MECHATRONICS
COMPETITION

Michaela Curcio & Michael Sherman

FALL 2020

Professor: Dr. Matthew Stein

Abstract

Mechatronics is a combination between Mechanics and Electronics. The class project was to
complete the final task to build and program an autonomous mobile device to score as many
points as possible in a 10-minute period by navigating a playfield while collecting and depositing
objects into designated bases. The final task was a competition between all the teams in the class.
There were 9 teams of 2-3 people in the class this semester. There were milestones throughout
the semester that would help us to complete the final task. The robot was first designed on
SolidWorks. Then it was made from scratch out of sheets of acrylic cut from a laser cutter, 3D
printed structures, Lego pieces, and electrical components such as motors, servos, buttons, and
ultrasonic. The robot was powered by an Arduino using C++ coding language to navigate around
the playfield and to handle blocks. There were two days at the end of the semester to display the
robot to complete the final task. The robot scored a perfect score of 64 points on the first day,
putting with a lead for first place. The perfect score was not able to be replicated on the second
day, but the robot scored 56 points, giving a total score of 116/128 points, landing in first place
overall out of all 9 groups with the only group to score a perfect score on one of the
demonstration days.

Table of Contents

A 1] = Tox PP PRP i
INEFOTUCTION ...ttt et et eas Error! Bookmark not defined.
IVHIESTONE L.ttt st sttt e bt s bt e b s b st e et e e e st e st e bt e b e e b e st et et entenseneeseesesbeseesan 1
CITCUIT DIAGIAM ..ttt sttt et et b e bt sb e bt e et e st e st e bt e b e st et et e s e e eseebeebesnentens 1
T3 (=SSP 2
IVHIESTONE 2.ttt sttt ettt a et s b s b e st e et et e st e st e bt e b e e b e st e b et entenseneeseebesbeseesan 2
CIPCUIT DIAGIAM ..vieeieieciecie sttt ettt ettt et e st e et e et e s te e s aebeesaestesbeessesbeesaensesbeesseseessessesbeensessessnensesseanes 3
PICEUES ..ttt sttt sttt s bt e bt b et e b et et et n e e Rt e he e bt he b et et et et e st eneebesaeebenten 3
YT TSy o] T TSP TRUR 4
CITCUIT DHAGIAM .ttt ettt b e bt st b et e st e st eb e e bt sb e st et et e s e st esesbesbeebentens 5
SOHAWOIKS & PICTUIESvevitieiisiestesieteee sttt sttt ettt s b st e stesbenae e eneeseeseesessentens 5
IVHIESTONE ...ttt sttt s e bt e b e st e st e e st et e st e st e bt ebeebeste s et enteneeneeseesesbeneesan 8
CITCUIT DHAGIAM .ttt sttt ettt et b e e bt st b et e st e st eb e eb e sb e st et e e e s e st eseesesbesneneens 9
SOIIAWOIKS & PICLUIESovieeieiisieeteieeetete sttt e st sttt ettt st e et et e ste et e sseessessesseessessesssensesssensensennenn 10
T TS o] T PSS 11
CIPCUIT DIAGIAM «.eveeteiteeeeecte ettt ettt et e sttt e st e e te et e e te et e s beeaaesteesaenbesteessebeessessesseensesteesaensesssensensenneas 13
SOIAWOIKS & PICTUIES ...uveuieieeiieiiettete sttt sttt ettt et be et st et e te e et e e eneenesbessenaentens 14
FINAI PTOGUCT. ...ttt ettt sttt et h e bt s b e s bt e b et et et e st eneebeebenaenen 16
(O3 (ol I = | o o TSRO 19
SOIAWOIKS & PICTUIEScueeiieiieiieiieieetesiesie ettt sttt ettt b ettt ettt e st besbesbenbentens 19
APPENAIX A oottt ettt et e et e st e e e et e be et e teeta e beehe et e beeat e teeheeabeeteera e beeaeeabeabeeatesteeraenteereenes 21
INAEPENAENT LADS ...ttt sttt et e st et esteeaa e beeas et e sbeentesteereenbeseeenes 21
PAITNET LADS ...ttt b bbbttt h bbbt bbbttt b e b e b e 25
N 0] 15T 0|l = TS 27
SEMESTEL IN-ClASS INOLESeueeuieiieiietiete sttt sttt ettt et esesbeste b e ae s ese e eneeneesessessentens 27
F AN o] 01T 00 |3 OSSP 52
QUIZZES. ... ettt ettt et ettt e st e st e st e et e e e e be e s teesteesaeeeateaate e seesseesseesateesteen b e e baeabeeaaaeenteeteestaesaaeanreans 52
N 0] 15T 0 |Gl TSP 56
Milestone NOteDOOK ChECK SNEEL..........ccoviiirirereee et 56
LI ST PSRT 57
F AN o] 01T 00 13l TSRS 64

Code for all MileStones AN FINAL..........occuviviiiiiiiieieie ettt ettt e s vt e e s s sbreesssabaeessssbaeessssraees 64

Milestone 1

For our first milestone, we were instructed to make the Arduino play two easily distinguishable
tunes of our choosing on the buzzer by pushing either of two buttons. The tune had to be at least
14 notes. The first tune that we chose was “Pound the Alarm” and the second tune was
“Starships,” both by Nicki Minaj. Each button played the same tune and only that tune. After the
tune was played, the Arduino stopped and waited until either button was pressed again. If either
button was pressed while the tune was playing, the Arduino waited two seconds and began
playing the pending tune after completing the current tune. The Arduino correctly responded to
the instructor’s button pushes without rest.

The purpose of this milestone was to practice the use of buttons that would later be used for our
later milestones when navigating the robot around the playfield. This milestone was done just
with the use of a breadboard, Arduino, and computer. Other electronic components used were a
buzzer, and two switches.

Circuit Diagram
Below is the circuit diagram for Milestone 1.

Avaino UAO /
et ” [°&&] [~ %7
33V 0';,';—]} ?
5V D2
GND DI
GND plo
Vin P9

17

p?

Dé

b5
A0

D4
Al D3
4 Pz
A3 DV/x
2;‘ DRy

l Bugzer

g l Ps\240roz2B8T

Figure 1: Circuit Diagram for Milestone 1

Pictures
Below is a photograph of the breadboard and Arduino used in this milestone.

Figure 2: Photograph of Milestone 1 Setup

Milestone 2

For Milestone 2, we were told to navigate the playing field. The milestone directed to start the
robot in the starting cube, play a note/tune when touching the white side base rail, and a different
note/tune when touching the black side base rail (or vice versa), and then come back into the
starting cube and play a third note/tune.

We began by piecing the robot together by using the materials given in our kit and by looking at
the design already laid out for us. Legos had to be drilled, and wires had to be soldered together.
Once the structure of the robot was completed using the given model, we added three buttons
(switches). One in the front middle, one on the right side closer to the front, and another in the
back closer to the left side. The breadboard was also completed based off of the given model. We
adjusted the breadboard to add the buttons. Button holders were also created with the 3D printer
and attached to the buttons and the acrylic base of the robot.

Our robot started in the starting cube at a diagonal facing the top left corner. We programmed
our Arduino in order of states. State 1 caused the robot to move forward and once it touched the
black side base rail it played a tune and switched to state 2. State 2 sent the robot backwards until
it hit the back button against the back wall and switched to state 3. State 3 caused the robot to
turn right until it hit the side button against the back wall and switched to state 4. State 4 caused
the robot to “hug” the back wall. When the side button was pressed, the robot would move
forward. If the button was not pressed, it shimmied right to “hug” the wall. Once it hit the right
wall with the front button it was sent to State 5. State 5 caused the robot to turn left for a specific
amount of time. Once the time was up, it was sent to state 6. State 6 caused the robot to “hug”
the right wall until the front button was pressed on the white side base rail. This was similar to
State 4. When the side button was not pressed, it shimmied right. If the side button was pressed,
it went forward. Once the button was pressed, a second tune was played twice, it was then
switched to state 7. State 7 caused the robot to be sent backwards until the back button was
pushed and sent to state 8. State 8 caused the robot to turn left for a specific amount of time, then

move forward for a specific amount of time to then play the third tune three times while the back
two wheels landed inside the starting cube.

When we were testing our code, we found that our biggest issue was with the batteries on the
robot. We saw that, when the robot slammed against the walls, it would pop the batteries out of
place and cause the Arduino to reset. To fix this, we changed the orientation of the batteries and
we changed our turning time to cause it not to slam sideways.

Our robot performed just as we had planned for both our unofficial trial and our first official
trial. The robot did just as our code told it to do.

Circuit Diagram

Below is the circuit diagram for Milestone 2. The breadboard was initiated using a model given
by the professor. After the wire design was copied over, we added the front, back, and right
switches.

Figure 3: Circuit Diagram for Milestone 2

Pictures

Below is a photograph of our first robot used for Milestone 2. This robot is a replica of the model
robot given by our professor. The photograph was taken in the starting position on the playfield.
No SolidWorks assembly was completed for this milestone because every group in the class had
the same design.

Figure 4: Photograph of Milestone 2 robot

Milestone 3

For Milestone 3, our task was to pick up one block and deliver it to the opposite side bin. During
our brainstorming for this milestone, we decided that it would be a good idea to plan and design
for future milestones as well, rather than only focusing on this one. Our idea was to use a long
3D printed part called the “sniper,” attached to a servo to pull a block onto the robot. The block
would then fall into a 3D printed part called the “cradle.” The cradle then drops the block into
the “dumpster” which holds the block before eventually lifting it and dumping it out. In future
milestones, our goal is for the cradle to detect the color of the blocks and then put each block into
the appropriate dumpster.

The base of our robot, and the majority of the structures on it were cut out of acrylic. We used
some 3D printed parts in our design for the button holders, sniper, cradle, and Arduino support.
We also 3D printed an ultrasonic sensor holder, but we did not end up using that in our code. The
circuit used on the robot was mostly the same as the base robot from Milestone 2 with only a few
additions and pin changes.

Our robot started in the starting cube facing left. We programmed our Arduino in order of states.
State 1 moved the robot forward until it reached the left wall and switched to state 2. State 2
turned the robot to the right and switched to state 3. State 3 moved the robot forward until it
reached the back wall and sent it to state 4. State 4 turned it to the right and moved it into the
corner before moving to state 5. State 5 attempted to back the robot up into the other corner and
move to state 6. State 6 positioned the robot so that the left side was touching the wall and drove
up to where the blocks were and then switched to state 7. State 7 took the block off the wall with
the sniper and emptied the cradle into the dumpster before switching to state 8. State 8 used time-
based turns to move to the opposite corner of the play field so that it could empty the block. State
9 emptied the block by rotating the dumpster.

As we tested our code, the biggest problem we faced was the Arduino resetting often. We
attempted to fix this by adding “platformStop()” with a delay of 20 milliseconds between each
time the motors changed direction, we turned the battery pack sideways so that the batteries
would not move during a hard slam against the wall, and we attached and detached servos only

when they were being used. After none of these adjustments worked, we decided to power the
Arduino separately from the other components. Without much room for another large battery
pack, we used one double and two single battery packs spread out on the robot. There were no
other resets after this was done.

Our robot performed well in multiple unofficial trials, but unfortunately it could not perform for
any official trials. Many of our turns were based on time, and the robot did not always turn
exactly the same way each time it ran. We were able to consistently get to the blocks and pick
one up.

Circuit Diagram

Below is the circuit diagram for Milestone 3. This circuit diagram had the most drastic change from the
previous milestone because we had to completely dismantle the previous robot and come up with our own
design. As you can see below, we added three servos to retrieve and deposit the blocks. We the two small
servos were added to move the sniper and the cradle. The large servo was added to move the back
dumpster. We originally had problems with our first circuit diagram (not pictured), because of the lack of
batteries that we used. Once we added more batteries, the circuit diagram had to be adjusted as seen
below.

Figure 5: Circuit Diagram for Milestone 3

SolidWorks & Pictures

Below is a SolidWorks drawing of a layout of all the acrylic pieces that were cut using the laser

cutter. The top picture shows the pieces that were cut with 1/8 inch thick acrylic, and the bottom
picture shows the pieces that were cut with 3/32 inch thick acrylic. For the first milestone we did
not use an access amount of acrylic because we wanted to make sure that we had extra for our

following milestones, and for any pieces that could have broken in the process of assembling the
robot together.

3/32" Thick

Figure 6: SolidWorks Layout of All Laser Cut pieces for Milestone 3

Below is a photograph of a top view layout and the robot created for Milestone 3. The robot was
8 inches wide, and 10.5 inches long. This is because we wanted to make the structure as large as
possible to fit all of our components on it while still pushing most of our weight to the back
closer the back wheels. We also had a restraint of keeping the full robot inside a 12 inch by 12
inch starting position square. The restraint meant that all components and wires not just the base
itself had to be inside the starting square. We also knew that if we made the base too large, it

would be too hard to maneuver around the playfield. We established these dimensions so that the
robot could run as efficiently as possible.

