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ARTICLE INFO ABSTRACT

We have developed polydiacetylene (PDA)-based colorimetric biosensor for point-of-care testing (POCT) to
detect high infectious pHIN1 virus among influenza A virus with the naked eye by color change. For this
purpose, we first prepared PDA-PVDF membrane by immobilizing PDA onto the PVDF membrane through photo-
polymerization, and then conjugated an antibody specifically binding to the influenza A virus into this mem-
brane to form PDA-paper chips. This PDA-paper chips exhibited unique chromatic properties involving a color
change from blue to red under various external conditions (temperature and pHs). Especially, we showed the
color change of this paper chip in the presence of pHIN1 virus, confirming its potential as a POCT device.
Furthermore, we have developed POCT systems based on PDA-paper chips by developing program, which is
possible to visually detect viruses using only PDA-paper chips at a high concentration and detect and analyze
them at low concentrations using both paper chips and program (App.). Further, this program will be updated to
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enable quantitative analysis of the virus.

1. Introduction

Numerous techniques have been developed for the rapid and sen-
sitive detection of pandemic influenza A (pHIN1) viruses to prevent
and effectively control infectious disease caused by the high infectivity
of the pHIN1 virus that emerged in 2009 [1,2]. In addition, these
techniques enable clinical decisions to be made near patients as point-
of-care testing (POCT) so that they can reduce the time between diag-
nosis and treatment [3-5]. Current approaches for influenza diagnostic
methods are summarized in Table S1. Especially, rapid influenza di-
agnostic test (LFA) and DFA (or IFA) can easily detect influenza A or B
in a short time (within 4 h) based antigen detection. Other methods
such as rRT-PCR and viral culture method exhibit high specificity and
sensitivity, but they require labor-intensive and costly and time-con-
suming (48 ~ 96 h) process [6-13]. Biosensors based on colorimetric
assays have great advantages in POCT: they do not require
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sophisticated instrumentations or technical skills for use and can be
incorporated into portable sensor systems (Table S2) [14-28]. Fur-
thermore, this method has attracted much attention because the
readout can conveniently be perceived by the naked eye through
chromatic changes. Noble metal nanoparticles (e.g., gold and silver)
have been used in approaches to colorimetric detection. Gold nano-
particles are functionalized with a bio-receptor (e.g., antibodies and
peptides) and target molecules, and their aggregation is induced by
specific interactions, resulting in a colorimetric change in solution from
deep red to purple [29-41]. Polydiacetylene (PDA) has recently drawn
interest as a colorimetric sensing material due to its unique chromatic
properties [26,15-28,42-44]. PDA exhibits blue-to-red colorimetric
transitions arising from conformational changes in the PDA backbone
induced by a variety of environmental perturbations, such as tem-
perature, pH and ligand-receptor interactions. To date, PDA-based
biosensors have been thoroughly investigated for the detection of
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Fig. 1. (a) Preparation of PDA-paper chips and (b) their application for the colorimetric detection of influenza A (pHIN1) virus.

chemical and biological molecules such as viruses, proteins, bacteria,
metal ions and organic solvents [28,44-64]. PDA-based sensors are
generally categorized into two types: i) liquid-phase sensors
[28,42,44-54,65,66] and ii) solid-phase sensors [67-72]. Liquid-phase
sensors, which are simply PDA liposome solutions, have a few limita-
tions, such as intrinsic aggregation upon long-term storage due to the
relative instability of PDA dispersions in solution. While, because solid-
phase PDA sensors use PDA molecules immobilized on a substrate in
several different ways, they are ideal for development as diagnostic
devices. Especially, solid-phase PDA sensors is the easiest usage and
carry system that make them suitable as POCT devices. In this paper, we
aimed to develop PDA-based paper chips (PDA-paper chips) that can
detect influenza A (pHIN1) virus by color (naked eye) with high sen-
sitivity (Fig. 1). We first synthesized PCDA-NHS to enable binding of an
antibody to the diacetylene monomer (10,12-pentacoadiynoic acid,
PCDA), and then PCDA, PCDA-NHS and a lipid were mixed with a PVDF
membrane. After 1 min of UV light irradiation, a PDA-immobilized
PVDF membrane (PDA-PVDF membrane) was formed by photo-
polymerization. Finally, PDA-paper chip was prepared by conjugating
an antibody specific for influenza A virus nucleoprotein to the PDA-
PVDF membrane. The color of the PDA-paper chips changed from blue
to red in response to the binding events of pHIN1 virus to the chip
surface. In particular, even in the presence of a nasal fluid, the pH1N1
virus could be visually detected through color change. Additionally, as
soon as the pH1N1 virus was treated, PDA-paper chip was further in-
cubated at 40 °C for 9 min to induce the thermochromic transition PDA
molecules, thereby enhancing the redness contrast.

