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Abstract

Objective: The objective of this review is to consider the dual effects of microbiome and photobiomodulation
(PBM) on human health and to suggest a relationship between these two as a novel mechanism.
Background: PBM describes the use of low levels of visible or near-infrared (NIR) light to heal and stimulate
tissue, and to relieve pain and inflammation. In recent years, PBM has been applied to the head as an
investigative approach to treat diverse brain diseases such as stroke, traumatic brain injury (TBI), Alzheimer’s
and Parkinson’s diseases, and psychiatric disorders. Also, in recent years, increasing attention has been paid to
the total microbial population that colonizes the human body, chiefly in the gut and the mouth, called the
microbiome. It is known that the composition and health of the gut microbiome affects many diseases related to
metabolism, obesity, cardiovascular disorders, autoimmunity, and even brain disorders.
Materials and methods: A literature search was conducted for published reports on the effect of light on the
microbiome.
Results: Recent work by our research group has demonstrated that PBM (red and NIR light) delivered to the
abdomen in mice, can alter the gut microbiome in a potentially beneficial way. This has also now been
demonstrated in human subjects.
Conclusions: In consideration of the known effects of PBM on metabolomics, and the now demonstrated
effects of PBM on the microbiome, as well as other effects of light on the microbiome, including modulating
circadian rhythms, the present perspective introduces a new term ‘‘photobiomics’’ and looks forward to the
application of PBM to influence the microbiome in humans. Some mechanisms by which this phenomenon
might occur are considered.
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Introduction to Light Therapy and the Microbiome

L ight is known to have wide-ranging effects in multiple
biological kingdoms,1 and has been used for many years

as a therapeutic agent, although in recent years (in the modern
era of pharmaceuticals) it has fallen from favor. Finsen re-
ceived the Nobel Prize for Physiology or Medicine in 1903

for his work in treating cutaneous tuberculosis with UV light
and smallpox with red light.2 Bright light therapy (photo-
therapy) is still the first-line therapy for seasonal affective
disorder, for circadian rhythm misalignment, and is used for
sleep disorders (including for Parkinson’s disease3) and
Alzheimer’s disease at the Mayo clinic in the United States
(https://www.mayoclinic.org/tests-procedures/light-therapy/
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about/pac-20384604). Bright light therapy has been sug-
gested as a therapy for depression and other neuropsychiatric
conditions4 and is currently under trial as a therapy for Par-
kinson’s disease.5 Neonatal hyperbilirubinemia has been
routinely treated since the 1970s with blue light. Red light for
the treatment of retinopathy of prematurity, caused by oxy-
gen toxicity, is now being trialed,6–8 and could also be tested
for methanol-induced retinal damage, diabetic retinopathy7

and age-related macular degeneration,9–11 and cognition.12 It
is becoming increasingly apparent that daylight and circadian
rhythms play an important part in many treatments. For ex-
ample, the timing of therapy (chronotherapy) in cardiovas-
cular disease influences therapeutic success13 and the
position (sunny versus dull) of the patients in cardiac inten-
sive care units who are recovering from myocardial infarc-
tion, influences their mortality and length of hospital stay.14

It has been recognized in recent years that the gut mi-
crobiome is inextricably linked with health and disease. The
gut microbiome (whether healthy or not) has a profound
effect on inflammation and cytokine production, production
of metabolites, and direct vagal nerve stimulation. It is also
recognized that there is a complex communication between
the body and the various microbiomes within the body. It is
the contention of the authors that light, and specifically
photobiomodulation (PBM), can alter the microbiome,
possibly through this communication.