O B

AT ONIC, nor used in Miestne 3

—
Aumpster
o\ds \o\ock

\0.5"

for cadle,
/‘éﬁm‘:d in Nilestene 2

purte® .
snpeY

WO
fns\fm\p'-"

Figure 7: SolidWorks screenshot of Top View of robot for Milestone 3. This figure shows dimensions and labels to all
components.

Below are SolidWorks screenshots of the robot paired with photographs of the robot for
Milestone 3.

Figures 8 & 8: SolidWorks Model of Back Left View and Photogfaph of Back View of robbt for Milestone 3.

Figure 9 & 10: SolidWorks Model and Photograph of Front Right Viéw of

robotor Milestoner3.

Milestone 4

For Milestone 4, our robot could start anywhere on the gameboard. The robot must acquire at
least three blocks under its own power and recognize the color of each when delivered to the
sensor. The robot must play a note/tune when it senses a black block, and a different note/tune
when it senses a white block. The robot cannot play either of those notes/tunes if there is no
block.

For this milestone, we did not have to do much more laser cutting or assembling. Since we ran
into a problem with having to add extra batteries for Milestone 3, we decided to modify our
design. We added a new holder for our Arduino. Instead of having two single batteries and one
double battery back, we decided to switch it to a battery pack holding four batteries and put it
under our Arduino and attach it to the Arduino holder. We also decided to modify our “sniper.”
The sniper has the same shape as the one used in Milestone 3, but instead of it being two pieces,
it is only one. Lastly, we adjusted our “cradle.” Instead of just having some of the sides curved,
we decided to have all of them curved. We also added a hole in the bottom of it just large enough
for a sensor to fit through it. We also added a “backboard” to the inside of the cradle so that
when the sniper flicks the block in, it goes right into place in the cradle on top of the sensor. Our
buttons and ultrasonic are still placed in this robot, although they are not used for Milestone 4.

In this milestone, our robot is placed with its left side on the back wall of the gameboard with the
sniper directly above the first block. Our robot is programmed in states. The sniper flicks the
block into the cradle. The cradle wiggles, to then sense the color of the block. If the block is
white, the buzzer should play a siren tune. If it is black, the buzzer should play a single deep
note. If there is no block, no sound should be made. The cradle then dumps the block into the
dumpster, and the dumpster should empty by flinging the block out. The robot then turns a little
to the right, moves up a little bit, and turns a little more to the right, just so that the sniper is right

above the next block. This process repeats until we manually stop it when the milestone is
completed.

Our group got our unofficial trial on Tuesday, October 13. We realized the issues that were
appearing were with our cradle. The blocks were landing on the sides of the cradle instead of on
the sensor at the bottom of the cradle. We added a backboard on the cradle and programmed a
shimmy to fix the cradle into place. We also programmed the dumpster to drop back onto the
platform of the robot so that the robot would vibrate the block into place on the cradle in case it
was flicked in the wrong place by the sniper. With all of these adjustments, we were able to get
our first Official trial flawlessly.

Circuit Diagram

Below is the circuit diagram for Milestone 4. This circuit diagram is very similar to Milestone 3.
The only difference is that the display of batteries was rearranged, and the buttons were taken
out.

Figure 11: Circuit Diagram for Milestone 4

SolidWorks & Pictures

)
@ Thick

P2 = " - Y
h 24 1

12"

.
= = O
DODE
—

S
TeT 5E 4

t o+ ore

Figure 12: SolidWorks Layout of All Laser Cut pieces for Milestone 4

Milestone Y: Top View Salidworks 10.15.20

a®
smsg; 15es block o nyé‘m Hiestone Y4

butron
Not uied i0
Tilestone 4

Sevve for cradie

Nor used in k s ;
Hieshine Y o =
/ wirasonic ice
frduino halder not used in Hivesrone 4 \ A
wm@“z

+ battery pack for Arduing is plated under
+he ~fivduino nolder. —
¥ For wnotors and SErvos oart
ad

* bom"" tne Dase piarform.

Figure 9: SolidWorks screenshot of Top View of robot for Milestone 4. This figure shows dimensions and labels to all
components.

Figure 10: Front Left View of SolidWorks Model and Photograph of Milestone 3 Robot

e
S S ————

Figure 11: Back Right View of SolidWorks Model and Photoyrph of Milestone 3 robo

Milestone 5

For Milestone 5, our robot needed to start in the starting cube, navigate to the blocks, and deliver
two white blocks and no black blocks to the correct bin. For this milestone, we needed to add our
second dumpster and connect our “turntable” servo. These additions were simple to implement,
because we had planned for them when we designed most of the robot during Milestone 3.

We also 3D printed an improved “cradle” design. By adjusting the angles and adding a vertical
side, we were able to position blocks on top of the color sensor much more effectively. Our back
button, left button, and ultrasonic sensor were connected to the Arduino for this milestone to help
with navigation.

In this milestone, our robot begins by reversing out of the starting cube towards the white block
bin. The ultrasonic sensor reads when the robot is under 8 cm away and tells it to turn right so
that it can reverse towards the blocks. After some timed turns and reversing, the robot is
perfectly aligned with the first block. Just as it did in Milestone 4, the “sniper” pulls the block
into the cradle where the color is sensed. If it is a black block, the cradle empties into the back
dumpster. If it is a white block, the robot turns away from the wall, rotates the turntable, lowers
the front dumpster, and empties the cradle. It then moves back to the way it was and moves
forward to the next block. After all of the blocks have been collected and sorted, the robot backs
up into the wall, turns and empties the front dumpster filled with white blocks to the correct bin.

Our group got our unofficial trial on Friday, October 30. Because this was the first milestone
requiring navigation since Milestone 3, we did not want to take any chances with potential
malfunctions. To combat this, we created a chart with all of the problematic areas listed so that
we could keep track of how frequently each one occurred. We also frequently took battery
readings at each battery pack and recorded those as well. Prior to calling an official trial, we had
completed 18 runs with a 100% success rate. Due to this preparation, we were successful on our
first official trial.

Our next major addition will be the implementation of a magnetometer. We are hoping that this
will allow us to have more control over our turns and rely less on unreliable timing. We plan on
improving our navigation and delivery to the black bin and we hope to attempt The Doubler.

Afer S Wals After 10 twdlg After 1S mals
* f\mumos 5.81 * ?::,\:m: :1'_85 3 “F‘:u\im: qih:
TF:\t:e H:\; Thyee . q 38 Three . Y.
K L P G o IO S N IO S D
T Gl s Sl Sl A c P

L[| L]V v [x v

£ ‘:\'\r;“ / v v i X / reluce Vs on forad W bF
3 Q:v:: \/ / ‘/ / X E \/ mae Trat ,L,.? [(‘.,::
Y leso | of |] X X Ve ;:;J:::Lf S,

5 \/ ‘/ \/ X >(\/ hesd b

o Se| V| V| V/ X X Vsl verked

v ‘:g° / 4 ‘/ X X V' |smprbelid, r,

g |4hwee: J \/ o X | ¥ o ssalibadhiod s
g VP hge l g 1ol -l g Y

- / vV X | X Vs s bt bk
N el 1T/ 1TV I/ T x |/ .

Lo29 3y Stpw tes pour.

13 | #nwee: / £ 74 Vi X o

1 Rl I VAN A VA B I

E L / v X | X Jo|ms
N froues | o J J | «x J

Y bl R v i X /| HiLEgToNE 51!

6.

Circuit Diagram

/

<
ll
Whes W3-

Ve Dumpe Sneen

=~
38]
Lelt Bt

| o
§ o] 2
: >—1 ’{
bt .0 3}
& 23
[¢ b
s i (o] &':
y |} i1
~—ewo | & i
i L
H
2 FY
IX
5 g‘i
N .
it %
?Es = '{;E:;x
=3
Ve
1]
=~

1:§

(iD

Ballery Mok Hx AR

—aw—r1
zokn (g

Figure 12: Circuit Diagram for Milestone 5

SolidWorks & Pictures

1/8" Thick

—_— ———Min

v

¥

T X v
e e e
$ X
d to1\ g
S § ‘
N <
‘.. o
IBReTH|
MWl 2NNl
. el
+ + "]
. + o
3/32" Thick
—— X}

f CA_S] Cinsh

o .

Ik abhoa

Figure 13: SolidWorks Layout of All Laser Cut pieces for Milestone 5

in

nin

L in

. 5 10
HMilesrone §: Top View Solidworks
A when retvieving whire Blotk ‘Q‘(G

Furntaby

sevvo for
— crod\e

Sevvo novdev

Sewo
for sniper

Breadboard

Snipeyr

8"

Figure 14: SolidWorks screenshot of Top View of robot for Milestone 5. This figure shows dimensions and labels to all
components.

e

Figure 15: Front Left View of SolidWorks Model and Ph

otograph of Milestone 5 Robot

Figure 17: Back Right View of SolidWorks Model and Photograph of Milestone obot to dump b/ac blocks

Final Product

The final mechatronics design project task is to score as many points as possible in a 10-minute
period by navigating a playfield while collecting and depositing white and black blocks into their
designated bases.

The final design for our robot was the same design we had constructed in Milestone 5. We did
not change any physical mechanical components. Because our robot was physically ready after
Milestone 5, we had a lot of time to experiment with our code and the electrical components. Our
Milestone 5 code was a good starting place for our final project, we kept it mostly the same. We
added delivering to the black bin, and then navigating to the second set of blocks. We copied
over the majority of the code from the first set of blocks to the second. We also added the
depositing of the blocks. Lastly, we added code to retrieve the doubler. This code was attached to
the beginning so that it could be the first thing that the robot does. We decided to get the doubler
first because we felt confident that our robot could get the majority of the blocks. We did not
want to see the robot retrieve all the blocks, then miss the doubler at the end. We could easily
restart the robot if it had missed the doubler in the beginning, saving time.

One of the hardest parts of this project was figuring out how to navigate the robot around the
playfield. This was because it depended a lot on the battery voltage that our robot had. Because
our robot was a larger robot, it burned out its batteries fast. The robot consisted of 11 batteries.
Four of the batteries connected to the Arduino, and the other 7 connected to the motor and
servos. If the robot had fresh new batteries, the 7 batteries usually added up to about 11 V. When
the robot was under 10.60 V, she was unable to turn and ride against a wall. The navigation was
also difficult because if the batteries varied, the degree of the turns varied. This is because we
base our turns off of time. We saw that this was an issue, so we tested out different ideas. We
decided to rule out the idea of a light sensor and tape because we did not want to waste time
taping down the playfield if we could not get it in the exact position every time. Different
electrical components we tried were connecting both a magnetometer and a gyroscope. We
decided not to go through with these because the magnetometer was not accurate enough and the
gyroscope only measured angular velocity, which could not reliably be related to position.

Some of the strengths that our design had was that it was capable of holding all of the blocks
from each rack. Because we had different dumpsters for each block color, we were able to
retrieve all the blocks from a rack at a time, and then deliver them all at the same time. This
reduced our time because we did not have to return to the same rack more than once, and we did
not have to navigate as much. Although we had a larger robot, with many components, we did a
good job of keeping the heaviest components near the back wheels of the robot. This caused the
robot to be able to turn easier. Another big advantage of our design was our “cradle.” Our cradle
allows us to retrieve the blocks before we sense what color they are. This is an advantage
because when other designs sense the block before retrieving it, they sometimes retrieve the
wrong color, or they get multiple blocks at once because it is not perfectly aligned. Our biggest
advantage was that we had the same design since Milestone 3. This was a huge benefit to us
because it allowed us to really get to know our robot. We knew exactly how it was able to
navigate, what the problem was if there was one, and what battery voltages it would perform the
best on. Having our design done early allowed us to spend less time on designing, and more time
on perfecting our navigation. We were able to run multiple tests, and we were able to see all of
the problems that could occur.

Weaknesses that we had in our design was our ability to get to the blocks the same way every
time. If the voltage was low, the increments between each block were lessened, but if the voltage
was high, she would go too far. To solve this issue, we decided to have shorter scooches, and

more sniping of the “sniper.” We did this because it would be better if the sniper hit the front
corner of the block rather than the back corner of the block. If the sniper hit the back corner of
the block, there was a chance that the block could just skip over the cradle and fall directly into
the black dumpster. If the sniper hit the front corner, the block would still shoot right into place
on the cradle because of the following block sitting next to it. We added extra snipes in case the
sniper missed a block. Another weakness in our design was relying on time for turns, but we still
thought that that would be the best option for our design. Another weakness in our design was
how large our robot was causing it to wear down batteries fast, and causing it to be harder to
maneuver around the playfield.