2. Experimental section
2.1. Materials

10,12-Pentacosadiynoic acid (PCDA) was purchased from Alfa Aesar
(Haverhill, MA, USA). 1,2-Dimyristoyl-sn-glycero-3-phosphocholine
(DMPC) was purchased from Avanti Polar Lipids (Alabaster, AL, USA).
N-Hydroxysuccinimide (NHS), ethanolamine, and IgG from human
serum (hIgG) were purchased from Sigma Aldrich (St. Louis, MO, USA).
1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)

was purchased from Thermo Fisher Scientific (Waltham, MA, USA).
PVDF transfer membrane (0.2 um) was purchased from EMD Millipore
(Burlington, MA, USA). Nucleoprotein antibody (anti-influenza nucl-
roprotein antibody) (NP) purchased from abcam (ab128193) and its
cross-reactivity of the antibody against various influenza strains was
performed by ELISA. All influenza strains, inclduing pandemic HIN1/
09 (pH1N1) viruses (A/california/04,/2009), provided by the BioNano
Health Guard Research Center (H-GUARD). The Virus titers were ex-
amined by real-time PCR with a One-Step RT-PCR kit (Promega) used in
accordance with the manufacturer’s instructions.

2.2. Synthesis of the PDCA-NHS

First, PCDA (2.7mmol, 1g), N-hydroxysuccinimide (NHS)
(2.9mmol, 337.5mg) and 1-Ethyl-3-(3-dimethylaminopropyl)carbo-
diimide (EDC) (3.2mmol, 615mg) were dissolved in 10 mL of di-
chloromethane (DCM). Then, this reactant was stirred for 4 h at room
temperature. The organic solvent in this reactant was evaporated in
vacuo, and the product residue was extracted ethyl acetate (EA) and
distilled water. Then, the organic solvent layer was filtered by using
magnesium sulfate anhydrate, and the solvent was removed in vacuo.
The resulting white powder was confirmed by thin-layer chromato-
graphy (TLC, hexane/ethyl acetate, 3:1). Their chemical structures
were analyzed by FT-IR spectroscopy (Bruker optics Alpha-P) (Bruker,
Billerica, MA, USA) and 1H-NMR (JEOL JNM-AL 400) (JEOL, Tokyo,
Japan) with DMSO-d, as a solvent.

2.3. Preparation of the PDA-Paper chips for pHIN1 virus detection

The powders of PCDA (0.045 mol), PCDA-NHS (0.009 mol), and
DMPC (0.036 mol) were mixed with 15 mL of chloroform. The PVDF
membranes were cut into square shapes using scissors. The membranes
were dipped into the solution and then dried at room temperature for
6 h. Photo-irradiation of the membranes was performed with a LAB 24
UV headlamp (Dong seo, Seoul, South Korea) for 1 min, changing the
membrane color to blue. After UV irradiation of the PVDF membranes
at 254nm, the membranes were incubated in a solution containing
10 pug/ml of NP antibody or human IgG as a control overnight at 4 °C,
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Fig. 2. (a) FT-IR spectra and (b) 1H-NMR spectra of PCDA (solid line) and PCDA-NHS (dash line).

respectively.

Next, the membranes were incubated in 18.3 nM ethanolamine for
1h to inactivate any remaining NHS sites. After the membranes were
rinsed with deionized water, they were dried in the dark. We analyzed
the chemical bonds of the PVDF membrane, PDA-PVDF membranes and
PDA-paper chips using an FT-IR spectrometer (Nicolet iS50) (Thermo
Fisher Scientific Instrument, WI, MA, USA). PDA-paper chips should be
kept in a dark place away from light and moisture light before use.
Finally, PDA-paper chips were treated with the pH1N1 virus and vi-
sually observed for the detection of pH1N1 virus.