Light can affect the microbiome indirectly through the daily
circadian rhythm. The metabolome is intimately associated
with chronobiology and hence with ambient light,13 with the
circadian clock regulating levels of metabolites, including those
from the microbiome, which in turn can affect metabolome.15

The effect of the circadian rhythm on the microbiome has been
demonstrated16–18 and the bacteria responsible for decreased
gut integrity and increased lipopolysaccharide transport are
upregulated in mice after disruption of the sleep/wake cycle.18

In addition to circadian rhythm, light also has an indirect effect
on the microbiome through vitamin D, produced by the action
of sunlight on keratinocytes. Vitamin D is known to boost
immune function by the induction of antimicrobial peptide
genes and the regulation of tight junction proteins in the epi-
thelial layer of the intestine19,20 and to maintain microbiome
homeostasis and protect against colitis in mice,21 possibly by
controlling inflammation.22 Vitamin D deficiency has been
linked with such conditions as irritable bowel disease, obesity
and diabetes, proinflammatory cytokines, intestinal barrier
disturbance,23 and gut dysbiosis,22 and has been suggested to
influence immune-mediated disease.24 Similarly, contaminants
in food, such as fertilizers, pesticides, and herbicides, can have
their toxicity increased by sunlight,25 which may also have an
adverse effect on the microbiome.

It is also apparent that blue light-emitting diode (LED)
screens and lights used at night can suppress melatonin se-
cretion and affect circadian rhythms with consequent effects
on health26 and it has also been demonstrated that red light
(morning light) in humans can influence both leptin and
ghrelin concentrations,27 which play a role in energy ho-
meostasis, hunger, and satiety. Recently, Basha and col-
leagues28 have shown that fluorescent lighting can affect the
oxidative stress of rats and Boswell and colleagues have
shown that fluorescent lighting can have effects on gene
regulation and inflammatory processes,29 which have the
potential to affect the microbiome.

We introduce the term ‘‘photobiomics’’ to characterize
the combined effects of light (PBM or otherwise) on me-
tabolomic factors, the microbiome, and the interaction be-
tween the two.

Photobiomodulation

Light therapy was, in a sense, rediscovered by Mester
et al. who found that low-power laser light had a positive
effect on wound healing and hair regrowth in mice.30 PBM
is the newly adopted consensus term to describe the therapeutic
application of low levels of red and/or near-infrared (NIR)
light to treat a multitude of different diseases and disorders.
PBM used to be known as ‘‘low-level laser or light thera-
py,’’ but the name was changed to reflect the increasing use
of LEDs, the possibility of inhibition as well as stimulation,
and to avoid the undefined nature of the term ‘‘low level’’.31

The mechanisms of action of PBM have been widely
investigated in recent years, and additional mechanistic in-
formation is still being discovered. Nevertheless, it is gen-
erally accepted that the single most important chromophore
in the red and NIR regions of the spectrum is cytochrome c
oxidase (CCO), which is unit IV of the mitochondrial re-
spiratory chain. When CCO absorbs light, the enzyme ac-
tivity is increased leading to increased electron transport,
more oxygen consumption, higher mitochondrial membrane
potential, and increased ATP production.32 Signaling mol-
ecules are produced, including a brief burst of reactive ox-
ygen species (ROS), nitric oxide, cyclic AMP, and
movements in intracellular calcium. These signaling mole-
cules result in activation of a host of transcription factors,
and changes in the expression of a multitude of gene
products, including structural proteins, enzymes, and me-
diators of cell division and cell migration.32 Interestingly, a
recent report has thrown into question the central role of
CCO in the mechanism of PBM action.33

In addition to the proposed action of PBM on CCO, and the
consequent signaling, other mechanisms operate at a cellular
and tissue level, including nonvisual phototransduction cas-
cades involving opsins (OPN 1–5). Recent evidence has shown
that blue (415 nm) and green (540 nm) light are absorbed by
opsins that then trigger opening of transient receptor potential
(TRP) calcium ion channels.34 The interaction between PBM
and opsins in the skin has been reviewed by Khan and Ara-
ny.35 There is recent evidence that melanopsin (OPN4), found
in the eye, is also present in adipocytes,36,37 throughout the
brain,38 in skin cells, and blood vessels.39 Melanopsin is a tri-
stable switch that can absorb in the red spectrum.40 Light
penetrating the skull (sunlight and PBM) can alter mela-
nopsin.41 The 380 nm light is also absorbed by neuropsin
(OPN5) in the skin, retina, and nervous system and light is
absorbed in hair follicles by OPN2 and OPN3. Absorption by
opsins results in downstream nonvisual phototransduction
cascades, which in turn presumably influence protein con-
formation at the cell membrane and possibly cytoskeleton
modulation cascades.42

