
Low-Flow Trends at Southeast United States
Streamflow Gauges

Timothy A. Stephens, M.ASCE1; and Brian P. Bledsoe, F.ASCE2

Abstract:Water management and infrastructure design depend on quantifying thresholds in minimum flows. Decreasing trends in low flows
have been observed at many stream gauges in the Southeast US; however, a comprehensive quantitative assessment of regional trends and
shifts in flow minima is lacking. This study examines trends and abrupt shifts in the annual minimum 7-day mean streamflow in the
Southeastern US for four distinct time periods over the last century. A type II error analysis is conducted to evaluate the probability of
erroneously declaring that a trend does not exist. A decreasing trend in low-flow magnitude is identified in 80% of the streamflow records.
An abrupt shift in low-flow magnitude was identified in 50% of the gauge records, occurring predominantly around 1975–1985 and 1995–
2005. Trend slopes indicate an accelerated rate of decline in low-flow magnitude over recent decades compared to the last 50–75 years.
Where statistically significant trends are not identified, short record lengths (<50 years) and high variability in flow records result in a high
probability of a type II error. DOI: 10.1061/(ASCE)WR.1943-5452.0001212. © 2020 American Society of Civil Engineers.

Author keywords: Low-flow trends; Type II error; Southeastern US streamflow; Nonstationarity.

Introduction

Changing climates, land use, populations, and other factors have
the potential to alter hydrologic responses across varying degrees
of space and time. Additionally, there is an increasing awareness
of the nonstationary behavior exhibited by hydrologic response
and the unprecedented challenges facing robust decision-making in
water resource management and infrastructure design (Milly et al.
2008; Salas et al. 2018). For instance, recently published federal
reports state that water management strategies accounting for cli-
mate change can help increase reliability for water security (Kilgore
et al. 2016; USGCRP 2017), and novel methods based on trends in
streamflow records are emerging that quantify nonstationary design
metrics (Luke et al. 2017; Rosner et al. 2014; Salas et al. 2018;
Serago and Vogel 2018; Vogel et al. 2011). Consequently, strategies
that optimize water resource use and design to meet societal, eco-
nomic, and ecological needs in an uncertain future require identi-
fying the magnitude and direction of trends in hydrologic response
(Hirsch 2011).

Low-flow conditions in surface waters are a prominent hydro-
logic response whose magnitude, duration, frequency, timing, and
periodicity affect environmental regulation, infrastructure design,
ecosystem function, and many other facets of water resource man-
agement (Poff et al. 1997). While the Southeastern US is widely
perceived as a water-rich region, recent droughts and rapidly grow-
ing demands for water have revealed vulnerabilities to water
availability that coincide with the timing of low-flow conditions

(Peterson et al. 2011; Van Vliet et al. 2012). Additionally, recent
studies have indicated a decrease in the magnitude of low flows
across the Southeastern US (Gotvald 2016; Sadri et al. 2016) con-
tradicting previous efforts to identify trends in streamflow records
at the national scale (Douglas et al. 2000; Lettenmaier et al. 1994;
Lins and Slack 1999; McCabe and Wolock 2002). Despite differ-
ences between regional- and national-scale streamflow trends, there
is mounting evidence of a shift in streamflow occurring around
1970 (McCabe and Wolock 2002; Patterson et al. 2012).

Most of these studies, however, focus on streamflow records
with minimal human influences or cover limited spatial scales.
A decline in the annual minimum 7-day mean streamflow was iden-
tified through a number of stream gauge records in Georgia despite
the influence of urbanization and flow regulation (Gotvald 2016).
This is one of a few studies to provide information on trend slope,
as a linear estimate was plotted for a subset of flow records. How-
ever, the quantified rate of increase/decrease in streamflow was not
reported, and this analysis is limited to the state of Georgia.

Nonstationary frequency analyses require the quantification of a
trend slope, and the rate of change in low-flow magnitude could
indicate the timing until an operational threshold is reached. Thus,
quantifying the rate of change in low-flow magnitude benefits
water management by providing critical information to estimate
timelines for adaptation or changes in future operating limits,
among others. However, much caution and consideration should be
given to the application, uncertainty, and consequences associated
with extrapolating trends into the future or limiting the use of the
trends to the present (Vogel et al. 2011; Luke et al. 2017).