2.4. Analysis of chromatic properties of PDA-PVDF membranes under
external stimuli (temperature & pH) changes

PDA-PVDF membranes were incubated at 25, 37, 40, 50, 60 and 70
°C for 5min and treated with various pH solutions by adjusting with
HCl (0.1 M) and NaOH (0.1 M) solution with a pH meter (METTLER
TOLEDO, SevenCompact, Columbus, OH, USA) at room temperature.
Then, we observed all membranes by the naked eye and obtained
images for measuring their red intensity. These experiments were re-
peated in triplicate.

2.5. Field emission scanning Electron microscopy (FE-SEM)

The morphologies of all membrane surfaces were observed by field
emission scanning electron microscopy (Hitachi, SU8230, Tokyo,
Japan). The membranes were coated with platinum and studied at an
accelerating voltage of 2kV for the original PVDF membrane and 5kV
for the PDA-PVDF membrane and PDA-paper chip.

2.6. Nucleoprotein of pHIN1 virus detection using PDA-Paper chips

Before the virus test, the ability to detect nucleoproteins (NPs) using
PDA-Paper chips was evaluated. NPs were prepared at various con-
centrations using a sample buffer (5mM HEPES), and each solution
(20 uL) was dropped on the PDA-Paper chip at room temperature to
observe the color change. Bovine serum albumin (BSA) was prepared in
a same manner as the control. After that, we observed their colors by
the naked eye and measured their redness values. All tests were re-
peated in triplicate.

2.7. pHIN1 virus detection using PDA-Paper chips

First, pHIN1 viruses provided by H-GUARD were inoculated to the
sample buffer (5 mM HEPES) and then diluted with the sample buffer
accordance with concentrations. Then, various concentrations of
pHIN1 virus-containing solution (20 puL) were treated at room tem-
perature on the PDA-paper chips. After testing, we observed all

membranes by the naked eye and then obtained images by measuring
their red intensity. IgG-modified PDA-PVDF membranes were tested as
a control (control Ab-paper), and this test was repeated in triplicate.
In addition, PDA-paper chip and control Ab-paper were treated with
1% nasal fluid (Lee Biosolution, Inc.) containing various concentrations
of pHIN1 virus, respectively, and then their color changes were ob-
served. Additionally, as soon as pHIN1 virus was treated, we incubated
PDA-paper chips at 40°C for 9min to induce thermochromic con-
formational transition of PDA molecules and their colors was analyzed.

2.8. Colorimetric analysis of PDA-Paper chips

The red intensity (a*) of paper chips was measured using a spec-
trophotometer (CM-2600d, KONICA MINOLTA, Tokyo, Japan) and
analyzed by Color Data Software (CM-S100w, KONICA MINOLTA,
Tokyo, Japan). Color data are represented according to CIE
(Commission International de I'Eclairage) parameter, a* for redness
[73-78]. All measurements were repeated in triplicate. In addition, we
have developed smartphone app. (Virus Detection) using App inventor
program that can analyse virus detection using PDA-paper chips.

3. Results and discussion

3.1. Preparation and characterization of PDA-Immobilized PVDF
membrane (PDA-PVDF membrane)

As previously reported, we conjugated NHS ester to PCDA via an
esterification to synthesize PCDA-NHS as an antibody binding site and
confirmed their chemical structures by both FT-IR and 'H-NMR spectra.
PCDA exhibited carboxylic acid stretching (—COOH) at 1698 cm™*,
whereas PCDA-NHS did not show this peak. Furthermore, a new peak at
1729 cm ™! corresponding to the ester bond (— COO—) was observed for
PCDA-NHS (Fig. 2(a)) [28,67,79,80]. In the 'H-NMR spectra, PCDA-
NHS showed an NHS peak at 2.8 ppm, and this peak was absent in
PCDA (Fig. 2(b)) [28]. PDA-PVDF membranes for PDA-paper chips
capable of virus detection were fabricated as described in the materials
and methods. A mixture of PCDA, PCDA-NHS and a lipid (1,2-dimyr-
istoyl-sn-glycero-3-phosphocholine, DMPC) (5:1:4 M ratio) was added
to a PVDF membrane to form self-assembled diacetylene vesicles. The
immobilization conditions were selected through optimization of var-
ious parameters [28,37,46,48,50,53,77]. This PDA-PVDF membrane
comprised lipid (DMPC) monolayers as a biomimetic surface for the
docking and insertion of lipophilic and membrane active species and
PDA as a module responsible for the generation of color signals. After
that, UV light was irradiated for 1 min to form PDA-PVDF membranes,
which exhibited a blue color. Although PDA was embedded in PVDF
membrane, it was systematically perturbed by increasing the pH and
temperature (Fig. 3). As shown in Fig. 3, the color of this PDA-PVDF
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Fig. 3. Color transition images and redness (a*) values of PDA-PVDF membrane
after changes in pH values.
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Fig. 4. Color transition images and redness (a*) values of PDA-PVDF membrane
after changes in temperature.