Lessons learned from this competition were how to design and program a robot from scratch. We
learned how to fabricate our 3D models using the laser cutter and 3D printer. We also learned
that it is much easier to have a mechanical error to solve than it is to find a bug in the code.

Before we were called up to the board for our final demonstrations, we went over a checklist of
things we needed to do. This checklist included changing the batteries; check all wires to make
sure they are attached correctly, especially the wires connected to the sensor on the cradle; check
to make sure the Lego pieces were attached correctly to the motors because they tend to fall out
from time to time; check to make sure the sensor was adhered to the cradle correctly, because we
found that if the sensor was sticking out a little bit, the block would be too close to it to sense the
color correctly, and it would also misalign the block from sitting in the cradle the correct way;
and check the entire robot for any loose screws. This checklist was created because these were
the most common mistakes that would occur to cause our robot to fail. We are extremely happy
with the result of our first performance on Thursday, November 19. After just a second run
through, our robot scored a perfect score of 64 points, putting us in the lead for first place. The
results of our second performance on Tuesday, November 24 was a score of 56 points, giving us
a total score of 116 points. This landed us in first place overall!!

Some of the things that our group would have done differently if we were able to start fresh
would be spending more time on the geometry of the cradle so that it catches the blocks better
and positions them on the color sensor better. We would also look into using tape for our block
increments, so we do not need to rely on time for those anymore.

Circuit Diagram

20eA [/
e ¥
® * _DI-
Ad wad Vo Some S ol Al ot S

&
E, EF
o
-
:
o =5
p:

Figure 18: Circuit Diagram for Final Product

SolidWorks & Pictures

Figure 19: SolidWorks Layout of All Laser Cut pieces for Final Product

nW.14.10
Final Projeck: Top View SendWorks

Sevvo for craqle

noldey
S Serve holde

wnit2
Blocks

Figure 20: SolidWorks screenshot of Top View of robot for Final Product. This figure shows dimensions and labels to all
components.

Appendix A
Independent Labs

Group Letter £ Assignment Number_< Member /") ¢ hew | Sheaman

ENGR450 Mechatronics o gé A ¢

Lab Exercise 1 Completion Sheet
Demonstrate to instructor by sign-off date

(15 Points, returned with Milestone 2 notebook check)
Complete section A before demonstrating to the instructor. Instructor will provide evaluation)_
and scores in Section B. This exercise is expected to require only 10 minutes. Because there is
room for interpretation of instructions. program will be considered successful if section A
contains and reasonable interpretation and this interpretation is implemented.

A) What does your program need to do?

\/\/)){'1 '}L. Swi (t:\ Li:f“’fj(ﬁ Si“';{ﬁ (/Qf,’b Crom F"b'/'v\.'(‘ Yo l.’/-/"’sl’/ or
(/](Asz(,l +o)')us)w c() ~Hq/ LV.'/J’ “in LED will J,q, m 0n S; . Ore Sc (,.c(
l‘lr‘t(H‘cn +.//n qu[’C c,tc, A VCI/"“!)I'(C(.//« ((‘Luf‘,’u,\SJuI\j " \\.'// ne T‘
L’D US{JI Ti’t/ 'f;w-‘J? L 5 (onnr(4(ff(+o tﬁi’):"“\’ P’ F ‘r, ‘nvc'l }'l»c
tode X3 el f ceel Lrom th b.Hon dXM:‘-pLL,

B) Instructor Evaluation

1/ Student has all necessary equipment readied at beginning of evaluation 0-5
{Equipment is efficiently connected without missteps or requiring instructor —
{ intervention. b
Student understands how the equipment works and the rationale behind the
/ wiring.
¥ Student confidently begins with specified example program 0-5 5

O Makes necessary changes with few syntax or logical mistakes.
@ Student knows essential syntax or is able to locate appr: amples
asily.
E(gtudent is able to identify and rapidly fix any syntax errors discovered by the
compiler.

Student effectively uses the Arduino development environment.
O Within 10 minutes, program works exactly as described in Section A above. 0-5 2 1

Comments:

Regquse Sor0e chane b worle
Sena m00t‘\0r PFOU\A@ d
G dondx | Slowners

Getring on +p of +ais early as yoor

costom, Pechqps a Cogua\by of too Much
ooqh |-,

Matthew Stein 9/3/2020

Group Letter C Assignment Number | Member Avcnaela Curcio

Lab Exercise 1 Completion Sheet
Demonstrate to instructor by sign-off date

(15 Points, returned with Milestone 2 notebook check)
Complete section A before demonstrating to the instructor. Instructor will provide evaluation
and scores in Section B. This exercise is expected to require only 10 minutes. Because there is
room for interpretation of instructions, program will be considered successful if section A \l
contains and reasonable interpretation and this interpretation is implemented.

ENGR450 Mechatronics \ ‘ 5,7‘3,(1)

A) What does your program need to do?
My pvogram nnakes the Bunr-in LED Bhnk for ‘J» Sec on and
2 off omiyf rhe porenmomerey ¥nod 1S wRing Turned. Tf e
KOOK 1§ ov oriNG Tured, +he LED Showd 0t of f.

B/Instructor Evaluation

Student has all necessary equipment readied at beginning of evaluation 0-5

Equipment is efficiently connected without missteps or requiring instructor

intervention. >

Student understands how the equipment works and the rationale behind the

wiring.) TNS LATEL Y pden o & ber

Student confidently begins with specified example program 0-5

Makes necessary changes with few syntax or logical mistakes.

Student knows essential syntax or is able to locate appropriate examples }T

easily.

d Student is able to identify and rapidly fix any syntax errors discovered by the
compiler.

Q /Student effectively uses the Arduino development environment.

£ Within 10 minutes, program works exactly as described in Section A above. | 0-5 5

Comments: ?(LW Comgc('\'ﬂb\‘t u\‘r\\
deul\o @ meny enun(on ment

8@ 0O &m

GroupL Number Name /*)4'51’1(.‘/ SJ\(/I'D(,’y a 5—

=) ENGR450 Mechatronics
Lab Exercise 2 Completion Sheet
Demonstrate to instructor before the sign-off date
(25 Points, returned with Milestone 3 notebook)
Complete section A before demonstrating to the instructor. The instructor will initial section B
on successful demonstration of the program. Instructor will ask you questions about your

Program and evaluate your comprehension of, and ability to precisely describe your program.
Section C contains feedback from the interview.

A) In the space below, describe your program. How does it work? [}
The Preqrn fkts n yser 74p~4’ betoeen 10 and &0 clevackes ““‘I = e Lol

el
\P'_”"’Pk‘(f&’j»\.‘/\. 1; +J“‘/ {n}‘lf mort than 60, He chamches b‘yl"‘l S0 ax \1‘71,(r-'f/,
A“(l ’f)-t vsers -~ j)(‘"‘/u/(j ﬂu(/ .’/I"r/J —;'L(v S/u‘l{:'rﬂr :AL S ff"" ou,/ 50 })Yf(sl 71‘ /(;(ﬂ‘ s
SL""(:') v‘lux'élé -‘nl)«"L(n ﬂnJ “Ho Cl.nmajﬂ/ ql""‘y 5 5‘»:/{ o VA/‘:U(, (;5(,/!‘,,. . j‘(’ ‘”t ,'nPUJ 5
greakr than 10, He ot chncackess is convickel o Uppriznse By —vJel.',y 3Z b0 M5 MCIT becimal yufi
C.Ji F o ;V)qw(f(nlﬂ, ﬂ_«,n, a Qr }‘”I’ chedis Each rZrmang //,‘_f,‘“((r’ _’H_ o s Spwrr (AseIT
i Zd)/ thn Ne nut lefer i Hle arcay i conveed Fo

1o 4. He cagc. I He ser Zntes 1¢5S yhan)0 cher 4.-/?15, 4},./ Are 'S/f/"';"‘/ L

Vpprtare 'ﬁ /‘ 5« Joverzact r’(%/

- B) Pro r;As demonstrated works:
=7 :

v Exactly as specified Most of the time
Some of the time Occasionally
Specifics:

C) Instructor comments on the interview. Has student successfully demonstrated full

comprehension of the program he or she has submitted for co letion of this assignme(n?

Seemed o he able Yo 'y PP
Dﬂ,\o\em L/U\'H'\ ﬂ‘i -3

Yoo Continve to hmaze all of us wocth Your

Systemabic appmach to Course asSignmads

P e ww\d have o \oF More ke You.
=

Group C Number__\ Name_MycN102\0 Curero

ENGR450 Mechatronics ?B 6
Lab Exercise 2 Completion Sheet

Demonstrate to instructor before the sign-off date

(25 Points, returned with Milestone 3 notebook)

Complete section A before demonstrating to the instructor. The instructor will initial section B
on successful demonstration of the program. Instructor will ask you questions about your
program and evaluate your comprehension of, and ability to precisely describe your program.
Section C contains feedback from the interview.

A) In the space below, describe your program. How does it work?)
The Sevial Mottty Should Drotat +he USey to wail Tov o veadnd

»

Once e buton o Pxetted, W Shoud read e gj:o,:'xvm\.‘f\ff.
: - +Ne -
Tms Showld Nappen 3 naes. 1y vnen Showd average "7(
numpey$. and Strart agqain. Tere Shoud ©E O Mawmum' oY Y. &2 =
NS ' - <3

lperween e ceachngs

B) Prograpf is demonstrated works:

N Exactly as specified Most of the time
Some of the time Occasionally
Specifics:

ngmn S -F\'ne/ dﬁh\/(.‘is’o)
Ve Cac of MAbple preseg

C) Instructor comments on the interview. Has student successfully demonstrated full
comprehension of the program he or she has submitted for completion of this assignment?

A tooly Excellnt 505, IMPregive how
Yoo WNave prcked ths o,

Partner Labs

Instructor initials indicating completion Group -

A Dcte'nnine the fastest motor speed that the Arduino can reliably track by performing the
readings and computations indicated below.

l Trial 1 moderately slow 4.25V

[Observed monitor output Milliseconds of one full wave | Observed Shaft rotation]
| Counts 20.000 Milliseconds \o. 1S "Revolutions 2.0

| Seconds 100\ Seconds \9. B)

| Counts/sec | Rev/sec \. 0\ |

In the spaces below use the data that were collected above to prove your code is working.
Grade is determined by how convincingly you have proven your encoder program is

working. \
%
20,000 . \g85.0 waemos - W0 1.0V (150) = 15142
10. o\
1985.0 = {51\
2
Trial 2 moderately fast (o 24V
Observed monitor output Milliseconds of one full wave | Observed Shaft rotation
Counts 70,000 Milliseconds 4.4 Revolutions 2.0
Seconds % .1b Seconds \4.25
Counts/sec Rev/sec .35
10,000 |
== : 2472\.3 _
8.1k e Rl .35 (1se): 20L.0
M_ - 20\.®
V-
Trial 3 breaking point . 371V
Time of one full revolution ' Maximum speed of motor Maximum speed of shaft
in milliseconds rotation in rev/s rotation in rev/s
1.5 ms \ L29.43 L1893 . (4 \q

\ \SO

If the Arduino can keep up with the maximum velocity of the motor, indicate that speed
Instructor Assessment W could no¥!

Laboratory skills 10 Pts Programming 5 Points Speed Measurement 10 Pts |
Group can successfully Group successfully Group measures rotation
configure oscilloscope and completes program without | speed three ways and

wire up encoder motor, peer assistance demonstrates results are
Arduino and power supply / consistent

v v

astructor initials (before Nov 28, SPM) Group £

8. Demonstrate operation to the instructor by reading a number of degrees from the user
by serial monitor and rotating the stepper motor that number of degrees within the
resolution of the stepper. Accept large positive values to allow for multiple CW
revolutions and large negative integers to produce CCW rotation. Prompt the user for
input on the serial monitor.

9. Answer the following questions through experimentation with the stepper motor:

a. What is the smallest delay between steps that the motor can tolerate before it
either does not move or skips steps when the motor is loaded with bolts closest to
thecenter 7 ~s . loaded with bolts halfway 9 .y and loaded with
bolts at the end of the slat g ¢ :

b. With bolts removed, how fast can the motor move in degrees/s \@8 1 ?
Determine this by timing a number of turns with a stopwatch.