Additional results indicate a directional shift in low-flow trends
from increasing to decreasing moving north to south across the
Eastern US, where trends in low flows were evaluated from 1951
to 2005 as monotonic trends, abrupt shifts, or autocorrelated time
series, yet information was not provided on trend slope or trends
deemed statistically insignificant (Sadri et al. 2016). Neglecting
trends deemed statistically insignificant based on a threshold
(i.e., α ¼ 0.05) has the potential to exclude records with valuable
information on water management. A decreasing trend in monthly
average streamflow was identified at a majority of stream gaging
sites located in South Atlantic watersheds of Virginia, North
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Carolina, and South Carolina, but low flows in particular were not
analyzed (Patterson et al. 2012). Kam and Sheffield (2016) iden-
tified trends in low-flow magnitude in the periods 1962–1991 and
1982–2011 through stream gauge records along the East Coast,
limiting the southern extent of their analysis to South Carolina.
They found increasing trends in the northern portion of their
domain and decreasing trends in the southern portion of their do-
main. Discrepancies in spatial and temporal resolutions among
these analyses fail to provide a coherent representation of regional
trends in low flows specific to the Southeastern US.

A majority of attempts to identify trends in low flows employ
the method of null-hypothesis significance testing (NHST), imply-
ing a null hypothesis of no trend. In a hypothesis test only, the prob-
ability of a type I error (α) can be specified—the probability of
erroneously declaring a significant trend does exist. What cannot
be specified is the probability of a type II error (β)—the probability
of erroneously declaring a significant trend does not exist. Several
studies have discussed the importance of type II errors with respect
to hydrologic response (Cohn and Lins 2005; Trenberth 2011;
Ziegler et al. 2003, 2005). A test of power was employed to inves-
tigate the smallest trend per time step that would be considered stat-
istically significant (Bowling et al. 2000; Wilby 2006) at a specified
power and confidence. Similarly, the same test for power was ap-
plied to determine the minimum time required to detect predicted
changes in precipitation, evapotranspiration, and discharge (Ziegler
et al. 2003, 2005).

Very few studies have addressed the importance of type II
errors in the context of water resource management and societal
preparedness; however, some recent studies represent notable ex-
ceptions (Rosner et al. 2014; Vogel et al. 2013). Rosner et al. (2014)
implemented a type II error analysis in a risk-based decision tree to
evaluate climate change adaptation measures by comparing infra-
structure costs with avoided damage. They emphasized that the
societal impacts of a type II error (failure to adapt and underpre-
paredness) might have substantial consequences compared to a
type I error (overinvestment). Consequently, quantifying the prob-
ability of a type II error in low-flow trend detection can provide
valuable insight into the risk associated with decisions in water re-
source management because operational thresholds and regulatory
limits are often based on low-flow magnitude.

Given the importance of low flows in water management and
infrastructure design, there is a need to identify the direction and
slope of trends in low flows across the Southeastern US. The pur-
pose of this study is to increase the spatial and temporal resolution
of knowledge around trends in the magnitude of low flows as evi-
denced through regional stream gauge records in the Southeastern
US despite the influence of urbanization and flow regulation in
some records. Trends in the annual minimum 7-day mean stream-
flow are evaluated for four distinct time periods over the last century
and identify those trends that occur as an abrupt shift. Further, linear
trend slopes are quantified regardless of statistical significance and
a type II error analysis is conducted to evaluate the probability of
erroneously declaring that a trend does not exist. To the authors’
knowledge, this is the first study to calculate the probability of a
type II error on trends in low flows and quantify the rate of change
in low-flow magnitude over varying time periods across the region.
The implications and potential causes of trends are discussed.

Methods

The stream gauges analyzed in this study encompass the South
Atlantic water resource region (two-digit hydrologic unit 03) of
Mississippi, Alabama, Georgia, Northern Florida, South Carolina,

North Carolina, and Virginia. There are 1,187 stream gauges
located within the study region; however, the present analysis is
focused on 349 of these stream gauges with sufficiently long and
complete streamflow records (Fig. 1). Specifically, stream gauges
were only analyzed if the following criteria were met:
• a minimum daily discharge record dating backwards from ca-

lendar year 2016 (i.e., January 1, 1992–December 31, 2016);
• no more than 30 days of missing daily discharge values in any

given calendar year;
• no more than 10 days of missing daily discharge values in any

given month; and
• no more than 7 consecutive missing daily discharge values in the

record.
If a stream gauge had a record length greater than 25 years but

did not meet the analysis criteria, the record was investigated to
determine whether reducing the length would meet the analysis cri-
teria. For example, a stream gauge record might date back to 1930.
Yet, a data gap might exist from 1940 to 1950 rendering the entire
record insufficient for statistical analysis. Reducing the analysis
period to 1950–2016, however, meets the analysis criteria. After
filtering records by the analysis criteria, the minimal amount of
missing data that remained was excluded from the analysis.

Results for a subset of the stream gauge records were analyzed
to investigate differences between regulated and nonregulated
basins. The subset of stream gauges was classified by basins with
a presence of flow regulation (regulated), substantial human influ-
ence (nonreference), and minimal human disturbance (reference)
(Falcone 2011). The presence of flow regulation was identified
by examining USGS data records of instantaneous peak flows,
which indicate and distinguish between various anthropogenic in-
fluences on flow records. Sites identified as being influenced by
regulation were removed from the nonreference category to prevent
overlap of individual stream gauge records among classifications.
Gauges in the 2009 Hydro-Climatic Data Network (HCDN) where
streamflow primarily reflects prevailing meteorological conditions
were also classified as reference.