membrane was blue under acidic and neutral conditions (pH 3 ~9) and
gradually changed to red under basic conditions (pH 10 ~ 13), con-
sistent with increasing trend in redness(a*) values [39]. Under basic
conditions, OH- ions abstracted the carboxylic protons of PDA, leading
to a systematic increase in the content of negatively charged carbox-
ylate groups. The segments of PDA were rearranged owing to the in-
terruption of the dispersion interaction between the alkyl tails by the
strong electrostatic repulsive force between the carboxylate groups.
Therefore, compared to acidic and neutral conditions, a pH above 11
(strongly basic conditions) could cause a red intensity (redness value)
increase of more than 15 redness value. The PDA-PVDF membrane also
exhibited a color transition from blue to red with increasing tempera-
ture. As the temperature increased, the dynamics of all segments within
PDA increased, causing the PDA segments to be rearranged by weak-
ening inter- and intra-chain interactions within PDA, which in turn
altered the electronic state of the conjugated backbone. Therefore, the
HOMO-LUMO energy gap of perturbed PDA was widened upon in-
creasing the temperature, leading to a color change from blue to red
(Fig. 4) [28]. We visually confirmed the color change with increasing
temperature and found that the corresponding redness (a*) value also
increased. These results confirmed that PCDA was photopolymerized in
the PVDF membrane serving as the support to form PDA, resulting in
chromatic properties. As previously mentioned, the dynamic of PDA
segments was facilitated by the temperature increases. PDA segments
were rearranged by weakening inter- and intra-chain interactions
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within this membrane, induced in turn change of the electronic state of
conjugated backbone. Their HOMO-LUMO energy gap was widen when
the temperature rises, leading to the color transition from blue to red
[28]. On this basis, we attempted to develop a system capable of visual
detection of viruses by introducing an antibody into the PDA-PVDF
membrane.

3.2. Preparation of antibody-modified PDA-PVDF membranes (PDA-Paper
chips)

For the visual detection of influenza A virus, especially pHIN1
virus, an NP antibody (anti-influenza nucleoprotein antibody) specific
for influenza A virus nucleoprotein was introduced into the PDA-PVDF
membranes, forming antibody-modified PDA-PVDF membranes (PDA-
paper chips). In particular, to prevent antibody damage by UV light, we
irradiated this membrane with UV light before NP antibody binding
[66]. Nevertheless, the PDA-PVDF membranes maintained their blue
color regardless of antibody binding. The chemical composition of the
membranes was investigated by FT-IR analysis. All membranes dis-
played characteristic absorption bands at 1400 and 1180 cm™, corre-
sponding to the -CF, stretching vibration of the PVDF membrane (Fig. 5
(a)) [67,79,80]. After PDA was coated on the PVDF membrane, the
weak absorption bands of C=O0 stretching vibrations associated with
the carboxylic acids in PCDA emerged at 1735 cm ™! (Fig. 5 (b)). In
particular, C=N and C=O stretching vibrations of the amide bonds
appeared only in FT-IR spectrum of PDA-paper chip (red line), in-
dicating that the antibodies were well conjugated with the PDA-PVDF
membrane (Fig. 5(b)). In addition, the pore structures on the membrane
surface were observed by SEM imaging (Fig. 6) [81]. The pore structure
and size of the PDA-PVDF membrane before and after UV irradiation
did not obviously change compared to those of the bare PVDF mem-
brane (Fig. 6(a)-(c)). On the other hand, because the membrane pores
were blocked by conjugated antibodies of high molecular weight, nar-
rowed pores were observed after antibody modification (Fig. 6(d)).