¢. Without actively controlling the temperature, how many seconds does it take for
the chip to overheat and how many to cool back to “chip warm™ from an
overheated temperature? Time to overheat 3.4 s_ Cooldown
time._37.70 s
Circuit Diagram (10 Points)

L2192D
e

\S

™ ¢

E{
o
<
<)
o
<
3

)

GO

I:Ié e:#
o £
PULn
LT TTT T

v - - > s e

A A B B . VI

] [= o) \\\
- o et \»/_
v a 3
e L © Z
® & <

STRYLHYLO
Srepper

Appendix B
Semester In-Class Notes

e 8.20 DTQ\.\.\\O%

wire this up
Epeiaine

Sxial Monitor Run Amalog InOurSerial

sen oy
volue

9.10.20 Drawings
Diai
3ito) wWovid b Physical Worid
e
oV . | wire
(\ "
“Low” SV oy OV
o\
OB e | wve Swirch
e vuew
& e
«© “Low™ || SV ev OV
Ak o
e
2
4e©
K 5
A o eo seasov
el W Proto
o *\1013
i

A| D Conwexrev

Measur \(1(3 Convyack

Wwire this up

Digrran O scilloscope

£ 5

S00ms
@

Switeh nreynol g

Hinge | Give Hnis
S common "

NO aorrnally
: F:_—:J open 00wy §

NC normaily
— * “dosed

levex —
Plunger

wat's gomg oN ingide ourton

9.10.20 Notes
Sensors
" Physical signal 16 +ansduced 1OY0 an electrical Signal.

. r\eca:umm\ adnange nal an inadental]otc\dem-o\ electmcal Side
eyvecy.

TERdMical gide effecy iy processed T Pruduce a useable §i1gnal.

A.16.20 Nores

Swirines - sengor
THedhanical Phenomenagn @ ™MRY0\ todie§ Foudhwho
- Bledmial Side Effect @ alows elechon Flow

Funoy Things abour Swirches
-10,000's of e
. Poles : # of Circuirs QUUYTEN ool §
. Torowd: # of Posinons Poes Conrack

Swikhnes Scnematic

\circu b i ’
oo, oo SPST - sing\e pole, SinoNe ¥
—— \position il) Yow Suoircdn

NC
C —-)r:m SPOY - S\ngle pole, double tNvouws

1 po\e doutie Favaww

.
SR il OPST

‘_.———

i =

%.18. 10 Drawings
wwe rhas up

_— - Digiral Osciltoscopé
Avauino s anaror s
' exponcana
av L3 pc\ecmjs
At
4
At = 1.028 S
AV= 503V

Drgitor Osullostope Screedy

Drode puils
,/ dawn volyage

exponenhal
po ae

(‘O.\j

V = Hhreathold
0.8V

Al b cuyrenr ﬂ'\wv\gh diode
40eed Rey —» ODns Lavy —o R° =

SV G o
G.0ISR 3330

Tfvom spreadsheer

Fun wirh Diwodes

Avode Cavihod® current onvy flows one woa
Db = 0 YMS case— lef+ o ngh-\—
¥

94.\1.20 WNores

Sensing Lignt

- B worK on pheroelecmic effeck

s Flechanical pRenamencn mrotnentura Hanstey forn phoron

o electhvun.
. Elechhical Side effecy = DNano ampere of cuvreat

3 rypes
. Phororedisioy {-‘@
gersS \ighy — changes resisrance

1. Profodiode Y0
gers gt — cdnanges turredw (on)off)

3 . PNoYro fransisioyr §@
"‘\°75“C}\ gers wgnvr —s» forward olad

9.17.20 Dra\umgs

PUll Up 3 Pull Down Resmisrors

Avduno
SpsT
a1 F hold butrton
C W down, rhere wn il 02
1088
35\1 q_cfp:g = d readin
GND \S’:.@* _‘.:,\WQ mﬂm‘ng -
J
=/

. Transistov
o L
\'\‘ . ~ .
N C colector FERR ;\ Toe
= Gay
B vase soﬁ
E Emirrer
Prototransistrovr

}
LED Pho’m(\s\!\ 5V

Wire g Up

centey
column

~U
LT
(o 4

w P

kt\.

:

Run fnalognOutrSecial

La=V = 8V
X =25 =15
L o.01A s

1SO « L ¢ 350

Re = V.sms\hvinj 4100 wiL
*c\ependtt\f o\ Yobot

9q.22.20 Drowmgs

W!VQ *—h‘s up

Avduino

Wire ™is up

Arrduinoe

Run sweep example

9.24. 20 Notes

Se“S\ﬂg Rorarion

Anaroo
Hdva\'\mge s vV, Vonogle Resisyey
« Easy Rax con&\:'::‘ca\
ﬁDSG\u\’% Q - “S\S“V! 9000\!
+ Nonvohifile S ey Vay
Di LTS «5;3‘ :\(e(:\‘\'
‘Sadvaﬂmges up 1 &
. \\N\\\‘Qd mvel
. Noi&a - s
. Subyecy o weas
VI =Ny = 17_3
Ry

s Hecnanical enang? @ posihion of padclle

- Elecincal Side effect : change of
reSistonie : Ry3 — V, cnanges

Digiral
P\c\vcmmges LED ® e
. sraft
. no Nowse Index wneel
e Hign Reso\uNon oux
Disadvanraqges S Dork e ‘ \ i
. VO\\h\{ lc‘-= ! = —S—_V—
. Relarive posihon ? '\ " o0.005®
cf W Groy oY \nadex IR

. Com?\ex
. Conr ¥\ W
. Dowy (ovR

. Quadrarure

frovn, CCW

2.214.20 Drawngs
i
o
&F \mporvrant Hhang — segrzgote power gupp)
e pphests

3 Powaey SUPP\‘C‘

s i Bartey Ak

4 \ﬂv\ Xw sV

GND

Avduino \b‘

Ay Sensors
sV SeNS0Y:
GND
vin

5016V
AU+

powex Bell -
(o) 4.5V \ 1AZONE Chip
— Hob\)\j N B |pwnd
Sexvvo
.Never have Vorver patk 3 \oproP noaoked A
bl up of tne Same rmet!

. Sevvo poweyr needs fo go qurecny YO bartery pack

., Nlevey connecy ooy Seyvo to bm'*cr\j ot\\

Wive HWs up

B Supply
= ‘& (&)

oscilloscope porentiothesty

929)20 Drawing s

whve Ying LIP

— % %
‘ Benen]
?v '—L | - ‘ -
|\ & &, GND OScIsLope L
b (G
\ SN §®o;}u\lh$lw‘ ‘
Ve o

(3

\,
\\‘
i
@ inded ey

3 l'(\t‘l veyn
200 hj?‘“’“"’)

o]1)20 Oraunng §

osO\\oscopt

10.1.20 Noves

Absolure encoder

-

+ 3
exl: white = O g
viack =) © o O weY of vawues
o o |\ Hhor Sensors
Pk uP

o \ \

(o}
qua\z - ol

C de \ \ (6]

+ Only ont ananoes \
at a ¥ine, uﬂ((’fm‘mh\i R

i$ onmy ar one posino {10 \

o0

ReSoluhon: Fov 3L0°, ¥neve ave &)
diffevent reoingy — 4ys°

B-\orr gray code 1§ Commnon
\L-oir 3
lo-loir §8¢

& Sl ofne loig pyooTn ¥ digitral

112 3 4

Y

con t re\d direchion

| b | 20 Drawings

Benon Sup.
13 \
ry 8
Bl 4 §
C

NO

Ab[20 Notes:

/’—

High | Low O Low O High |
High | Highl Low O LowO

Stare \
Actuatovs RBadics
@ whar happens?
qcr S foxce
o P Lorenz Force Law
— - -
p— F =k aL*p
Solenord
maaneh ¢ fountain
B:= MWN
L L
N =#tof cols

fagnenc pc\'mcabi\mj

M~ M~ 120,000
Vacuumn \won

‘|1 shnpe
W!d*l

* cant o frovn

0-2 ov \=2
¥ i+ does, i+S
BROKEN'"
+*<Adwection
martey s

\0] &0 Drouwing s

wire ¥ns up

Benen Suppy

3

Run viink example

Aipping diodae
Wire +nis ap

2
£Q

10l 820 wovres:

Revays:
Advanrages

- CONTYold \QVge Cuvreny w| smnall cuvrrent
<isolarel cuxvent 100ps
-Swith AlC wwh p|C

DiSQGVahroges
- Slow
*limited capacity
- Subjeck to wear
'NO\S\ﬁ

Arauno

Run anothey Transisioy
40 qc‘r nove cuyredy.

\10112]20 WNovres:
Pulse with Modulation (PwM)

Ton
Ton

—

Tobf

Peniod, T
\07% OC
E
| —
T

A0 DC

- fe

Haboy Sexvo’? wiada Pww™

Corapound
"“‘?“?ﬁ; Gears
200:1

Pat

: DY Cyue (DC)

Ton

'
= e T

¥ Py sical aevi(es

average out

T s l
Mg‘ on TS i i
wS - 'L'“s
S\gnal ‘oo - 180° *avod 0° 3 186°
% CO‘:\Zumcs pouwsey
Ng 1 get+
b LR 5
eve.
Quiet 20-40ms no\d S posinon
-
Drven [ney
t\mv o oy AMP l’ Wrapuist
ot
N
ey \$5
Por Drven b
=%)
¥ Yoo
oy Po¥ N;:\- moved

*0¢ motor WL ARE oveer
wau unny they are equal.

Ty e

Resuly
Srop
Stop
Strop
Swave

Stop
22

-0
v
-

sV

P, ?‘

cw
Smove
Siop
cCw
Really Srop
cwoxe
Sraoke
Smoke
SMoxe
Staove

-0-0 -0 _0-0_0—0—060

== =2 —---00000000

-——-ocoo-——-OOc\o
-=00Q0 = =00~-~-00 - -00

&ND

H-Brdo’
.3 grore$, vequves 2 e

Exiva Stare

1=\ input
- Bra¥Xe
- Dynamic @A

. Coast

Notes) Drawwngs 10.22.20

Hotov s .

Bomg\ound wnfo
dvder core | Windngs

J
iAW"

% °
| o
% peanng>s
commutarty

Fiad Reswyance of winding

|~
P

%ac\cgvouﬁd Hoagneh c Prhnapies
VT pad db e iudlxEE

A5 gl Yy
M =mag permetviy

e <
@ lvo) ~ 27,000
Vawumn ~ 1

onraouits +he Save direckon

whot 1S «nsvde?

Eveny pavt of ¥he wiwe
o ':_{ © Vloving away frorn you on nant,
g coming fouvaavdy Jyou on ety
FY at R = M N) ” 3
__L CNss - crossed, vheq goel outr mawin
a\ a i CD
(‘T(_\\"

- % goes up 3 fYpwaxd (earey
- gy natd vule

g\] L2 @5 oxe swolkey becaust
~" Bp less ¢ went Yovouqh o

p— '7)/ - Nex macy\ﬂic fe\d s up
1

L

/Q i - Honzontal companents cancel out
<9/ - Born B, 3 Bp create a tovqut,
5/ Jé :] Spas o
] ®

what is an event?
™e bvuth Swifch'\ng £ron 0Nt commentatovr nog o the Dext

| 2 3
) (0 s;«:c:\l ‘3\\ ?‘\‘9
¥
afrer enLh eveny,
RIS ¥ £ o i i o new drawing was made.
1 i a\l g Svap The resurany wad Syl 0 ﬂkgg\vge d\rcneeg\\”)é
out o ouYr o8 wel as the taagneric Tield, ther

\ o\ o W continued o fuvm Cuw.
B e S‘E o

‘) T= Bg x By =P Torque Ripp\e
* Always Preseny

MO '\'\'n oX

fng accelevation

2] T
T~ iy % Kind of “Terminal Velocity”
- * Spi0S at a aftty very Mort hmne
X~ Lk o NO! constany sV«cl
-
i
e Dack EHF

Q Opposes Appiied Valtage

D) \‘

w

| Bruthed DC PH Hotov
a. advantages
L Smple
b. dsadvantaqes
L. brugnes wear our
1o NO\S\j '
. Sharply revexsing saa- field T
_conduding o\l power Hvougqn sov q

7. Brugniess DC PH Hotov

3
a. Hove the toagnct por the orushe!.

grugniess BC pH Tlotoyr

coll
x Need |
Commupi@non (ZEE! x)
contyol . “a\\cqm

g ensoy

Notes:

10]29[2 0
W Qass Codmc) Lob 2
Novigaye Gore
i
7 Gosed

Ccheck et
2 check SenseY

¥ Srove vakel ‘hmwe

X ocnon 408 no¥

Sov ¥

wahod
cnveck 1f orodk,
| pr0CK, ched

mo\l{ 10
Pgs_ (“{Cl
for 0O

Aoving i
denotvary,
po . enecw {"N
no ‘o\eck-

?QS\hO“

veacved\

Notes : \.5.20

S N s o
N o §
o cew
mognenc field «—
cury<ny —
r
) Es
[when
not perfect! Aguirches -
:\\\qncg, <o ﬂ\?c\'e \S ' Aus position
a Torqut
0O Wz
wave :
4 Spwns @ Lo H3
Ly ="

same freq). as curren’t

d
3 pay wed™® get At

W
X Bugs .
NN \. cant contvol direction
: : |
< 1. fixed Spee
S
S
<
S

S
S
S
S
°
o
N
N
N
N

Hinimum Pramcal BC vioYor

&-90° ‘
oSfser perween A3 B

A

* v vl wany Yo saoue eud

Brown
H’\'\ng
capaciroy

+hermhal
cut off

Notres | Brawings W|o|20

V N
‘ o SPIN Cw & . "
Sp0s tw unhl cuntc
Lok ?oPcns, rnen Send fo
black SWIHCH, Hnen spind
CCW.
N Loy Pousey Lh
fﬁrhw K CQPQ(\QO\' ~
e
NS ¥ osea
~J —
end of +rovel C
Powey Dot 5

nJ

'./ 4 \f getring ©I9GeV,

' curcenty goes out of \woaxd

il * if qeyting Senalex, (ene)
curreny Qo€s wito \beard

¥ cuvvent ho$ to ©2 a \oop

¥No perm. raagned
*0(\\\5 worksd because
'F\Q\d 1 £ decau\(\q
Fie\d padses > Cage
—ip .