Santana-Blank and Rodrıguez-Santana43,44 have argued
that the structure of water and its absorption of NIR is in-
tegral to PBM mechanisms. PBM, delivered as low-level
laser, has been shown to have a dramatic effect on the cy-
toskeleton structure of nerve cells, with the rapid formation
of transient varicosities, and consequent nerve blockade for
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pain relief.45–49 PBM also affects the cytoskeleton of other
cells besides neurons, such as epithelial cells,50 keratino-
cytes,51 and fibroblasts,52 and has been shown to have effects
on protein conformation, including calcium ion channels.53–55

PBM also has an effect on brain oscillation patterns, with
changes to alpha, beta, gamma, delta, and theta waves in both
mice56 and humans57 (El Khoury, et al., unpublished ob-
servations) and effects on the default mode network.58

Many of the diseases treated by PBM are localized by
nature and include orthopedic conditions, such as inflam-
mation in joints and tendons, wounds, and fractures. In these
applications, light is usually delivered as a spot (often from
a focused laser beam) onto the affected area of tissue. The
wavelengths employed are mostly in the red regions (630–
680 nm) or in the NIR region (780–940 nm), although longer
wavelengths (980 and 1064 nm) have also shown benefit.32

Power densities are usually in the region of 10–100 mW/cm2,
together with energy densities in the region of 4–50 J/cm2. It
is usual to use higher power densities and higher energy
densities to treat lesions that are located deeper in the tissue,
such as large joints, spine, and brain. Figure 1 gives a dia-
grammatic illustration of many disorders that have been
treated by PBM.

In recent years there has been accumulating evidence that
there are also significant systemic effects produced by PBM,
whereby application of PBM to one part of the body pro-
motes beneficial outcomes in remote tissues. The exact
mechanisms underlying these systemic effects of PBM are
not completely understood, but some hypotheses have been
put forward. One such involves the absorption of light by
muscle. The large mass of muscle that is exposed to light
combined with the high numbers of mitochondria inside
muscle cells, means that the resulting increase in metabo-

lism can have effects on the whole body. Not only has PBM
been shown to be important for increasing athletic perfor-
mance, and encouraging recovery from strenuous exercise,59

but also the increased consumption of glucose, and the burning
of fat goes some way to improving diabetes, metabolic syn-
drome, and countering obesity and systemic inflammation.60

In fact, the study of PBM and metabolomics is a nascent area
of study.61 The use of PBM to treat cardiovascular diseases,
such as hypertension, high cholesterol, disorders of circu-
lation, clotting disorders is a still-emerging field.62

Given its important effects on mitochondria within cells
that are irradiated, PBM may trigger a signaling system
between mitochondria in peripheral cells and cells residing
in the brain,63 facilitated by an unknown mediator termed a
‘‘mitokine’’. In Caenorhabditis elegans it has been shown
that mitochondrial perturbations in one tissue type initiate a
mitochondrial stress response in distal, seemingly unaf-
fected tissues.64,65 Aside from the effects on mitochondria,
PBM is also known to induce proliferation and migration of
stem cells.32,66–69 It has been suggested that through this
induction, PBM can mobilize stem cells that home specifi-
cally to damaged tissue to aid in repair. For example, in
animal models, PBM applied to the tibia results in migration
of stem cells and mitigation of damage in models of myo-
cardial infarction70–72 and Alzheimer’s disease.73,74 Another
possibility is that PBM treatment could remediate mito-
chondrial dysfunction in gut neurons, reinstating the com-
plex bidirectional communication system between the
enteric nervous system and the central nervous system (the
gut/brain axis). This may have particular significance for
neurodegenerative conditions, such as Alzheimer’s and
Parkinson’s diseases, both of which involve early patho-
logical abnormalities in the gut/brain axis.75–79

FIG. 1. Schematic illustration
of the wide variety of human
diseases and disorders that have
been treated by PBM. PBM,
photobiomodulation.
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PBM has a pronounced effect on inflammatory processes
by reducing oxidative stress, reducing proinflammatory cy-
tokines, and changing macrophage phenotype.80 The local
effect of PBM on inflammatory pathways most probably has
systemic consequences. It is possible that circulating im-
mune cells (mast cells, macrophages, etc.), stimulated by
PBM,81–84 could transduce protective signals from distal
tissues to sites of injury such as the brain, heart, or gut.