3.3. Influenza a (pHIN1) virus detection using PDA-Paper chips

Most PDA sensors have been developed as chemo-sensors or small-
molecule (e.g., peptide and protein) detection sensors
[37,45-47,55-58,65]. We attempted to develop PDA-paper chips that
can detect whole viruses (influenza A virus) visually. First, we eval-
uated the ability to detect influenza A NPs at various concentrations
using PDA-paper chips (Fig. 7). As shown in Fig. 7(a), as NPs con-
centrations on the PDA-paper chips increases, the blue paper chip
gradually turned to red color and the redness value tends to increases.
On the other hand, there was little change in color when treated with
BSA. These results showed usability as a virus detection system using
this PDA-paper chip. We dropped pHIN1 virus on PDA-Paper chip.
After 3h incubation at room temperature, the color changes in PDA-
paper chips were monitored and scanned. Additionally, we measured
redness intensities by spectrophotometer of this paper chips for their
quantitative analysis. Human IgG antibody instead of NP antibody was
used as a control. The color of the NP antibody-modified PDA-paper
chip was blue in the absence of virus (0 TCIDso/mL); however, it gra-
dually turned to red as the virus concentration increased, because
colorimetric transitions within PDA matrix through perturbations in-
duced by interaction between nucleoprotein (NP) of pHIN1 virus and
NP antibody onto the PDA surface (Fig. 8(a)). Under 5 x 10* TCIDs, or
more, the color of our paper chip was confirmed to be clearly changed
from blue to purple and red. Importantly, the redness (a*) values were
also slightly changed in accordance with their image change (Fig. 8(b)).
Although there is no significant difference in the images, the redness
(a*) value of PDA-paper chip at low concentrations of 5 x 10° TCIDs,
was measured to be 2-folds more redness than the control (control Ab-
paper). While control Ab-paper color was hardly change (Fig. 8(a)).
Additionally, to increase detectability and reduce detection time, we
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kept this paper chips in 40 °C incubator for 9 min after pHIN1 virus
treatment. As shown in Fig. 4, the color of this paper chips remained
unchanged with blue color at 40 °C. Although this temperature did not
directly affect the thermochromic blue-to-red shift of PDA molecules,
we judged that external temperature change in the PDA-paper chip
could weaken the stability of PDA backbone perturbed by virus binding,
thereby triggering the perturbation and increasing the redness contrast
[42,44,49,66]. As our expected, the detection sensitivity of PDA-paper
chips was increased overall (Figure S1). Especially, the red intensity of
PDA-paper chip was increase in 10° TCIDs, of pHIN1 virus, and it was
clearly visible. Compared with that of Fig. 8, its color was definitely

Wavenumber (cm™)

changed from blue to purple, in the presence of 10* TCIDs, of pHIN1
virus, and it was distinctly distinguished with the naked eye (Figure
S1(a)). As well, overall redness (a*) values of PDA-Paper chips were
increased (Figure S1(b)). However, colors of control Ab-paper were
maintained blue regardless of virus concentrations. NP antibody we
used exhibited binding specificity for most influenza A viruses, in-
cluding pH1N1 strain, and showed high selectivity in H3N2 virus (A/
Human seasonal/10/2007) (Figure S2). As well, this assay also mark-
edly changed from blue to red to be visible to the naked eye after H3N2
virus detection (5 X 10* TCIDs,). This PDA-paper chip was able to
detect H3N2 virus with high sensitivity compared with to pHIN1 virus

Fig. 6. SEM images of (a) PVDF membrane, PDA-PVDF membranes (b) before and (c¢) after UV laser irradiation for 1 min, and (d) antibody-modified PDA-PVDF

membranes (PDA-paper chips) (Scale bar: 25 um).
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§ 4
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© 5 fluid (Fig. 8). The characteristics (limit of detection, detection time,
etc.) of biosensors for the visual detection (naked eye observation) of
1 influenza viruses are various (Table S2). The detection sensitivity of
PDA-paper chip was not yet enough to detect the influenza virus with
@ naked eyes observation compared to other methodologies [21-28]. To
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complement the sensitivity of visual detection, we further developed
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using PDA-paper chips. Importantly, since the camera specifications