Low flows were quantified as the annual minimum 7-day mean
streamflow, hereafter referred to as the minimum Q7. The mini-
mum Q7 was selected due to its common use for quantifying low

Fig. 1. USGS stream gaging stations statistically analyzed and in the
Southeastern US.
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flows in water resource planning and management (Smakhtin
2001). For example, the use of the 7-day mean streamflow with
a 10-year recurrence interval is often used to establish regulatory
limits such as pollution discharge loading (Ames 2006). A minimum
of 25 years of data was used to test for trends to maximize sample
size while maintaining sufficient record length (Helsel and Hirsch
1992). However, the time period of available records extending be-
yond 25 years from 2016 varies capturing different climatic and
land-use patterns through time that might influence trends. Analyz-
ing a record that begins or ends in an abnormally dry/wet period has
the potential to influence trends up/down. Thus, it is important to use
consistent time periods among stream gauges for identifying trends
in hydrologic time series. Trend tests were conducted for four differ-
ent time periods: 1992–2016 (25 years), 1967–2016 (50 years),
1942–2016 (75 years), and 1917–2016 (100 years).

The Mann–Kendall trend test (Kendall 1975; Mann 1945) was
used to conduct a two-sided test for the correlation of low-flow
magnitude with time, in which the null hypothesis (H0) was that
a monotonic trend in the magnitude of low flows is not statistically
different from zero (α ¼ 0.1). The Mann–Kendall trend test is a
nonparametric rank-based test that is robust to outliers and com-
monly used to identify trends in hydrologic time series; however,
it requires serially independent data. Trend can be evaluated based
on a test statistic S, which tests whether values increase or decrease
monotonically with time. To test significance, S can be used to
calculate a statistic, Zs, which can be approximated by a standard
normal distribution for sample sizes larger than 10 (Helsel and
Hirsch 1992). Autocorrelation, which often exists in hydrologic
time series, can result in over- or underestimation of trends. There-
fore, the Ljung–Box test with 1 lag was utilized to evaluate auto-
correlation (α ¼ 0.1). Following the method of Yue et al. (2002),
trend-free prewhitening of autocorrelated time series was applied to
remove lag-1 autocorrelation before conducting the Mann–Kendall
trend test.

Sen’s slope estimate was calculated to provide the linear trend
slope of the minimum Q7 over time (Sen 1968). Sen’s slope esti-
mate is calculated by determining the median of all possible pair-
wise slope estimates in the time series. To compare trends among
stream gauge locations, discharge was normalized by drainage area,
and Sen’s slope estimate is reported as the annual rate of change in
low-flow magnitude (mm=year).

Step changes, or abrupt shifts in the time series, were identified
utilizing the nonparametric Pettitt test (α ¼ 0.1) (Pettitt 1979;
Serinaldi and Kilsby 2016). Similar to the Mann–Kendall test, the
Pettitt test is sensitive to autocorrelation. Therefore, autocorrelation
was evaluated using the Ljung–Box test with 1 lag, and trend-free
prewhitening was applied to autocorrelated time series.

The probability of a type II error was calculated to evaluate the
likelihood of erroneously declaring that a trend in the magnitude
of low flows through time does not exist. It has been shown through
Monte Carlo sampling that the power of a nonparametric test can
be approximated by an analytical solution of the t-test (Lettenmaier
1976). The test for power originally presented by Lettenmaier
(1976) has since been employed multiple times (Bowling et al. 2000;
Ziegler et al. 2003, 2005; Wilby 2006) as

Xn
i¼1

ðti − t̄Þ2 ¼ σ2

τ 2
ðW1−α=2 −WβÞ2 ð1Þ

where ti = each year; t̄ = mean year; σ2 = sample variance of time
series; τ = strength of trend; and W1−α=2 and Wβ are the normal
deviates at cumulative probability 1 − α=2 and β, respectively.
As presented by Wilby (2006) for annual time series, the summation
on the left-hand side of Eq. (1) can be simplified to solve for n:

n ¼
�
12σ2

τ2
ðW1−α=2 −WβÞ2

�1
3 ð2Þ

The test for power requires the assumption that the population
trend value and variance are known. Following previous applications
(Bowling et al. 2000; Ziegler et al. 2003, 2005; Wilby 2006), the
trend value (τ ) was taken as Sen’s slope estimate and the variance
(σ2) was estimated from the sample. Taking n as the period of
record, Eq. (2) can be solved for Wβ.