Human Microbiome

The human microbiome comprises many billions of
bacteria, archaea, protists and viruses that live in close as-
sociation with our bodies. There is a microbiome associated
with our skins, with our mouth and nose, with our ears and
eyes, with our respiratory tracts, our urogenital tracts, and
with our gut. Over the past few years, there has been in-
creasing interest in the interaction between our microbiome
and the cells and tissues of our body. The gut microbiome
contains somewhere in excess of 1014 bacteria, representing
over 1000 species (upward of 6000 strains) and contributing
150 times the genetic material of our own genome.85 It has
become evident that the gut microbiome communicates with
our body and that our body in turn communicates with the
microbiome.86,87 For these reasons, the gut microbiome is
often given the importance of an additional organ and, in
common with other organs, has its own circadian rhythm.88

The intimate relationship of the human host and the bacte-
ria of the microbiome is often referred to as the holobiont,
with the holobiome being the total genetic material of the
partners.

The gut microbiome of lean and healthy humans (and
model organisms) is quite different to that of obese humans
and animals. In fact, it is now recognized that a healthy gut
microbiome is to a large extent responsible for a healthy
individual. Changes in the health status of humans and
model organisms are accompanied by changes in the gut
microbiome, which can include genus-level, family-level,
and even phylum-level fluctuations in the microorganisms
that are present, as well as changes in microbial diversity
(either increased or decreased diversity). The microbiome
shows differences with different metabolic diseases and
disorders and there is a microbiome component to such
disparate diseases as cardiovascular disease (including heart
failure) and neurological disorders (including Parkinson’s
disease).89–91 Thus, it has been recognized that there is a
microbiome/gut/brain axis, a microbiome/gut/heart axis,
and possibly a microbiome/gut/muscle axis,92 a micro-
biome/gut/lung axis,93 and a microbiome/gut/skin axis.94

More recently, links between the gut and pain,95 the gut and
arthritis, and the gut and neutrophils96 have been proposed.

The composition of the microbiome is affected by birth-
ing practice (vaginal/cesarean), growth through infancy
(breast milk/formula) to adulthood (vegan/meat-based diet),
genetics (the HLA-B27 gene may cause gut dysbiosis,
leading to spondylarthrosis97), aging, stress, antibiotics, and
diet (including alcohol consumption, prebiotics, probiotics),
all of which shape the overall composition of the micro-
biome.87 A changed diet (e.g., high fat, high sugar, plant-
based, vegan, etc.) can change the microbiome in the short
or long term.90,98 A diet high in a diversity of plant products
is generally linked with greater species richness in the

gut,99 whereas a more meat-based diet leads to a replace-
ment of carbohydrate-fermenting bacteria with bile-tolerant
bacteria.86

Gut microbiota assist in food digestion, change the kilo-
joule yield of the food, and contribute to vitamin and min-
eral production and intake, and more efficient energy
production from a dysregulated microbiome may be one
factor in obesity,90,100 due to increased energy harvest from
polysaccharides and inhibition of fasting-induced adipose
factor and monophosphate-activated protein kinase, both of
which influence deposition of body fat.101 A western diet
results in changes in the microbiome of both humans98 and
mice,102 a trait which is transferable with fecal transplants.90

Antibiotics as well as nonantibiotic drugs, including proton
pump inhibitors, can disrupt the microbiome and generate
long-term effects.86,103,104 Metformin and Acarbose, both
used to treat type 2 diabetes, have been shown to have
positive effects on the microbiome.105–107