¥ Sew - controlling

D ocrvare A, B

*‘noppu o Ag
po&'\hoﬂ, 3 only

anfred 1»0°

Sequence A A 5B B
o \ 0 \ ()
42 \ o) (o) \
b2 0 \ 6] \
¢4 o S Yo 't o

Nates: n|iz2)20

l. % Can nNave as wmany SKPS as i+ wants, as (o

~ 0o ayg
'S W ordey of e Bz Ca« D &) '

2. Micvosye PPN O
a

off E

& Uﬂ\po\Qr/B\po\Q‘r
A v umpolay 4V

ZT@ B‘PO\GY
il
9v
.S
Y
ol
1.8
wh
o\

Stepper Motror

V’LS‘“. g’, 1.5!‘\.
& W .

. 5V
i—-ﬂ AO
L GND

Ty

PN AW 2 N, (svY'
R ®

s

2~ 0.10W

Appendix C

Quizzes

Group: (.
Due: Muestune 3 NMore ook cneclk
ENGR450 Mechatronics
Specification Sheet Quiz (5 points)

QRDI113

Include completed quiz with the specification sheet in the appropriate location of the
design notebook.

Getting more information:

1. Is the sensor likely to be affected by daylight? What makes you think so?
W0, because v hali O (_\0\\‘\. c\‘f\x% I Y, I+ se \/5

+het under § Fc’h'}w'CS“.

2. How far is the peak emission wavelength from visible as a percentage of the range
of visible?

Thi. funf){/ of \/ib'.l))//):]M' 15 35(/""\"7”(/'“" and Th r)f"‘k

éem 199 ioNn Wavt ltnt)‘H‘ 15 qu nm.,
Je— visible =) 940 nm -740 / Olc
3§00m Ponm V0T = - 55
+ ' } 7H0-3s0 ©
Interpreting printed information:

3. About how much forwy voltage does it take to illuminate the diode?
(.L;oul' Oq"i V (Uﬁ:l\o }/’n\)ur(/ ‘)

4. What is the peak sensitivity distance from the sensor? Beyond what distance is

there less than 10% from the maximum sensitivity? (F.") s ;)
Peak Sensihv.ty clistancet 25 mils
D '.);M'JLL p};((t ’l(rt '\> ’(-)5 +I“”‘)(/ “/» g‘b FITEX 'l ch ,n.’s V

5. What is the maximum operating current of the diode (or above what current
should you expect to fry the diode)?

v
)x)[\x C’J(,uf'-',v (,L/,‘j(n'f: 56‘ ,'IA

Group: C

due w| Mitesrone 4 Report

ENGR450 Mechatronics
Specification Sheet Quiz (5 points)
9000 Spartan

Include completed quiz with the specification sheet in the appropriate location of the
design notebook.

Getting more information:

I. What is meant by “SIP Relay” on the specification sheet (the “P™ stands for

“Package™)? /
Swngle nune Packagt

2. Note 4 states that this option is equipped with a “56V Zener diode™; what is a
Zener diode and what s its typical function in a circuit? /

Zencer diode is a gpecial type of diode designed 1o allow
curvent o Flow "bactwards" when a certain ey revevse voltage
(Gerer voltage) is veached. 1+ 1 used Fov voltage reguiahion, as

veFerence clemenys, SUvrge suppresfors, and in ‘
) Swi thin o
applicanons and clipper curcu\ErpS\ "3

Interpreting printed information:

3. What would I be getting if I were to order a 9007-12-112

TModel 90071, 12 means that the ceil voltage s 12

The tecond TU 1ast numpers (V) shows that - has an extevnal
amaanenc sherld and the lasy aumber (VY SNhows +hayr wwere 1§ o
diode +har is connecred to ping 7 d 3.

4. How recent is the specification sheet, i.e. whﬁas its last revision?

Rewised on Januanj 2.0\0

5. Using terms from the in-class discussion of switches, what is the primary
difference between the 9081 and the 9081C?
The 9081 s SPST /
T™a 90BIC is SPDT

Group: C
Aue w] Mitestone Y Repory
ENGR450 Mechatronics
Specification Sheet Quiz (5 points)

TIP 120

Include completed quiz with the specification sheet in the appropriate location of the
design notebook.

Getting more information:

1. What is meant by the TIP120 being “complimentary™ to the TIP125?
They have oear denncad (havanshcl, and have Aayched

-

panr Sylicof PC»»UC\ TTANSNS S. The T\P\L0 +$ NPN, atcad
Yhe TIPS is PNP.

2. What does the M (circled M) mean on the mechanical drawin%V
IF 18 40e ox\tnut mayenal condyhon

Interpreting printed information:

3. AtaDC current of .12 A, what is the largest safeollector-emitter voltage?
WOV — fiomn Tiqure Y

4. At Vce=4V, what is the expected DC current gain when the ?ﬂector current is

f)
S aboutr 1900, from ﬁqure \

5. Is a base current of 150mA within the safe operating range of the device? If not,
how much above? If yes, how much below?

IF 1S oot wifhd 4R gafe opjrcmng range,
w16 30 mf oo\ £

Group:
due w) riesyone S

ENGR450 Mechatronics
Specification Sheet Quiz (5 points)

1.293D K
Include completed quiz with the specification sheet in the appropriate location of the
design notebook.

Getting more information:

1. What is meant by referring to the unit as a “complete totem-pole drive circuit™?

[N ‘\'\jp{ of output Shructuve used \.u] \ﬂK(}Y«’t{d Circunts wn wahich
one M“S‘Sm(dn\‘cs e Omp\,l‘\ Y\\qh wohil€ nofheyv ‘h‘OhS\STDY

Connected below ¥ PUNS +he output oW
* Bvackets Stacked on eachoibev

2. What does having the outputs “in the high-impedance state” mean?

outputs s not dnved by nputs, oufy 1S neirher
g (V) nor \ows (6).

Interpreting printed information:

3. What are the minimum and maxirw;ecommended voltages on pin 16?
wmin = 4.5V

moay = 11V

4. What is the typical high to low propagation time of the L293DNE?

v

5. At 70°C in the free air, how much power can the L293D safely dissipate?

400 ns

~| W

Appendix D

Milestone Notebook Check Sheet

Group Letter: Names: 1 2 <
Instructor initials indicating milestone com le

Points

Milestone Report #1
Component
Notebook Created

ENGR 450 — Mechatronics

Engineering Design Notebook Check Sheet (115 Points)

3

Requirements
Hardcover, 3-ring binder, divideTs, p
first sheet in the design notebook

cets. etc This sheet is the

tion:

Awarded

Kit Inventory

Includes parts, values of each resistor, rough count of fasteners

Milestone 1 code

Complete listing of code to achieve milestone. Code is
commented and shows author #1. L\'\‘\\L oV

Tilestone Report #2
Component
Milestone code

Instructor initials indicating milestone

Requirements
Complete listing of code to achieve milestone. Code is
commented and shows author #2.

C

Milestone report

Describes milestone and results. Includes participation %.

Circuit Diagram Able to reproduce circuit from the information on this diagram. 0 (O
Notebook Notebook is neat and all material appears under appropriate tabs. 5 6
organized Lab exercises included in appropriate tab. =

Milestone Report #3
D D

Instructor initials indicating milestone completion:

Milestone report

approach to milestone and results. Includes participation %.

Milestone code Code is commented and shows next author. 5
Rendering/photos | Current photos and SolidWorks rendering show agreement 5 5
Notebook Notebook is neat and all material appears under appropriate tabs. | 5 -
organized Lab exercises included in appropriate tab. b
Circuit Diagram Able to reproduce circuit from the information on this diagram. | 5 I~
Provides informative description of design process. Describes 5 K

Milestone Report #4
Component

Instructor initials indicating

Requirements

milestone completion:
Points

Milestone report

approach to milestone and results. Includes participation %.

Milestone code Code is commented and shows next author. 5
Rendering/photos | Current photos and SolidWorks rendering show agreement. 5 r
Notebook Notebook is neat and all material appears under appropriate tabs. | 3 .
organized Lab exercises included in appropriate tab. 5
Circuit Diagram Able to reproduce circuit from the information on this diagram. | 5 K
Provides informative description of design process. Describes 5 5/

Milestone Report #5
D

Instructor initials indicating milestone completion:

Milestone report

approach to milestone and results. Includes participation %.

Milestone code Code is commented and shows next author. 5

Rendering/photos | Current photos and SolidWorks rendering show agreement. 5 g

Notebook Notebook is neat and all material appears under appropriate tabs. | 5

organized Lab exercises included in appropriate tab. K

Circuit Diagram Able to reproduce circuit from the information on this diagram. | 5 6§
Provides informative description of design process. Describes 5 T

Task

ENGR 450 MECHATRONICS
DESIGN PROJECT

Task:
Build and program an autonomous mobile device to score as many points as possible in a 4-

minute period by navigating a playfield while collecting and depositing objects into designated
bases.

Materials:

Each group will receive an unassembled starting robot, three hobby servomotors, supporting
electronics, one sheet of 1/8” and one sheet of 3/32” clear acrylic and an assortment of other
materials. Groups may only use the supplied materials as structural members of the robot.
Groups may use additional motors, wires, electronic components, breadboards, battery packs and
any quantity of nylon screws and nuts. [NEW] Groups may use any quantity of parts printed in
ABS on the PIIT 3-D printer. Groups may not use glue, tape, wood, aluminum, cardboard or any
other material to adhere, attach or supplement the robot structure. Groups may only use
temporary adhesive material to secure light sensors, batteries and wires. The robot may use a
maximum of 12 AA batteries as the only source of energy for performing the task.

Black Supply Baserail white Supply

Bl

Doubler

Black Bin

Wit
f
!

Task performance:

Two supply stations contain three white and three black blocks each. Each supply will contain a
random order of white and black blocks. Robots must collect the blocks and deposit them into
bins. A “doubler” marble rests on the center support. Placing this marble in either bin doubles
the score from that bin.

Point values for the objects:

Any block in any base 5 points
Black or White block in correct base 3 points
Black or White ball in wrong base -3 points
Greater than zero total in both bases 5 points

Each group will have trials at the scheduled time and date as indicated below (although
circumstances in Fall 20 make this schedule likely to change). Groups must score points during
their designated slot and may not trade slots. If a group can complete more than one trial in their
time slot, the highest score will count. Total score is the total of both days.

Nov 19" Nov 24

12:30-12:40 A 12:30-12:40 L
12:41-12:51 B 12:41-12:51 K
12:52-1:02 & 12:52-1:02 J

1:03-1:13 D 1:03-1:13 I

1:14-1:24 E 1:14-1:24 H
1:25-1:35 F 1:25-1:35 G
1:36-1:46 G 1:36-1:46 F
1:47-1:57 H 1:47-1:57 E
1:48-2:08 I 1:48-2:08 D
2:09-2:19 J 2:09-2:19 &
2:20-2:30 K 2:20-2:30 B
2:31-2:41 I 2:31-2:41 A

Restrictions & Allowances:

Perform the task while adhering to the following restrictions:

e At the beginning of the trial, the robot must fit completely inside a cube of 12 inches on
each side. The robot may expand beyond that volume under its own power during the trial.

e The robot must be stationary in the starting base and then activated by a group member

pushing a button or moving a switch. Plugging a wire into a breadboard is not an acceptable
means of initiating a trial. Once the button is pressed, no person may in any way assist in the

task.
Each trial will last at most three minutes timed by the instructor. The instructor will call

“Stop™ after three minutes and only those objects contained within the base will score points.

e Atany point in the trial, the group may declare the trial over. Before the robot is touched,
score will be determined and the group credited with the total. The group may then run again
within its allotted time at no risk to the points already scored.

e For the purposes of this competition, “in the base™ means the entirety of the object is beneath
a horizontal plane flush with the surface top surface of the base and within the containing
walls of the base.

» Groups may use up to three feet of colored electrical tape to create visible landmarks on the
playfield. The tape may be applied anywhere on the playfield but may serve only as visible
marking. The tape may not be used as a mechanical aid or as a structural member. No other
modifications to the playfield are permitted.