Results

The number of gauges analyzed decreased with increasing time
period (Table 1). This is due to an absence of gauges with a con-
tinuous record for longer periods of time. Of the 349 gauges with at
least 25 years of suitable record for statistical analysis, only 5 had
a continuous record of 100 years or more and 4 of the 5 were iden-
tified as having been influenced by regulation. The maximum re-
cord length was 124 years, although 100 years was the longest
record length analyzed.

Table 1 shows the percentage of trends in the minimum Q7 iden-
tified as positive and negative across the study region (α ¼ 0.1) for
select time periods. Trend-free prewhitening altered the statistical
significance of 25, 9, 13, and 0 sites for the 25-, 50-, 75-, and 100-
year time periods, respectively. Serial correlation (α ¼ 0.1) in the
minimum Q7 time series was identified in 72 (20%) of the 25-year
records, 102 (51%) of the 50-year records, 98 (80%) of the 75-year
records, and 5 (100%) of the 100-year records. It is evident for all
time periods that there is a strong tendency toward negative trends
in the minimum Q7 across the region. However, the 50-year time
period (1967–2016) contained the smallest percentage of positive
trends (7%), the largest number of statistically significant negative
trends (61%), and the largest number of negative trends that are
statistically significant or insignificant (93%). The 25- and 75-year
time periods contained similar percentages of negative and positive
trends identified as statistically significant/insignificant, while the
100-year time period (1917–2016) contained the greatest percent-
age of positive trends (two out of five gauges). Fig. 2 depicts the
spatial distribution of trend direction in the magnitude of low flows
for select time periods. Based on visual inspection, the majority of
positive trends identified appear in the most northeastern portion of
the study area (North Carolina and Virginia).

Among the subset of stream gauge records classified as refer-
ence, nonreference, regulated, and HCDN, the reference and
HCDN stream gauges generally had the highest percentage of
negative trends regardless of statistical significance, while the
regulated stream gauges generally had the highest percentage of
positive trends. The 25-year time period is an exception to this pat-
tern, where positive trends were identified at 15% of the HCDN
gauges and 13% of the regulated gauges. However, this difference

Table 1. Trends in minimum Q7 for various time periods: 1992–2016
(25 years), 1967–2016 (50 years), 1942–2016 (75 years), and 1917–
2016 (100 years)

Time
period

Positive trend Negative trend

Number of
gauges

Significant
(%)

Insignificant
(%)

Significant
(%)

Insignificant
(%)

25 years 1 11 30 58 349
50 years 3 4 61 32 199
75 years 4 15 47 35 124
100 years 0 40 40 20 5
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is minimal, and negative trends were identified at 85%, 90%, 87%,
and 86% of the reference, nonreference, regulated, and HCDN
stream gauges, respectively. The percentage of negative trends, re-
gardless of statistical significance, was greater than 80% for all
classification and time periods with the exception of regulated
gauges for the 75-year time period (65%). The percentage of stat-
istically significant negative trends identified at reference sites was
25% for the 25-year time period, 59% for the 50-year time period,
and 28% for the 75-year time period. The percentage of statistically
significant negative trends was generally higher for nonreference
gauges. It should be noted that the sample size among classifica-
tions varied within each time period, and the sample size of non-
reference gauges was significantly larger for all time periods.

According to Sen’s slope estimate, trend magnitude in the
minimum Q7 varies spatially and temporally (Fig. 3). The absolute
value of negative slope estimates increased with decreasing time
period. For example, median annual rates of change occurring over
the 25-, 50-, 75-, and 100-year time periods were −0.82, −0.59,
−0.22, and −0.14 mm=year, respectively. To ensure this relation-
ship is not due to the addition of new stream gauges with decreasing
time period, the cumulative distribution of Sen’s slope estimates
was plotted over the 25-, 50-, and 75-year time periods for stream
gauges common to all three periods (Fig. 4). Indeed, the absolute
value of negative slope estimates increases with decreasing time
period, indicating an accelerated rate of decline in the magnitude
of the minimum Q7 over time. The most negative annual rate of
change was −18 mm=year occurring over the 25-year time period;
however, this was a significant outlier considering the next most
negative annual rate of change was −5.7 mm=year occurring over

the 25-year time period. The small number of positive trends were
characterized by significantly milder slopes compared to the neg-
ative trends, with 1.4 mm=year occurring as the most positive rate
of change over the 25-year time period.