The main communication pathways between the micro-
biome and the body are through the immune response, redox
signaling, the endocrine system and the enteric/vagus nerve
pathway; summarized in Fig. 2. One of the major known
effects of the microbiome is the release of short-chain fatty
acids (SCFAs), such as butyrate, acetate, and propionate,
produced by fermentation of undigested polysaccharides or
proteins. SCFAs influence the integrity of the gut mucosa by
increasing epithelial integrity and production of mucus and
influence the body’s energy balance, inflammatory response,
and protect against cancer.89,90,108 They are potent signaling
molecules, affecting a number of G-protein-coupled recep-
tors, resulting in such effects as increased glucagon-like
peptide 1, leptin, and peptide YY; increased insulin sensi-
tivity; increased energy expenditure; increased satiety; and
protection against irritable bowel disease and cancer (re-
viewed by Koh, et al.108). The microbiome also has a role in
tryptophan metabolism, producing tryptophan catabolites
such as indole and indolepropionic acid (IPA),109 which are
also anti-inflammatory and influence the kynurenine path-
way.110 Gut bacteria (especially the lactobacilli) are known
to generate ROS, at levels that are able to influence cell
signaling and reduce the inflammatory response.111 The
microbiota in the gut also produce the active forms of
polyphenols, by altering the bound state of these molecules
in plant foods.112

Microbes in the gut produce other metabolites, including
neurotransmitters and hormones, which cross the intestinal
mucosa, interact with cells and tissues of the body, and con-
tribute to the metabolites that can be detected in the circula-
tion.113 These signaling molecules may be identical to those
produced by the body or close analogs that the body can
recognize and have a role in regulating appetite, weight gain,
insulin sensitivity, peripheral lipid storage, and liver and
muscle energy balance. Such signaling molecules include cat-
echolamines, serotonin, gamma aminobutyric acid (GABA),
dopamine, acetylcholine, a-MSH, norepinephrine, and mela-
tonin, all of which can leave the gut lumen.109,114,115 The mi-
crobiota also influences the production of metabolites by the
enteroendocrine cells. For example, 90% of the body’s sero-
tonin is produced by enteroendocrine cells in the gut,116 which
has a major influence on mood and cognition.117

Communication between the microbiome and the brain
(microbiome/gut/brain axis) is also possible through the
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vagus nerve, the direct link between the brain and the enteric
nervous system, which communicates directly with the gut
lumen and is exposed to microbially produced neurotrans-
mitters.118 Recently, enteroendocrine cells (so-called
‘‘neuropod’’ cells) have been shown to synapse with the
vagus nerve to transmit signals directly from the gut to the
brain in a single synapse.119 The vagus nerve can influence
gut motility and mucin secretion, both of which will affect
the microbiome.113 In addition, SCFA have also been shown
to directly influence the sympathetic nervous system,
through G-protein-coupled receptors.120

Microbiome and Human Disease

A dysregulated microbiome having an effect on host
health is known as dysbiosis. This can be caused by stress,
aging, antibiotics, hygiene breakdown, and diet (absence of
fiber and resistant starches). Dysbiosis will lead to decreased
mucosal integrity and the movement of bacteria and mi-
crobial products into the portal circulation, the liver, and the
systemic circulation (Fig. 2). These products include lactic
acid, ammonium ions, endotoxins, bacterial cell wall com-

ponents (lipopolysaccharide and peptidoglycan), membrane
lipids, DNA, and whole bacterial cells. An altered micro-
biome can affect lipid metabolism, glucose metabolism,
protein turnover, and redox balance as well as increasing
biomarkers such as cholesterol, free fatty acids, fibroblast
growth factor 21, bilirubin and lactate,121 and inflammatory
markers such as interleukin 6 (IL-6) and tumor necrosis
factor alpha (TNF-a).

