

B. The particulate nature of matter

Standard level and higher level

B. 1 Thermal energy transfers

E_{k} : average random kinetic energy of particles
ks: Boltzmann constant T: temperature
ΔQ : amount of heat (energy) transfer Δt : time taken
k : thermal conductivity of material
A: surface area of the surface that emits heat
ΔT : temperature difference between hot and cold sides
Δx : thickness (distance between hot and cold sides)

C. Wave behaviour

Q: angle at which first diffraction minimum appears
λ : wavelength
b: slit width

C. 3 Wave phenomena	$\begin{array}{ll}\theta=\frac{\lambda}{b} & \begin{array}{l}n: \text { order }(1,2,3, \ldots) \\ \lambda: \text { wavelength } \\ \text { d: distance between slits of diffraction grating }\end{array} \\ \theta: \text { angle at which this order minimum will appear }\end{array}$	
	$n \lambda=d \sin \theta$	$\begin{array}{ll}1 / 2\end{array}$

C. 5 Doppler effect

Moving source: $f^{\prime}=f\left(\frac{v}{v \pm u_{\mathrm{s}}}\right) \quad \begin{aligned} & f: \text { observed frequency } \\ & f: \text { emitted frequency }\end{aligned}$
Moving observer: $f^{\prime}=f\left(\frac{v \pm u_{0}}{v}\right)$ v : wave speed uo: speed of observer us: speed of source
D. Fields

Standard level and higher level

D. 1 Gravitational fields

$g=\frac{F}{m}=G \frac{M}{r^{2}}$
F: gravitational force
G: gravitational constant
m_{1} : mass of body 1
m_{2} : mass of body 2
r : distance between the centres of the 2 bodies

g: gravitational field strength

F: gravitational force
m: mass
G: gravitational constant
M: mass of the body that creates the gravitational field r : distance from the centre of that body
D. 2 Electric and magnetic fields
F: electric field force between two charged particles
k: Coulomb's constant
$\varepsilon_{0}:$ permittivity of free space (constant)
q_{1} : charge of particle 1
q_{2} : charge of particle 2
$F=k \frac{q_{1} q_{2}}{r^{2}} \mathrm{w}$
$E=\frac{F}{q}$
$E=\frac{V}{d} \quad d$
E: electric field strength of a uniform electric field V: potential difference between two points (or metal plates) d: distance between the two points (or metal plates)

| D. 3 Motion in electromagnetic fields |
| :--- | :--- |
| F: magnetic force on moving charged particle |
| q: charge of particle |
| v: speed of particle |
| B: magnetic field strength |
| A: angle between magnetic field lines and direction of speed |

$F=q v B \sin \theta$	F: magnetic force on current currying wire B: magnetic field strength
$F=B I L \sin \theta$	l: current L: length of wire in the magnetic field
$F=I_{1} I_{2}$ 日: angle between magnetic field lines and current	

F: magnetic force between current currying wire
L: length of wire
Additional higher level

E. Nuclear and quantum physics

E: energy of a photon
h: Planck's constant
f : frequency

Standard level and higher level

E. 1 Structure of the atom	$E=h f$
E. 3 Radioactive decay	$E=m c^{2}$

E: energy released
E. 3 Radioactive decay

E. 5 Fusion and stars

Additional higher level
E. 1 Structure of the atom

E: energy value of energy level
n : quantum number of energy level ($n=1,2,3, .$.)
(eV is just the unit, energy here is calculated in electrovolts)

E. 2 Quantum physics
$E_{\text {max }}$ maximum kinetic of energy of emitted electrons
h: Planck's constant
f: frequency of incident radiation
Ф: work function of metal surface

E. 3 Radioactive decay
N: number of nuclei left after time t
N_{0} : original number of nuclei in the sample (at $t=0$)
λ :

λ : decay constant of material
t: time
A: activity (number of decays per second)
T_{12} : half-life

mvr: angular momentum
m : mass
v: linear speed
r : radius of circular path
n : quantum number ($n=1,2,3,4, \ldots$)
λ : wavelength
h: Planck's constant
p: momentum

$$
\begin{aligned}
& N=N_{0} e^{-\lambda t} \\
& A=\lambda N=\lambda N_{0} e^{-\lambda t} \\
& T_{\frac{1}{2}}=\frac{\ln 2}{\lambda}
\end{aligned}
$$

λ_{i} : final wavelength
λ_{i} : initial wavelength
$\Delta \lambda$: change in wavelength
h: Planck's constant m_{e} : mass of electron (constant) c: speed of light in vacuum (constant) θ : scattering angle