The results of the Pettitt test indicate that a large number of
trends in the magnitude of the minimum Q7 occur as a statistically
significant step change with the percentage of step changes varying
among time periods (Fig. 5). Approximately 50% or more of the
stream gauges experienced a step change in the minimum Q7 for
time periods greater than 25 years. The timing of the identified step
change varied among time periods as well. However, two distinct
modes appeared at 1975–1985 and 1995–2005. For gauge records
with a negative trend per the Mann–Kendall test, a larger portion of
the records with a statistically significant trend contained a statisti-
cally significant step change compared to those with an insignifi-
cant negative trend (Table 2). Similarly, a large percentage of gauge
records with a statistically significant positive trend per the Mann–
Kendall test contained a statistically significant step change. In fact,
a statistically significant step change was identified in 100% of the
gauge records characterized by a statistically significant positive
trend per the Mann–Kendall test for the 50- and 75-year time
periods. This indicates a distinct time period in which the sample
population mean of minimum Q7 values undergoes a statistically
significant shift (up for positive trends and down for negative
trends).

Trends identified as statistically significant are subject to a type I
error (α ¼ 0.1). Therefore, only the probability of a type II error
was calculated for trends identified as statistically insignificant.
The distribution of probabilities for a type II error at 25-, 50-,

25-years

100-years

50-years

75-years

Trend

Positive Insignificant

Positive Significant

Negative Insignificant

Negative Significant

0 420 840210
Kilometers

Fig. 2. Trends in minimum Q7 for select time periods: 1992–2016 (25 years), 1967–2016 (50 year), 1942–2016 (75 years), and 1917–2016
(100 years). Triangles indicate direction and statistical significance of trend.
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and 75-year time periods can be seen in Fig. 6. It is clear that the vast
majority of type II error probabilities are greater than 40%, with less
than 50% of the statistically insignificant trends having a probability
of a type II error less than random for the 25 and 50-year time peri-
ods. The 100-year time period was excluded from Fig. 6 owing to the
relatively small number of data points; however, there were three
insignificant trends for this time period with probabilities of a type
II error of 31% (positive trend), 46% (negative trend), and 47% (pos-
itive trend). It is important to note that Fig. 6 does not distinguish
between positive and negative trends. However, there was a very low
number of statistically insignificant positive trends (Table 1).

Discussion

There is a strong tendency toward negative trends in the minimum
Q7 across the region. The number of statistically significant negative
trends identified here coincides with previous efforts to quantify
trends in themagnitude of low flows (Gotvald 2016; Sadri et al. 2016).
The varying percentages of statistically significant/insignificant
positive and negative trends among time periods could be due
to the influence of beginning a trend analysis in dry or wet years.

Decadal Trend in Q7 (mm/yr)

0 - 4

4 - 8

8 - 12

12 - 16

> 16

( - ) ( + )

100-years75-years

50-years25-years

0 420 840210
Kilometers

Fig. 3. Decadal trend magnitude in minimum Q7 (mm=year) for select time periods: 1992–2016 (25 years), 1967–2016 (50 years), 1942–2016
(75 years), and 1917–2016 (100 years). Triangles indicate magnitude and direction of trend.

Sen's Slope (mm/year)

 C
um
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e 

D
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F

(x
)

0
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2
0.

4
0.

6
0.

8
1

−5 −4 −3 −2 −1 0 1

25−years
50−years
75−years

Fig. 4. Cumulative distribution of annual trend magnitude in minimum
Q7 (mm=year) for stream gauges common to three periods: 1992–2016
(25 years), 1967–2016 (50 years), and 1942–2016 (75 years).
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It could also be due to the inclusion of additional stream gauges
with increasing time period. Regardless, there is strong evidence
of decreasing trends in all time periods. Previous studies have in-
dicated a directional shift of trends in the magnitude of low flows
from increasing to decreasing moving north to south across the
Eastern US (Kam and Sheffield 2016; Sadri et al. 2016), supporting
the spatial distribution of trends identified in Fig. 2. Further, this
confirms a regional trend in the decline of low-flow magnitude
across the Southeastern US. However, the strong tendency toward
negative trends must be interpreted from a general sense. A direct
quantification of spatial patterns (i.e., homogeneous, clustered, or
dispersed) in the magnitude and direction of trends has been
avoided due to the significant bias introduced by spatial autocor-
relation in the stream gauge network. There is a high density of
stream gauges around urban centers and along large rivers used
for navigation, power production, or other socioeconomic uses sub-
jecting certain regions to overrepresentation/underrepresentation.
For instance, a number of gauges are concentrated around the
Atlanta metropolitan area, but a large gap in the gaging network
exists in central-eastern Alabama (Fig. 1). It is also important
to consider the addition of gauges in analyses with decreasing

25−years (69 of 349 gages)

Year Step Change Identified
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Fig. 5. Temporal distribution of statistically significant (α ¼ 0.1) step changes in magnitude of minimum Q7 identified by Pettitt test for four time
periods: 1992–2016 (25 years), 1967–2016 (50 years), 1942–2016 (75 years), and 1917–2016 (100 years).