The reduced SCFA production by the microbiome due to
dysbiosis leads to decreased mucosal integrity and a thin-
ning of the mucous layer.122 The leaking of microbial me-
tabolites, products, or entire microbes from the intestinal
lumen into the tissues sets up an inflammatory response,
which then further reduces the integrity of the gut, leading to
systemic chronic inflammation.123 Cytokines produced by
the mucosal immune system can be released into the gut
lumen and so in turn affect the microbiome. The inflam-
matory response associated with dysbiosis is correlated with
obesity, ulcerative colitis, irritable bowel disease and
Crohn’s disease, metabolic syndrome, type 2 diabetes, car-
diovascular disease, and cancer.91,101,108,122,124–127 In-
flammation will also directly affect the central nervous

FIG. 2. The main interactions between the microbiome and the body with a healthy and unhealthy microbiome. Bacteria
in the microbiota produce SCFA, influence redox signaling, influence tryptophan metabolism, activate plant polyphenols,
and produce neurotransmitters, hormones, and peptides. This has the effect of promoting a thick mucus layer, an intact
epithelium, and producing numerous downstream metabolomic effects. The microbiome communicates with the body
through these metabolites as well as direct communication through the vagus nerve. In dysbiosis, reduced SCFA levels
weaken epithelial integrity, increasing efflux of bacterial metabolites, such as proteins and LPS, contributing to an increased
inflammatory response and ‘‘leaky gut.’’ Production of TMOA and p-cresyl sulfate are correlated with cardiovascular
disease. 5-HT, serotonin; ACh, acetyl choline; BBB, blood brain barrier; CVD, cardiovascular disease; DA, dopamine;
GPCR, G protein couple receptor; IPA, indolepropionic acid; LPS, lipopolysaccharide; ROS, reactive oxygen species;
SCFAs, short chain fatty acids; T2D, type II diabetes; TMA, trimethylamine; TMOA, trimethylamine oxide.
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system, through the vagus nerve, the sympathetic and
parasympathetic nervous systems, and the neuroimmune
system.128 The systemic and neuroinflammation associated
with dysbiosis has been associated with cardiovascular
disease (including hypertension, atherosclerosis, and heart
failure), the mild cognitive impairment of aging, and a
number of intractable neurodegenerative diseases and neu-
rological disorders, including multiple sclerosis, Alzhei-
mer’s disease (gut and oral microbiome), Huntington’s
disease, autism spectrum disorder, schizophrenia, anxiety,
and depression in both humans and laboratory ro-
dents.129–134

Dysbiosis also disrupts tryptophan metabolism, shifting the
balance of serotonin and kynurenine pathways.135 A disturbed
kynurenine pathway has been linked to Parkinson’s,136 car-
diovascular disease,137 multiple sclerosis, amyotrophic lateral
sclerosis (ALS), and other neurological diseases.138

There is a particularly strong link between the micro-
biome and Parkinson’s disease, where the constipation
suffered by a majority of Parkinson’s disease sufferers139 is
linked to a-synuclein accumulation in the enteric nervous
system, increased intestinal permeability (leaky gut), and
local inflammation (increased proinflammatory cytokines),
which can occur years before the neural symptoms of Par-
kinson’s disease become apparent.140 Interestingly, both rats
and transgenic C. elegans models of Parkinson’s disease
show increased aggregation of a-synuclein as well as in-
creased neural inflammation when exposed to bacteria that
produce ‘‘curli’’, a bacterial amyloid protein.141

The intestinal microbiome appears to have a causal role in
the development and progression of atherosclerosis. In ad-
dition to obesity being a major risk factor for cardiovascular
disease, dysbiosis results in the production of trimethyla-
mine oxide produced in the liver from trimethylamine re-
leased by the gut microbiome.142 Trimethylamine oxide is a
predictor of cardiovascular disease, although the causative
link has yet to be established.143,144 Atherosclerotic car-
diovascular disease also appears to be correlated with dis-
tinctive differences in the microbiome, including increased
abundance of Enterobacteriaceae and Streptococcus spp.145