Fig. 8. (a) Color transition images of (i) PDA-paper chip and (ii) control Ab-
paper after treatment with various concentrations of pHIN1 virus for 3h at
room temperature, respectively, and (b) their redness (a*) values after treat-
ment with various concentrations of pH1N1 virus (PDA-paper chip: dark red
and control Ab-paper: dark blue). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article).

detection, which is similar tendency to the virus specificity result of the
antibody (Figure S3). Depending on the application of various anti-
bodies, this PDA-paper chip can detect a wide variety of targets
(viruses). It is important to make sure that the system works well in
clinical settings. We tested whether color change of PDA-paper chips
occurred by using 1% nasal fluid spiked with pH1N1 virus. As shown in
Fig. 9, its color slightly changed red at the high concentration of pH1N1
virus treatment (10* ~ 10° TCIDs,), but control chips were well-main-
tained the blue color without color change in most conditions despite
the presence of nasal fluid. Of course, it needs a further improvement
that its color change was not visually confirm at low concentration
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and detection environment (light brightness and color) are different for
each smart phone, background setting should be required (Fig. 10). This
program was analysed based on the RGB values of the touched part of
the paper chips and their ratios. In the first step, after running this app.,
the PDA-paper chip is photographed (press “Take a picture” button)
before virus detection (Paper chips before virus treatment) and touched
the center of the detection area (detection point) correctly (Fig. 10(a)-
(b)). If you do not touch the blue PDA paper chip correctly, the NEXT
button will not be activated. And then press “NEXT” button to set it to
the background of this chip (Fig. 10(b)-(c)). And then, after sample
treatment on this chip, take a picture of this chip again and touch the
detection part to analyze it (Fig. 10(d)). If there is virus on PDA-paper
chip, “Virus detected” appears; otherwise, “No virus detected” appears
(Fig. 10(d)) [82,83]. Thus, this PDA-paper chip can be visually detected
viruses at a certain concentration or more (high concentration) and can
be detected and analyzed with the help of this program with a lower
concentration (low concentration). Commercially available rapid in-
fluenza diagnostic kits can detect an average 10° TCIDs, virus
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Virus Detection V49
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NEXT
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Take a picture Take a picture

-
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NEXT

Please press the "NEXT" button

ook

Paper chip

(d) after virus treatment

Virus Detection Virus Detection

Influenza A virus detection <) .

STEP3. Please take a picture after handling the
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STEPA4. please touch a "Detection point” conecﬂy
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Influenza A virus detection ) =%
Take a picture

STEP3. Please take a picture after handling the
sample N

Take a picture

STEPA4. please touch a "Detection point” correctly
#XData : Red:156/Green:164/Blue:210

VIRUS DETECTED
Ratio: Red:1/Green-1.05128/Biue-1.34615/ GXB: 207211

No virus detected
Back to HOME Back to HOME

<

Fig. 10. Smartphone-based Virus sensing procedure. Each panel shows the smartphone screen of (a) start-up screen, (b) background setting of PDA-paper chip before
virus treatment, (c) screen after background setting, and (d) analysis process after virus treatment. (The finger image does not appear on the actual screen.).

concentrations without reading device, and up to 10* TCIDs, when
using reading device [84]. It was confirmed that PDA-paper chip is
capable of visual detection of pH1N1 virus through color change from
5 x 10% ~ 10* TCIDs, viruses. Of course, this system needs to be im-
proved in order to detect viruses with distinct color changes at low
concentrations. Nevertheless, based on its detection sensitivity up to
now, it is considered that this PDA-paper chip can also be applied to
clinical situations when compared with other rapid kits.

4. Conclusions

We developed PDA-paper chips that can visually detect pH1N1 virus
by changing color. These chips exhibited unique chromatic properties
in accordance with external conditions (temperature and pHs). PDA-
paper chips showed blue-to-red color changes in the presence of various
concentrations of pHIN1 virus by interaction with influenza A virus
nucleoprotein (NP) and NP antibodies on this paper chips. However, its
detection sensitivity is still insufficient for clinical applications and
needs to be further improve. To overcome the current shortcomings, we
have developed smartphone app (i.e., program). We could visually
detect high concentration of viruses using only PDA-paper chips and
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detect and analyze them at low concentrations using both paper chips
and program (App.). Further, this program will be updated to enable
quantitative analysis of the virus.
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