Table 2. Percentage of trends identified by Mann–Kendall test that occur as a statistically significant step change according to Pettitt test

Time period

Positive trend Negative trend

All gaugesSignificant Insignificant Significant Insignificant

25 years 50% (1/2) 0% (0/40) 61% (64/105) 2% (4/202) 20% (69/349)
50 years 100% (6/6) 25% (2/8) 77% (93/121) 9% (6/64) 54% (107/199)
75 years 100% (5/5) 6% (1/18) 84% (49/58) 7% (3/43) 47% (58/124)
100 years 0% (0/0) 50% (1/2) 100% (2/2) 0% (0/1) 60% (3/5)

Note: Values in parentheses indicate number of gauges, with statistically significant Pettitt test frequency in numerator and frequency of trends identified by
Mann–Kendall test in denominator.
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Fig. 6. Distribution of likelihood of a type II error for positive and
negative trends (α ¼ 0.1) for select time periods: 1992–2016 (25 years),
1967–2016 (50 years), and 1942–2016 (75 years).
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time period. Despite these limitations, there is strong evidence of a
decrease in low-flow magnitude in the Southeastern US over the
last century.

Previous findings indicate a shift in streamflow occurring pri-
marily as a step change around 1970 (McCabe and Wolock 2002;
Patterson et al. 2012). The fact that our results indicate a step
change occurring a few years after 1970 and an additional mode
of occurrence around 1995–2005 could be attributed to inconsis-
tencies in methodology and time periods analyzed compared to
previous efforts. However, the 75-year time period most closely
matches the time periods analyzed by McCabe and Wolock
(2002; 1941–1999) and Patterson et al. (2012; 1934–2005). Similar
to their results, we identified a modal step change occurring from
1975–1985 for the 75-year time period (1942–2016). A severe
drought persisted over the Southeastern US from 2006–2009
followed by an abnormally dry fall in 2016 potentially influencing
the modal detection of a step change at 1995–2005. Inspection of
individual gauge records revealed statistically significant step
changes in records regardless of urbanization or flow regulation.
For example, a statistically significant downward shift (α ¼ 0.02)
was identified at 2005 in the 1942–2016 streamflow record for
Turkey Creek at Byromville, Georgia (USGS 02349900), a stream
gauge considered unimpacted by flow regulation and urbanization.
Climate, land-use, or flow regulation can cause step changes in
low-flow magnitude, although it is important to consider that their
impacts do not occur independently of one another. For instance, a
shift in precipitation might affect water supply, simultaneously
influencing reservoir operations. This impact could be further exac-
erbated by population growth, urbanization, and the gradual re-
bound of reservoir levels extending multiple years after a drought.

Analyzing the rate of change in the magnitude of low flows over
multiple time periods indicates a nonlinear decrease in the magni-
tude of low flows over the last 25–75 years. The results indicate a
faster rate of decline in low-flow magnitude over the last 25 years
compared to the longer time periods analyzed. Longer time periods
mask prevailing rates of change by bias introduced from milder
trend slopes farther back in the record. It is possible that the
time-variant rates of change in low-flow magnitude are affected
by the step change identified in a large number of gauge records,
primarily those step changes identified around 1975–1985. Since
that particular date range is not present in the 25-year time period,
it is possible that mild rates of change prior to the 1975 step change
reduce the overall magnitude of the trend slope. As the record
length increases, the influence the mild rates of change prior to
1975 have on the trend slope increases, and although Sen’s slope
estimate represents a linear rate of change, quantifying it over
multiple time periods captures the nonlinear behavior observed in
low-flow trends.

Less than 50% of the statistically insignificant trends in low
flows had a probability of 50% or less for a type II error for
the 25 and 50-year time periods. In fact, a large majority of the
statistically insignificant trends in low flows had a probability of
greater than 40% for a type II error, aligning well with the results
of Vogel et al. (2013). They found that for a 95% confidence level
(α ¼ 0.05) and short record lengths (10 years), the likelihood of a
type II error was quite high (>50%), despite a high goodness of
fit in the trend model. For trend models with a low goodness of
fit, the likelihood of a type II error was high even for record lengths
of 50 years. Hydrologic time series are often characterized by
high variability and short record lengths. Additionally, trend-free
prewhitening has been shown to decrease the power of a trend test
(Serinaldi and Kilsby 2016), potentially influencing the type II er-
ror in the large number of gauge records with statistically signifi-
cant serial correlation. Considering that the percentage of records

with serial correlation increased with time period and the likelihood
of a type II error did not directly increase with decreasing time
period (Fig. 6), it is likely that the unique characteristics of each
flow record dictate the relative impacts of variance, sample size,
trend slope, and serial correlation on the power of the trend test.
These results provide strong evidence in the presence of a statisti-
cally insignificant trend in hydrologic time series, such as low
flows, that the probability of a type II error could be greater than
40%. However, one should recognize the inherent uncertainty as-
sociated with discerning deterministic trends from stochastic proc-
esses such as long-term persistence (Cohn and Lins 2005).