Dysbiosis has been linked with hypertension, atherosclero-
sis, arterial thrombosis, altered cholesterol and lipid profile,
and heart failure146 and the gut microbiome has been shown
to have a direct role in regulating blood pressure144 and
blood lipids147 in rodents. Additionally, there is also a major
link between the oral microbiome and cardiovascular dis-
ease, with Porphyromonas gingivalis (the causative agent in
oral gingivitis) linked to atherosclerosis and found in the
atherosclerotic plaques.148

It has also become apparent that dysbiosis is associated
with chronic pain syndromes, including visceral pain,149

migraine (gut and oral microbiomes),150 chronic prostatitis
and pelvic pain (gut and urogenital microbiomes),151 and
autoimmune diseases such as rheumatoid arthritis.152

PBM Alters the Microbiome

We have shown in a previous study153 that PBM, deliv-
ered as low-level laser, to the abdomen of healthy mice can
produce a significant change in the gut microbiome. PBM
significantly altered the microbial diversity of the micro-
biome, an effect most pronounced in mice treated three

times per week with NIR light (808 nm), but not apparent
with a single treatment with red light. PBM also produced a
10,000-fold increase in the proportion of the beneficial
bacterium Allobaculum in the microbiota of mice after 14
days of treatment with NIR light but not with red light
(Fig. 3).

This study has recently been repeated (unpublished) with
larger numbers of mice in the experimental groups (10 per
treatment group). The wavelength was again shown to be an
important parameter, with NIR wavelengths showing a more
pronounced effect than red light, and the proportion of
bacteria associated with a healthy microbiome in mice
generally increased while the proportion of bacteria asso-
ciated with a dysregulated microbiome generally decreased.
Blivet and colleagues have also hypothesized that the mi-
crobiome (in mice) is important for the treatment of Alz-
heimer’s disease with PBM154 and have shown significant
changes in the microbiome of mice injected with b-amyloid
after treatment with a combination of PBM wavelengths and
a static magnetic field (personal communication and155).
Recent preliminary work from our laboratory (unpublished)
has also indicated that changes in the human (quasimeta-
bolic syndrome) microbiome occur after treatment with
PBM, including increases in Akkermansia muciniphila, Bi-
fidobacterium sp., and Faecalibacterium sp., all recognized
as correlated with a healthy microbiome,156–158 and de-
creases in the Firmicutes:Bacteroides ratio, proposed as an
indicator of gut health.159,160

UV therapy of skin has been shown to affect the skin
microbiome by altering barrier function, leading to
microbial-specific skin-resident memory T cells, disrupting
the healthy balance between skin microbiome and skin
immune cells, and resulting in chronic inflammation and
diseased skin.161 On the other hand, UV irradiation of blood
has been used for infections, autoimmune diseases, and
some metabolic disorders.162,163 The mechanisms of action
are still uncertain despite many years of investigation.

Mechanisms of Action of PBM on the Microbiome

Because the whole field of ‘‘photobiomics’’ is so new, the
discussion of possible mechanisms of action must remain
highly speculative. They key question that must be ad-
dressed by further research is whether the light is primarily
absorbed by the microbial cells themselves that make up the
human microbiome, by the host cells that surround the mi-
crobes (or indeed cells that are distant from them), or by a
combination of both microbes and host cells. The known
chromophores for PBM, such as CCO, opsins, and flavo-
proteins, have mainly been investigated in mammalian cells.
Nevertheless, there is a considerable body of work, largely
emanating from Tiina Karu in Russia that a diverse range of
bacterial species (both Gram-positives and Gram-negatives)
and fungal (including yeast) cells do indeed respond to
PBM.164,165 This response was mostly shown by increased
proliferation of the microbial cells, but considering the bi-
phasic nature of the PBM dose/response curve,166,167 at
higher doses, inhibition was also observed. Similarly, de
Sousa and colleagues168 have also shown that PBM inhibits
the in vitro growth of bacteria that infect skin ulcers.