* Ifnecessary to amend or revise the rules or restrictions, the instructor will post final rules
and/or restrictions by October 30™. Instructor retains final discretion regarding rule
violations or disqualification. Instructor also retains the authority to disqualify designs that
violate the spirit of the competition, intentionally circumvent or exploit loopholes or
omissions in the rules, or present a safety hazard to personnel or property.

Design Notebook:

Each group must keep a Design Notebook to record and document the design process. It must be
an 8'2x11 inch three-ring binder with a hard cover. This book should be the repository for all
sketches, data sheets, sources of information, notes and all significant thinking about the project.
Keep an index and use side-tabbed dividers between sections. Required headings of sections:
Design Problem

1

2. Milestone Reports

3. Sketches/Photos

4. Laboratory Exercises
5. Data Sheets

6. Course Notes

7. Summary

Notebook Check:

[nstructor will collect notebooks for evaluation after each milestone. Notebooks must be
delivered to the instructor’s office by 4PM the next day after milestone due dates. Instructor will
return all graded course material to students in the appropriate tabs of the design notebook.

Notebook Content: '
Milestone Reports - Responsibility for preparing the Milestone Report will cycle through all

group members. Milestones 2-5 must include a printed summary, in one page or less, of the
approach to the milestone, the robot’s performance in the milestone and planned modifications
for the next milestone. The Date, milestone #, group name and/or number and preparer's name
must appear on the top on the report. Report must include a participation percentage for each
group member since the last milestone report. Milestone reports are due the Friday after each

milestone.

All Milestone Reports must include a complete listing of the Arduino code used to complete the
milestone. The code must be fully commented and indicate author and date of creation. Groups
of two members must alternate responsibility for authoring the code each milestone; groups with

three members must cycle responsibility. For example, if Luigi and Mario are a group, then Luigi
must develop the code for milestones 1, 3 & 5 and Mario the code for milestones 2, 4.

Milestone Reports 2-5 must include a complete circuit diagram showing the Arduino wired to
accomplish the milestone. The diagram should contain all information to reconstruct the circuit
using only this diagram. Include Arduino pin numbers and appropriate labels for all components.
If an integrated circuit chip is present, indicate the part number. If showing a resistor, indicate its
value in ohms. Please complete this diagram by hand on a single sheet of paper. [understand

there artc? programs and online widgets, but it is a valuable experience to attempt to do this
yourself.

Milestone reports 3-5 must contain a rendering of the current SolidWorks model and photos of the
Fobot derponstrating significant agreement with the model. The rendering must show relevant
information such as date, overall dimensions, labels and short description of the primary function
of components. Rendering must demonstrate that the group is adhering to material restrictions by

mappinlg all components fabricated from each thickness of material onto a sheet of that material.
Example:

. 247 N 1/8" thick

/

Laboratory Exercises — Notebook must document completion of each laboratory exercise. All
deliverables listed for each exercise must be present in the appropriate tab in the notebook.

Summary - The Design Notebook must include a summary of the design effort and the goals
achieved. The summary must present the robot and indicate its performance. The summary
should also describe the limitations of the robot discovered during testing.

Final Notebook check - The remaining 25 points of the notebook grade are for Final Notebook
Check. Groups are required to assign participation percentages on the top of the notebook check.
Awarded points will be scaled by these percentages. Rubric for the final notebook check is
included at the end of this document.

three members must cycle responsibility. For example, if Luigi and Mario are a group, then Luigi
must develop the code for milestones 1, 3 & 5 and Mario the code for milestones 2, 4.

Milestone Reports 2-5 must include a complete circuit diagram showing the Arduino wired to
accomplish the milestone. The diagram should contain all information to reconstruct the circuit
using only this diagram. Include Arduino pin numbers and appropriate labels for all components.
If an integrated circuit chip is present, indicate the part number. If showing a resistor, indicate its
value in ohms. Please complete this diagram by hand on a single sheet of paper. I understand

there are programs and online widgets, but it is a valuable experience to attempt to do this
yourself.

Milestone reports 3-5 must contain a rendering of the current SolidWorks model and photos of the
robot demonstrating significant agreement with the model. The rendering must show relevant
information such as date, overall dimensions, labels and short description of the primary function
of components. Rendering must demonstrate that the group is adhering to material restrictions by

mapping all components fabricated from each thickness of material onto a sheet of that material.
Example:

24 : 1/8" thick

Laboratory Exercises — Notebook must document completion of each laboratory exercise. All
deliverables listed for each exercise must be present in the appropriate tab in the notebook.

Summary - The Design Notebook must include a summary of the design effort and the goals
achieved. The summary must present the robot and indicate its performance. The summary
should also describe the limitations of the robot discovered during testing.

Final Notebook check - The remaining 25 points of the notebook grade are for Final Notebook
Check. Groups are required to assign participation percentages on the top of the notebook check.
Awarded points will be scaled by these percentages. Rubric for the final notebook check is
included at the end of this document.

Milestones must be demonstrated by 10:00 PM on the due date shown

Milestone | Title Due Points

1 Press a button to play a tune 3 19
Unofficial demonstration - 0 Points. -

2 Navigate the playfield. 20 points first trial, 15 points 9/17 20
second or third. Unofficial demonstration 5 Points.

3 One block to base. 30 points first trial, 25 second, and 20 | 10/1 30
third. Unofficial demonstration 10 Points.

4 Determine block color. 30 points first trial, 25 second, 10/15 30
and 20 third. Unofficial demonstration 10 Points

5 Two white and no black. 30 points first trial, 25 second, 11/5 30
and 20 third. Unofficial demonstration 10 Points.
Official but with robot/model mismatch 20 Points.

Milestone 1 Press a button to play a tune: Make the Arduino play two easily distinguishable
tunes (of your choosing) on the buzzer by pushing either of two buttons. A tune is at least 14
notes. Each button must always play the same tune and only that tune (not both). After the tune
is played the Arduino must stop and wait until either button is pressed again. If either button is
pressed while the tune is playing, the Arduino must wait two seconds and begin playing the
pending tune after completing the current tune. Arduino must correctly respond to instructor’s
button pushes without reset.

Milestone 2 Navigate the playfield: Robot must start in the starting cube. The robot must play a
distinct note or tune when touching the white side base rail and a different note or tune when
touching the black side base rail (reverse order also acceptable) and then come to rest with either
rubber wheel in contact with the floor inside the starting cube, playing a third note or tune. The
robot must not play either note or tune when it is not in contact with the rail or stopped. For this
milestone “in contact™ will be loosely interpreted. For Milestone 2 only, buttons may be secured
with temporary adhesive material. Groups have three official trials before the deadline.

Milestone 3 One block to opposite base: Robot must start in the starting cube. Robot must
acquire a block from either dispenser and then deliver it to the opposite side bin. Groups have

three official trials before the deadline.

Milestone 4 Determine block color: With the playfield in starting state, robot must acquire at
least three blocks and recognize the color of each when delivered to a sensor. Robot may be
placed anywhere on the field but must acquire the objects under its own power. Robot must play
one distinct note or tune when it senses a white block, a different note or tune when it senses a
black block and must not play either note or tune when is there is no block. Groups have three

official trials before the deadline.

Milestone 5 Two white and no black: Robot must acquire two white blocks and place these in
the white base without placing any black (reverse also acceptable). Robot must start in the starting

cube. Groups have three official trials before the deadline.

' ENGR 450 Design Project
. Final Notebook Check (25 points)
Due Friday after last project demonstration at 5:00 PM

Group_ (

Iﬁ:ggerf_n\chae\ nerraan S Paticipation, 50 B £l Lt
Memberzj‘(“o‘e“\ Curuo % Participation__ S0 7,
P % Participation

Component

Maximum

Awarded/comment

Condi{ion: Notebook is clean and well-maintained and
turned in on time. All project materials are contained in
the notebook. Course notes are up to date. This sheet
and final report are in the Summary tab.

2

Model: SolidWorks model of final design is loaded into
the appropriate location in Bridges.

Rendering: Documents progress of design through a
progression of sketches, SolidWorks renderings and/or
photos. Photos are clear enough to show relevant design
details and the photos show that the robot construction
matches SolidWorks design. Final circuit diagram
allows reconstruction of the circuit using only the
information on the diagram. Final layout shows all parts
within material restriction.

Final Summary: A 1-2 page summary is included that
presents the final design and includes the results of the
robot’s performance. Summary briefly discusses the
strengths and weaknesses of the design and discusses
lessons learned from the competition. Summary suggests
what the group would do differently if the project were

started afresh.

Teamwork: Group has completed the participation
percentage table above. Group has resisted over-
specialization ensuring each member has had an
opportunity to gain practice coding, wiring, designing,
etc. Should be consistent with milestone reports.

Appendix E

Code for all Milestones and Final

Milestone 1

Michael Sherman & Michaela Curcio

1 //Milestone 1 Code

2 //Authored by Michael Sherman

3

4 #include "pitches.h" // include pitches library

5

6 //millis stuff

7 unsigned long previousMillis = 0 ; // will store last time the note changed
8 int interval = 9; // time between button and first note
9
10 // constants to set pin numbers
11 const int buttonPin2 = 2; // the number of the pushbutton pin
12 const int buttonPin3 = 3; // the number of the pushbutton pin
13
14

15 // variables will change:

16 int buttonState2 = 0; // variable for reading the pushbutton status
17 int buttonState3 = 0; // variable for reading the pushbutton status
18

19 //boolean stuff to check if song added to queue

20 boolean press2 = false; // starts pin 2 as false

21 boolean press3 = false; // starts pin 3 as false

22

23 // Song Pin2 - POUND THE ALARM:

24

25 //array storing the notes of song
26 int melody2[] = {

27 NOTE_A4, NOTE_F4, NOTE_D4, NOTE_C4, @, NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4, NOTE_A4,
NOTE_G4, NOTE_F4, NOTE_A4, NOTE_F4, NOTE_D4, NOTE_C4

28 };

29

30 //array storing note durations: 4 = quarter note, 8 = eighth note, etc.:
31 int noteDurations2[] = {

32 4, 4, 3, 2, 8, 6, 6, 6, 6, 6, 6, 6, 4, 4, 3, 2

33}

34

35

36 //Song Pin3 - STARSHIPS:

37

38 //array storing the notes of song

39 int melody3[] = {

40 NOTE_FS4, NOTE_FS4, ©, NOTE_FS4, NOTE_A4, NOTE_A4, NOTE_B4, NOTE_FS4, NOTE_E4, NOTE_D4, O,
NOTE_FS4, NOTE_FS4, ©, NOTE_D4, NOTE_E4, NOTE_E4, NOTE_FS4, NOTE_E4, NOTE_D4

41 };

42

43 //array storing note durations: 4 = quarter note, 8 = eighth note, etc.:
44 int noteDurations3[] = {

45 3, 3,9,7,5 6, 3,6,5,6,8,3,3,8,8,5,5,4,7,7

46 };

47

48

49 void setup() {

50 Serial.begin(9600); //initialize serial monitor

51 pinMode(buttonPin2, INPUT); //initialize pushbutton pin 2 as input
52 pinMode(buttonPin3, INPUT); //initialize pushbutton pin 3 as input
53}

54

55 void loop()

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93

94

95

96
97
98

99

100

101
102
103
104

105
106
107
108
109
110
111

//read state of pushbutton values
buttonState2 = digitalRead(buttonPin2);
buttonState3 = digitalRead(buttonPin3);

//change boolean if button was pressed

if (buttonState2 == HIGH) {
Serial.println("Switch 2 Pressed");
press2 = true;

else if (buttonState3 == HIGH) {
Serial.println("Switch 3 Pressed");
press3 = true;

}
//Playing Song Pin2 - POUND THE ALARM:
else if (press2 == true) { //check to see if boolean is true
press2 = false; //change it back to false before starting the song

Serial.print("Playing Song Pin2");

for (int thisNote = @; thisNote < 16;) { //for loop for each note
unsigned long currentMillis = millis(); //set variable equal to the number of
milliseconds passed from beginning

//Check other button continuosly

Serial.println("Checking Buttons");

buttonState3 = digitalRead(buttonPin3); //read pin 3

if (buttonState3 == HIGH) { //change boolean to true if it is pressed
Serial.println("Song Added to Queue");
press3 = true;

}
buttonState2 = digitalRead(buttonPin2); //read pin 2
if (buttonState2 == HIGH) { //change boolean to true if it is pressed

Serial.println("Song Added to Queue");
press2 = true;

}
if (currentMillis - previousMillis >= interval) { //check if time passed during
loop is greater than pause between notes
previousMillis = currentMillis; //set new previousMillis to

equal currentMillis

int noteDuration2 = 1000 / noteDurations2[thisNote]; //calculate note duration from
array, one second divided by note type

tone(8, melody2[thisNote], noteDuration2); //play tone from array on pin 8
for duration calculated above