The larger percentage of decreasing trends at reference and
HCDN sites compared to regulated sites is supported by evidence
that has shown flow regulation to increase low-flow magnitude
(Poff et al. 2006). Identifying a high percentage of negative trends
at reference and HCDN sites suggests that some degree of climatic
influence is present; however, distinguishing between the relative
and cumulative effects of individual factors such as temperature,
evapotranspiration, precipitation, and land cover requires further
investigation. Contrasting results between nonreference sites (high-
est percentage of statistically significant negative trends) versus
reference sites (highest percentage of negative trends regardless of
statistical significance) suggest that human influence could be mag-
nifying observed declines in low-flow magnitude. Although sample
sizes differed among classifications within each time period, a high
percentage of negative trends was consistently identified regardless
of flow regulation or other human influences.

Numerous factors might interact to influence trends in low
flows, such as climate, land use, and consumptive water use. As
such, use of a single factor to explain flow trends in an entire region
would be oversimplified and imprudent given the complex mani-
festation of interactions among hydrologic processes and human
influences across landscapes at various scales of both space and
time. For instance, efforts to attribute trends in streamflow to ante-
cedent precipitation and teleconnections have had limited success
(Enfield et al. 2001; Kam and Sheffield 2016). However, recent
studies suggest an increase in precipitation intensity across the
Southeastern US and a decrease in average summer precipitation
between the present-day period (1986–2015) and the first half
of the twentieth century (1901–1960) (USGCRP 2017). Further,
the results of this analysis indicate a negative trend in low-flow
magnitude at a majority of sites with minimal human disturbance.

Land use has been continually changing across the Southeast
over the last century (Bigelow and Borchers 2017; Ellenburg
et al. 2016). Population growth has resulted in widespread urbani-
zation and expansion of major metropolitan areas. Additionally, the
decline of farming following the industrial revolution has resulted
in net afforestation since the early twentieth century (Ellenburg
et al. 2016; Trimble et al. 1987). Urbanization has been shown
to both increase and decrease low flows (Bhaskar et al. 2016); how-
ever, Debbage and Shepherd (2018) found that low-flow frequency
was positively correlated with the extent of urban development
and was influenced by the spatial distribution of development pat-
tern. Afforestation has been shown to cause a decline in low-flow
magnitude and annual water yield (Andréassian 2004; Bosch and
Hewlett 1982). This effect could be compounded by an overall shift
in species composition across the Southeastern US coupled with
current and future increases in the growing season length due to
climate change (Caldwell et al. 2016; Hwang et al. 2018).

Despite an overall decrease in nationwide water withdrawals
from 2000 to 2015, there is much uncertainty on the time-varying
amounts of water consumption (Dieter et al. 2018; Maupin et al.
2014). For instance, reservoirs that store drinking water and provide
flood protection exist on many of the major river systems throughout
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the Southeastern US. Variable rates of evapotranspiration (ET) from
these reservoirs could contribute to decreasing trends in low flows;
however, actual rates of ET are difficult to measure. Immediately
downstream, reservoir operations tend to result in increased magni-
tude and decreased variability of low flows (Poff et al. 2006, 2007).
Although the authors identified a decreased percentage of negative
trends in low-flow magnitude at regulated sites compared to refer-
ence sites, negative trends were still identified at a majority of sites
known to be influenced by flow regulation. Interbasin transfers of
surface water resources exist in multiple locations throughout the
study region, potentially influencing observed trends in low flows
depending on the length of time the transfer has existed. Recent
groundwater pumping has been correlated with stream base flow
declines in the Flint River Basin, southwestern Georgia (Rugel
et al. 2012, 2016). It is likely that the causal mechanisms driving
trends in low-flow magnitudes differ among stream gaging locations
as a result of complex interactions between spatially heterogenic hy-
droclimatic processes and human influences that are changing at dif-
ferent rates through time. Consequently, the attribution of drivers to
trends in low flows at a regional scale is challenging. Additional
research that seeks to identify the causal mechanisms driving trends
in low flows could provide valuable insight on the future magnitude
and direction of low-flow trends.