Alternatively, the alteration of the microbiome that was
observed in the mouse experiments may be due to a
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secondary effect of PBM, affecting the mouse inflammatory
response, and in turn affecting the gut microbiota. This is
entirely feasible, given the intimate relationship between the
microbiome (healthy and dysbiosis) and the inflammatory
response. It is hypothesized that this effect may be due to the
well-known anti-inflammatory and redox signaling effect of
PBM.60,80 PBM can reduce proinflammatory cytokines, such
as IL-6, TNF-a, IFN-c,169 and change the activity of mac-
rophages and neutrophils.80 Importantly PBM can change
the ‘‘polarization state’’ of cells from macrophage line-
age170 proinflammatory M1 to anti-inflammatory M2 phe-
notype.

In a series of experiments on Parkinson’s disease, Stone,
Johnstone, Mitrofanis and colleagues have shown that
neuroprotection against Parkinsonian MPTP insult (in mice)
can be achieved with PBM delivered to areas of the body
remote from the brain.36,171–174 This abscopal effect of PBM
is postulated to be due to immune cells, stem cells, or a
circulating (unidentified) mediator. The possibility exists
that this mediator is linked to changes in the microbiome.

Potential Applications to Human Disease

It is entirely possible that some of the beneficial effects of
PBM on systemic conditions and metabolic disorders that
have historically been observed have been due to effects on
the gut microbiome rather than the local tissue and this
possibility has gone unrecognized until now. The lack of
convincing scientific mechanistic evidence obtained so far,
for the well-established abscopal effects of PBM, for in-
stance, those seen in animal models of Parkinson’s disease
and in some cardiovascular disorders, suggests there may be
room for this alternative explanation.

PBM may serve as a way to beneficially change the mi-
crobiome for a number of different inflammatory and neuro-
logical diseases (such as cardiovascular and Parkinson’s
diseases). The obvious approaches to try to improve the mi-
crobiome in humans such as diet, probiotics, and fecal trans-
plants have had some success, but these treatments do not
amount to a complete solution for the entire problem. Fecal
transplants are currently being used for Clostridium difficile
infection, irritable bowel disease, ulcerative colitis,175 and are
also being considered for some nonintestinal metabolic dis-
eases. Fecal transplants have been shown (in mice) to suppress
neuroinflammation and TNF-a signaling, and to reduce the
symptoms of Parkinson’s disease and dysbiosis.176 PBM has
the potential to act as an adjunct treatment (along with mod-
ifications of diet and exercise) to rebalance the microbiome.
A healthy microbiome would balance SCFA production, se-
rotonin/kynurenine pathways, trimethylamine metabolism,
and dopamine and neurotransmitter production, which, in turn
may affect the outcome of some of the most difficult-to-treat
diseases, including Parkinson’s disease, multiple sclerosis,
amyotrophic lateral sclerosis, attention-deficit/hyperactivity
disorder, and autism spectrum disorder.

Conclusions

While metabolomics specifically excludes the micro-
biome, the two are inexorably linked; the microbiome di-
rectly affects the body and the body also influences the
microbiome. The combination of the metabolome and the
microbiome (the holobiont or holobiome) appears to be able
to be changed by light, specifically by PBM. In light of the
evidence that PBM can influence the microbiome and the
known effect of PBM on cytokines, transcription factors,

FIG. 3. Change in the proportion of Allobaculum sp. in the total microbiota after PBM treatment with red and infrared
laser. M, multiple (three times per week/2 weeks) dose of PBM; S, single dose of PBM. (adapted from Bicknell et al.153).
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and the metabolome we introduce the term ‘‘photobiomics’’
to represent the combined effects of PBM on metabolomic
factors, the microbiome, and the interaction between the
two. Photobiomics most probably has a wider application
than simply PBM. As is now generally understood, light has
an effect on a wide range of living organisms in multiple
biological kingdoms.1 Light in general may affect the mi-
crobiome as a downstream effect. The microbiome has been
increasingly shown over the last decade to be a powerful
influence on a range of diseases and to be very important in
the maintenance of optimum health. The ability of PBM to
influence the microbiome (if proven to be applicable to
humans) will allow an additional therapeutic route to target
multiple diseases, including cardiovascular disease and
Parkinson’s disease, many of which have thus far eluded
effective treatment approaches.
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