// to distinguish the notes, set a minimum time between them.

int pauseBetweenNotes = noteDuration2 * 1.30; //calculate time between notes
time of note + 30%

interval = pauseBetweenNotes; //set variable "interval" equal to
this value

thisNote++; //add one to the count for the for
loop so it can play next note

}
}

// Adding two second delay before next song, but still checking for button presses during
delay
int difference;
unsigned long currentMillis = millis();
unsigned long previousMillis = millis();
difference = currentMillis - previousMillis;
while (difference < 2000) {
Serial.println("waiting...");
buttonState3 = digitalRead(buttonPin3); //read pin 3

112

113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128

129

130
131
132
133

134
135
136
137

138
139
140
141
142

143
144
145
146
147

148

149

150

151
152

153

154

155
156
157
158

159
160
161

if (buttonState3 == HIGH) {
is pressed
Serial.println("Song Added to Queue");
press3 = true;
}
buttonState2 = digitalRead(buttonPin2);
if (buttonState2 == HIGH) {
pressed
Serial.println("Song Added to Queue");
press2 = true;

}

unsigned long currentMillis = millis();

difference = currentMillis - previousMillis;

Serial.println(difference);

}
}

//Playing Song Pin3 - STARSHIPS:
else if (press3 == true) {
true
press3 = false;
starting the song
Serial.print("Playing Song Pin2");

for (int thisNote3 = @; thisNote3 < 20;) {
unsigned long currentMillis = millis();
number of milliseconds passed from beginning

//Check buttons continuosly
buttonState3 = digitalRead(buttonPin3);
if (buttonState3 == HIGH) {
is pressed
Serial.println("Song Added to Queue");
press3 = true;
}
buttonState2 = digitalRead(buttonPin2);
if (buttonState2 == HIGH) {
pressed
Serial.println("Song Added to Queue");
press2 = true;

}

if (currentMillis - previousMillis >= interval) {

loop is greater than pause between notes
previousMillis = currentMillis;
equal currentMillis

//change boolean to true if it

//read pin 2
//change boolean to true if it is

//update currentMillis
//update difference

//check to see if boolean is

//change it back to false before

//for loop for each note
//set variable equal to the

//read pin 3
//change boolean to true if it

//read pin 2
//change boolean to true if it is

//check if time passed during

//set new previousMillis to

int noteDuration3 = 1000 / noteDurations3[thisNote3]; //calculate note duration from

array, one second divided by note

tone(8, melody3[thisNote3], noteDuration3);

for duration calculated above

int pauseBetweenNotes3 = noteDuration3 * 1.30;

time of note + 30% *taken from toneMelody*
interval = pauseBetweenNotes3;

to this value
thisNote3++;

for loop so it can play next note

}
}

//play tone from array on pin 8

//calculate time between notes
//set variable "interval" equal

//add one to the count for the

// Adding two second delay before next song, but still checking for button presses during

delay
int difference;
unsigned long currentMillis = millis();
unsigned long previousMillis = millis();

162
163
164
165
166

167
168
169
170
171

172
173
174
175
176
177
178
179
180

difference = currentMillis - previousMillis;
while (difference < 2000) {
Serial.println("waiting...");
buttonState3 = digitalRead(buttonPin3);
if (buttonState3 == HIGH) {
is pressed
Serial.println("Song Added to Queue");
press3 = true;
}
buttonState2 = digitalRead(buttonPin2);
if (buttonState2 == HIGH) {
pressed
Serial.println("Song Added to Queue");
press2 = true;
}
unsigned long currentMillis = millis();
difference = currentMillis - previousMillis;
Serial.println(difference);

//read pin 3
//change boolean to true if it

//read pin 2
//change boolean to true if it is

//update currentMillis
//update difference

Milestone 1

pitches.h

/***

* Public Constants
***/

#define NOTE_BO 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#tdefine NOTE_DS1 39
10 #define NOTE_E1 41
11 #define NOTE_F1 44
12 #define NOTE_FS1 46
13 #define NOTE_G1 49
14 #define NOTE_GS1 52
15 #define NOTE_Al1l 55
16 #define NOTE_AS1 58
17 #define NOTE_B1 62
18 #define NOTE_C2 65
19 #define NOTE_CS2 69
20 #define NOTE_D2 73
21 #define NOTE_DS2 78
22 #define NOTE_E2 82
23 #define NOTE_F2 87
24 #define NOTE_FS2 93
25 #define NOTE_G2 98
26 #define NOTE_GS2 104
27 #define NOTE_A2 110
28 #define NOTE_AS2 117
29 #define NOTE_B2 123
30 #define NOTE_C3 131
31 #define NOTE_CS3 139
32 #define NOTE_D3 147
33 #define NOTE_DS3 156
34 #define NOTE_E3 165
35 #define NOTE_F3 175
36 #define NOTE_FS3 185
37 #define NOTE_G3 196
38 #define NOTE_GS3 208
39 #define NOTE_A3 220
40 #define NOTE_AS3 233
41 #define NOTE_B3 247
42 #define NOTE_C4 262
43 #define NOTE_CS4 277
44 #define NOTE_D4 294
45 #define NOTE_DS4 311
46 #define NOTE_E4 330
47 #define NOTE_F4 349
48 #define NOTE_FS4 370
49 #define NOTE_G4 392
50 #define NOTE_GS4 415
51 #define NOTE_A4 440
52 #define NOTE_AS4 466
53 #define NOTE_B4 494
54 #define NOTE_C5 523
55 #define NOTE_CS5 554
56 #define NOTE_D5 587
57 #define NOTE_DS5 622

CoONOOTUVDE WNER

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

#tdefine
#tdefine
#define
#define
#define
#define
t#tdefine
#tdefine
#tdefine
#tdefine
#define
#define
#define
#define
t#tdefine
#tdefine
#tdefine
#tdefine
#define
#define
#define
#define
t#tdefine
#tdefine
#tdefine
#tdefine
#define
#define
#define
#define
t#tdefine
#tdefine
#tdefine
#tdefine
#define
#define

NOTE_E5
NOTE_F5
NOTE_FS5
NOTE_G5
NOTE_GS5
NOTE_A5
NOTE_AS5
NOTE_B5
NOTE_C6
NOTE_CS6
NOTE_D6
NOTE_DS6
NOTE_E6
NOTE_F6
NOTE_FS6
NOTE_G6
NOTE_GS6
NOTE_A6
NOTE_AS6
NOTE_B6
NOTE_C7
NOTE_CS7
NOTE_D7
NOTE_DS7
NOTE_E7
NOTE_F7
NOTE_FS7
NOTE_G7
NOTE_GS7
NOTE_A7
NOTE_AS7
NOTE_B7
NOTE_C8
NOTE_CS8
NOTE_DS8
NOTE_DS8

659

698

740

784

831

880

932

988

1047
1109
1175
1245
1319
1397
1480
1568
1661
1760
1865
1976
2093
2217
2349
2489
2637
2794
2960
3136
3322
3520
3729
3951
4186
4435
4699
4978

Milestone 2

Michael Sherman & Michaela Curcio

CoONOOTUVDE WNER

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

//Milestone 2
//Author 2: Michaela Curcio

// constants won't change. Used here to set pin numbers:
const int leftA = 2; // Left Motor A pin

const int leftB = 3; // Left Motor B pin

const int rightA = 6; // Right Motor A pin

const int rightB = 7; // Right Motor B pin

const int frontButton = 12; //Front Button Pin

const int rightButton = 8; //Right Button Pin

const int backButton = 5; //Back Button Pin

const int BuzzerPin = 4; //Buzzer Pin

//Initialize Button States
int frontButtonState = 9;
int backButtonState = 0;
int rightButtonState = 0,

// Variables will change:
int state = @; // variable to hold current state
unsigned long startTime; // will store the time the state was setup

// the following variable is a long because the time, measured in miliseconds,
// will quickly become a bigger number than can be stored in an int.
long interval = 2000; // interval at which to change

void setup() {
// set the digital pins as outputs and inputs:
pinMode(leftA, OUTPUT);
pinMode(leftB, OUTPUT);
pinMode(rightA, OUTPUT);
pinMode(rightB, OUTPUT);
pinMode(frontButton, INPUT);
pinMode(rightButton, INPUT);
pinMode(backButton, INPUT);
pinMode(BuzzerPin, OUTPUT);
//statelSetup();
state = 1;
}
void loop() {
// This loop simply calls the state function for the current State

switch (state) {
case 1:
statel();
break;
case 2:
state2();
break;
case 3:
state3();
break;
case 4:
state4d();
break;
case 5:
state5();

58
59
60
61
62
63
64
65
66
67
68
69

break;
case 6:
state6();
break;
case 7:
state7();
break;
case 8:
state8();
break;

Milestone 2

motorFunctions

1 // Never change these functions

2 // If they have the reversed outcome rewire the platform
3 // Do not re-write these functions
4 void platformForward()

5 A

6 leftForward();

7 rightForward();

8

9 void platformBackward()
10 {
11 leftBackward();
12 rightBackward();
13
14 void platformStop()
15 {

16 leftStop();
17 rightStop();

18 }

19 void platformSpinLeft()

20 {

21 leftBackward();

22 rightForward();

23}

24 void platformSpinRight()

25 {

26 rightBackward();

27 leftForward();

28}

29 //left

30 void leftForward()

31 {

32 digitalWrite(leftA, HIGH);
33 digitalWrite(leftB, LOW);
34 }

35 void leftBackward()

36 {

37 digitalWrite(leftA, LOW);
38 digitalWrite(leftB, HIGH);
39}

40 void leftStop()

41 {

42 digitalWrite(leftA, LOW);
43 digitalWrite(leftB, LOW);
44

45}

46 //right

47 void rightForward()

48 {

49 digitalWrite(rightA, HIGH);
50 digitalWrite(rightB, LOW);
51}

52 void rightBackward()

53 {

54 digitalWrite(rightA, LOW);
55 digitalWrite(rightB, HIGH);
56}

57 void rightStop()

58
59
60
61

{

}

digitalWrite(rightA, LOW);
digitalWrite(rightB, LOW);

Milestone 2

State 1

1 void statelSetup() {

2 startTime = millis();

3 state = 1;

4}

5

6 void statel() {

7 // put your main code here, to run repeatedly:
8 unsigned long currentTime;

9
10 //Go Forward
11 platformForward();
12 //Check if front button is pressed
13 frontButtonState = digitalRead(frontButton);
14
15 if (frontButtonState == HIGH)

16 {

17 platformStop();

18 tone(BuzzerPin, 400, 1000); //plays 1lst tone once button is pressed
19 delay(1000);

20 state2Setup(); //move to next state

21 }

22

23 //USE AS FAILSAFE

24 //Move to next state if it has been driving forward for 15 sec. w/o pushing button
25 currentTime = millis();

26 if ((currentTime - startTime) > 10000) {

27 platformStop();

28 tone(BuzzerPin, 400, 1000); //plays 1st tune incase it does not hit wall/button
29 delay(1000);

30 //Next State

31 state2Setup(); //move to next state

32 }

Milestone 2

State 2

1 void state2Setup() {

2 startTime = millis();

3 state = 2;

4}

5

6 void state2() {

7 startTime = millis();

8 unsigned long currentTime;

9
10 //Go Backward
11 platformBackward();
12 //Check if back button is pressed
13 backButtonState = digitalRead(backButton);
14 if (backButtonState == HIGH)
15 {
16 platformStop();
17 delay(500);
18 state3Setup(); //moves to next state
19 }
20
21 //USE AS FAILSAFE
22 //Move to next state if it has been driving forward for 10 sec. w/o pushing button
23 currentTime = millis();
24 if ((currentTime - startTime) > 10000) {
25 platformStop();
26 delay(500);
27 //Next State
28 state3Setup(); //moves to next state
29 }

Milestone 2

State 3

1 void state3Setup() {

2 startTime = millis();

3 state = 3;

4}

5

6 void state3() {

7 // put your main code here, to run repeatedly:
8 startTime = millis();

9 unsigned long currentTime;
10
11 //Turn Right until button or for 3 sec
12 platformSpinRight();
13
14 //Check if button is pressed
15 rightButtonState = digitalRead(rightButton); //once right button is pressed, stop
16
17 if (rightButtonState == HIGH)
18 {
19 platformStop();
20 delay(500);
21 state4Setup(); //move to next state
22 }
23
24 //Stop this state after a timeout
25 currentTime = millis();
26 if ((currentTime - startTime) > 3000) {
27 platformStop();
28 delay(1000);
29 //Next State
30 stated4Setup(); //move to next state
31 }

Milestone 2

State 4

1 void stated4Setup() {

2 startTime = millis();

3 state = 4;

4}

5

6 void stated() {

7 startTime = millis();