Identifying trends and the rate of change in hydrologic response
is imperative for sustainable water resource management. Certain
industrial processes and thermoelectric power production are reli-
ant on a continuous supply of adequate discharge from surface
waters. The Southeastern US contains the most diverse freshwater
ecosystem in North America (Collen et al. 2014), and its inhabi-
tants require adequate base flow for moderating temperatures,
maintaining dissolved oxygen levels, and preserving suitable hab-
itat. Water withdrawal and water quality permits are often based on

low-flow statistics calculated under the assumption of stationarity,
such as the 7-day 10-year low flow (7Q10). However, assuming he
future, or even the present, will be much like the past has the po-
tential to result in unsustainable water management practices. For
instance, if a decreasing trend in the magnitude of the 7Q10 is not
identified or is ignored due to statistical insignificance, allowable
pollutant loadings or withdrawal rates would remain constant while
annual low flows decreased. Pollutant concentrations would then
increase or withdrawal rates might exceed streamflow rates. An ex-
ample of this can be observed in Fig. 7, where the 7Q10 was up-
dated every year over 75 years for a stream gauge record containing
a statistically insignificant [Fig. 7(a), α ¼ 0.33, β ¼ 0.37] trend
and a statistically significant [Fig. 7(b), α < 0.05] trend in the an-
nual minimum 7-day mean streamflow. It is evident in both records
that the 7Q10 has decreased to the lowest value in the last 75 years.
Assuming a permitted total suspended solids concentration of
50 mg=L, the reduction in allowable daily sediment loads due
to a decrease in the 7Q10 over the last 20 years would be approx-
imately 15% and 40% for Figs. 7(a and b), respectfully.

Water resource management within the region can benefit from
the information provided by this analysis, as the apparent declines
in low-flow magnitude has significant implications for policy and
regulation. Some examples include permitted pollution loading
rates based on allowable in-stream concentrations during low flow
conditions, maintaining minimum environmental flows while pro-
viding adequate water supply for other competing uses, and setting
thresholds for restrictive water use during times of drought. The
results of the Pettitt test can inform water management by identi-
fying shifts in low-flow magnitude at distinct points in time that
might correspond to unique events such as shifts in climate or
water-use regimes. The timing of this shift relative to the establish-
ment of design values or management strategies could indicate
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Fig. 7. 7-day 10-year low flow calculated over a 10-year moving window and annual minimum 7-day mean streamflow for 75 years of records at
stream gauge with (a) a statistically insignificant negative trend; and (b) a statistically significant negative trend.
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the need to consider adaptive retrofits or reevaluate operational
thresholds. Indication of an accelerated decline in low-flow mag-
nitude through time and the results of the type II error analysis
emphasize the importance of considering the direction, magnitude,
and consequences associated with current and predicted trends in
low flows when managing water resources. Ignoring trends deemed
statistically insignificant by standard hypothesis tests might result
in a high probability of adverse impacts. For instance, water levels
during low flow conditions might fall outside the operational limits
of drinking or cooling water intakes with a fixed elevation if a trend
in low flows is ignored. Consequently, the results presented here
highlight a need for future research and adaptive management that
considers nonstationary frequency analysis, innovative technolo-
gies, and water-use strategies to meet the needs of competing de-
mands during low flow conditions.

Conclusions

This study evaluates trends in the magnitude of low flows through
stream gauge records in the Southeastern US and calculates the
probability of a type II error where trends are deemed statistically
insignificant. There is strong evidence of widespread and signifi-
cant decreases in low-flow magnitudes across the region over the
last century. Negative trends were identified at a majority of sites
despite the presence of flow regulation, substantial human influ-
ence, or minimal human disturbance. Further, trend slopes indicate
a faster rate of decline in low-flow magnitude over more recent
decades compared to the last 50–75 years. An abrupt shift in the
mean low-flow magnitude was identified in approximately 50% of
the gauge records, occurring predominantly around 1975–1985 and
1995–2005. Where statistically significant trends are not identified,
short record lengths (<50 years) and high variability in hydrologic
time series result in a high probability of a type II error. Given the
age of existing water resource infrastructure and typical design
horizons, the identified trends in this study emphasize the need
for adaptive planning and management strategies capable of meet-
ing performance objectives in a nonstationary environment. While
the likelihood of a type II error emphasizes the need to consider the
consequences of existing trends regardless of statistical signifi-
cance. As the decrease in low-flow magnitude has accelerated over
recent history, predictions of future trend direction and magnitude
could aid water management. However, additional research is
needed to identify the causal mechanisms and future direction
of trends in streamflow across varying scales of space and time.
The results of this analysis have substantial implications for water
resource management and infrastructure design in a region where
competing demands for water resources are prevalent.
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Notation

The following symbols are used in this paper:
H0 = null hypothesis;
n = total number of years in a data record;

Q7 = 7-day mean streamflow;
S = test statistic for Mann–Kendall test;
ti = each year of a data record;
t̄ = mean year of a data record;

W1−α=2 = normal deviates at cumulative probability 1 − α=2;
Wβ = normal deviates at cumulative probability β;
Zs = statistic approximated by a standard normal

distribution;
α = probability of a type I error;
β = probability of a type II error;
σ2 = sample variance;
τ = strength of trend;

1 − α = specified confidence; and
1 − β = power.
7Q10 = 7-day 10-year low flow;
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