8 // put your main code here, to run repeatedly:

9 unsigned long currentTime;
10
11 //check if front button is pressed
12 frontButtonState = digitalRead(frontButton);
13 currentTime = millis();
14
15 //if the time is less than 10 sec, and the front button is not pressed, begin "hugging"
16 while ((currentTime - startTime < 10000) and frontButtonState == LOW)
17 {
18 frontButtonState = digitalRead(frontButton); //check buttons
19 rightButtonState = digitalRead(rightButton);
20 if (rightButtonState == LOW) {
21 frontButtonState = digitalRead(frontButton);
22 //"hugging" makes the robot move against the side wall
23 platformForward();
24 delay(200);
25 platformSpinRight();
26 delay(200);
27 }
28 else
29 {
30 platformForward();
31 }
32 currentTime = millis();
33 }

34 platformStop();
35 delay(1000);
36 state5Setup(); //move to next state

Milestone 2

State 5
1 void state5Setup() {
2 startTime = millis();
3 state = 5;
4}
5
6 void state5() {
7 startTime = millis();
8 unsigned long currentTime;
9
10 //Go back and turn left
11 platformBackward();
12 delay(100);
13 platformStop();
14 delay(50);
15 platformSpinLeft();
16 delay(650);
17 platformStop();
18 delay(500);
19 state6Setup(); //move to next state

Milestone 2

State 6

1 void state6Setup() {

2 startTime = millis();

3 state = 6;

4}

5

6 void state6() {

7 startTime = millis();

8 unsigned long currentTime;

9
10 frontButtonState = digitalRead(frontButton); //check button
11 currentTime = millis();
12
13 while ((currentTime - startTime < 10000) and frontButtonState == LOW)
14 {
15 frontButtonState = digitalRead(frontButton); //check buttons
16 rightButtonState = digitalRead(rightButton);
17 if (rightButtonState == LOW) {
18 frontButtonState = digitalRead(frontButton);
19 platformForward();

20 delay(200);

21 platformSpinRight();

22 delay(100);

23 }

24 else

25 {

26 platformForward();

27 }

28 currentTime = millis();

29 }

30

31 //plays 2nd tone twice once button is pressed
32 platformStop();

33 tone(BuzzerPin, 600, 1000);

34 delay(2000);

35 tone(BuzzerPin, 600, 1000);

36 delay(1000);

37 state7Setup(); //move to next state

Milestone 2

State 7

1 void state7Setup() {

2 startTime = millis();

3 state = 7;

4}

5 void state7() {

6 startTime = millis();

7 unsigned long currentTime;

8

9 //Go Backward
10 platformBackward();
11
12 //Check if back button is pressed
13 backButtonState = digitalRead(backButton); //check back button
14 if (backButtonState == HIGH)
15 {
16 platformStop(); //stop when back button is pressed
17 delay(500);
18 state8Setup(); //move to next state
19 }
20
21 //Move to next state if it has been driving forward for 10 sec. w/o pushing button
22 currentTime = millis();
23 if ((currentTime - startTime) > 10000) {
24 platformStop();
25 delay(500);
26 //Next State
27 state8Setup();
28 }

29}

Milestone 2

State 8

1 void state8Setup() {

2 startTime = millis();

3 state = 8;

4}

5

6 void state8() {

7 startTime = millis();

8 unsigned long currentTime = millis();
9
10 platformForward(); //move forward
11 delay(250);
12
13 while (currentTime - startTime < 2450) //while time is less than 2450, begin "shimmy"
14 {

15 platformSpinLeft(); //"shimmy" moves slowly so that robot doesn't slam against board
16 delay(300);

17 platformStop();

18 delay(200);

19 currentTime = millis();

20 }

21

22 platformForward();

23 delay(1800);

24 platformStop();

25 //plays 3rd tone three times once button is pressed
26 tone(BuzzerPin, 8600, 1000);

27 delay(2000);

28 tone(BuzzerPin, 800, 1000);

29 delay(2000);

30 tone(BuzzerPin, 800, 1000);

31 delay(1000);
32 delay(30000);

Milestone 3

Michael Sherman & Michaela Curcio

1 //Milestone 3 Code

2 //Authored By Michael Sherman

3

4 // set pin numbers:

5 const int leftA = 8; // Left Motor A pin

6 const int leftB = 11; // Left Motor B pin
7 const int rightA = 7; // Right Motor A pin
8 const int rightB = 10; // Right Motor B pin
9

const int frontButton = 2; //Front Button Pin
10 const int leftButton = 4; //Right Button Pin
11 const int backButton = Al; //Back Button Pin

13 //Initialize Button States
14 int frontButtonState = 0;

15 int backButtonState = 0;

16 int leftButtonState = 0;

17

18 // Variables will change:

19 int state = 9; // variable to hold current state

20 unsigned long startTime; // will store the time the state was setup

22 //Setup Servos

23 #include <Servo.h>

24 Servo myservod; //Dumpster
25 Servo myservoc; //Cradle
26 Servo myservos; //Sniper

27

28 void setup() {

29 // set the digital pins as output:
30 pinMode(leftA, OUTPUT);

31 pinMode(leftB, OUTPUT);

32 pinMode(rightA, OUTPUT);

33 pinMode(rightB, OUTPUT);

34 pinMode(frontButton, INPUT);

35 pinMode(leftButton, INPUT);

36 pinMode(backButton, INPUT);

37

38 //Begin Servos in the Right Spot
39 myservos.attach(6);

40 delay(500);

41 myservos.write(180);

42 delay(500);

43 myservos.detach();

44 delay(500);

45

46 statelSetup();

47 }

48

49

50 void loop() {

51 // This loop simply calls the state function for the current State
52 switch (state) {

53 case 1:

54 statel();

55 break;

56 case 2:

57 state2();

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

break;
case 3:
state3();
break;
case 4:
state4();
break;
case 5:
state5();
break;
case 6:
state6();
break;
case 7:
state7();
break;
case 8:
state8();
break;
case 9:
stated();
break;

Milestone 3

Motor Functions

1 // Never change these functions

2 // If they have the reversed outcome rewire the platform
3 // Do not re-write these functions
4 void platformForward()

5 A

6 leftForward();

7 rightForward();

8

9 void platformBackward()
10 {
11 leftBackward();
12 rightBackward();
13
14 void platformStop()
15 {

16 leftStop();
17 rightStop();

18 }

19 void platformSpinLeft()

20 {

21 leftBackward();

22 rightForward();

23}

24 void platformSpinRight()

25 {

26 rightBackward();

27 leftForward();

28}

29 //left

30 void leftForward()

31 {

32 digitalWrite(leftA, HIGH);
33 digitalWrite(leftB, LOW);
34 }

35 void leftBackward()

36 {

37 digitalWrite(leftA, LOW);
38 digitalWrite(leftB, HIGH);
39}

40

41 void leftStop()

42 A

43 digitalWrite(leftA, LOW);
44 digitalWrite(leftB, LOW);
45 1}

46 //right

47 void rightForward()

48 {

49 digitalWrite(rightA, HIGH);
50 digitalWrite(rightB, LOW);
51}

52 void rightBackward()

53 {

54 digitalWrite(rightA, LOW);
55 digitalWrite(rightB, HIGH);
56}

58
59
60
61
62

void rightStop()

{

digitalWrite(rightA, LOW);
digitalWrite(rightB, LOW);

Milestone 3

State 1

OCOoONOOTUVDE WNER

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

//Forward Until Button or Time

void statelSetup() {

}

platformForward();
startTime = millis();
state = 1;

void statel() {

}

unsigned long currentTime;
currentTime = millis();

//Go Until Front Button
frontButtonState = digitalRead(frontButton);
if (frontButtonState == HIGH)

{
state2Setup();

}

//Go Until Timeout

currentTime = millis();

if ((currentTime - startTime) > 7000) {
state2Setup();

}

Milestone 3

State 2
1 //Turn Right
2
3 void state2Setup() {
4 platformStop();
5 startTime = millis();
6 state = 2;
7}
8
9 void state2() {
10
11 //Back Off Wall, Turn Right
12 delay(1000);
13 platformBackward();
14 delay(300);
15 platformStop();
16 delay(20);
17 platformSpinRight();
18 delay(400);
19 platformStop();
20 delay(20);
21 platformForward();
22 delay(1200);
23 platformStop();
24 delay(20);
25
26 state3Setup();

Milestone 3

State 3

OCOoONOOTUVDE WNER

//Forward Until Button or Time

void state3Setup() {

platformForward();
startTime = millis();
state = 3;

}

void state3() {
// put your main code here, to run repeatedly:
unsigned long currentTime;

currentTime = millis();

//Go until front button
frontButtonState = digitalRead(frontButton);
if (frontButtonState == HIGH)
{
state4Setup();

}

//Timeout
if ((currentTime - startTime) > 7000)
{
stated4Setup();
}
}

Milestone 3

State 4
1 //Turn Right
2
3 void statedSetup() {
4 platformStop();
5 delay(20);
6 startTime = millis();
7 state = 4;
8
9 }
10
11 void stated() {
12
13 //Turn Right
14 platformBackward();
15 delay(500);
16 platformStop();

17 delay(20);
18 platformSpinRight();

19 delay(450);

20 platformStop();
21 delay(20);

22 state5Setup();

Milestone 3

State 5

1 //Positioning into Corner
2

3 void state5Setup() {

4 platformStop();

5 delay(20);

6 startTime = millis();

7 state = 5;

8 '}

9
10 void state5() {
11 unsigned long currentTime;
12 currentTime = millis();
13
14 //Forward
15 platformForward();
16 delay(1500);
17 platformStop();
18 delay(20);
19
20 //Position by only moving one wheel
21 rightBackward();
22 leftStop();
23 delay(800);
24
25 platformStop();
26 delay(20);
27
28 state6Setup();

29}

Milestone 3

State 6

1 //Parallel Parking

2

3 void state6Setup() {

4 platformStop();

5 delay(20);

6 startTime = millis();

7 state = 6;

8 '}

9

10 void state6() {

11 // put your main code here, to run repeatedly:
12 unsigned long currentTime;

13 currentTime = millis();

14

15 //Parallel Parking into corner

16 //Buttons were extremely unreliable for this, so we used time
17 platformBackward();

18 backButtonState = digitalRead(backButton);
19 if (backButtonState == HIGH)

20 {

21 platformStop();

22 delay(20);

23 rightForward();

24 delay(500);

25 platformStop();

26 delay(20);

27 platformBackward();

28 delay(1000);

29 platformStop();

30 delay(20);

31 rightForward(); //Controlling the wheels allowed us to turn without spinning
32 leftStop();

33 delay(150);

34 platformForward();

35 delay(300);

36 platformStop();

37 delay(1000);

38 state7Setup();

39 }
40
41 //Timeout

42 currentTime = millis();

43 if ((currentTime - startTime) > 2000) {
44 platformStop();

45 delay(20);

46 rightForward();

47 delay(500);

48 platformStop();

49 delay(20);

50 platformBackward();

51 delay(1000);

52 platformStop();

53 delay(20);

54 rightForward(); //Controlling the wheels allowed us to turn without spinning
55 leftStop();

56 delay(150);

57 platformForward();

58
59
60
61
62
63

delay(300);
platformStop();
delay(1000);
state7Setup();

Milestone 3

State 7

1 //Get the block

2

3 void state7Setup() {
4 platformStop();

5 delay(20);

6 state = 7;

7}

8

9 void state7() {

10

11 //Sniper takes block off wall
12 myservos.attach(6);
13 delay(100);

14 myservos.write(40);
15 delay(1000);
16 myservos.write(180);
17 delay(1000);
18 myservos.detach();
19
20 //Empty Cradle into Dumpster
21 myservoc.attach(3);
22 delay(100);
23 myservoc.write(0);
24 delay(1000);
25 myservoc.write(90);
26 delay(250);
27 myservoc.detach();
28 delay(1000);
29
30 state8Setup();

Milestone 3

State 8

1 //Return to Base

2

3 void state8Setup() {
4 platformStop();

5 delay(20);

6 state = 8;

7}

8

9 void state8() {
10
11 //Move around the board counter-clockwise to reach the base
12 //A11l turns are timed because the buttons were unreliable
13 //Letters were used to organize positions on the board
14
15 //A
16 platformSpinRight();
17 delay(750);
18 platformStop();
19 delay(20);
20
21 //B
22 platformForward();
23 delay(6000);
24 platformStop();
25 delay(20);
26
27 //C
28 platformBackward();
29 delay(150);
30 platformStop();
31 delay(20);
32
33 //D

34 platformSpinLeft();
35 delay(800);

36 platformStop();

37 delay(20);

38

39 //E

40 platformForward();
41 delay(6000);

42 platformStop();

43 delay(20);

44

45 //F

46 platformBackward();
47 delay(200);

48 platformStop();

49 delay(20);

50

51 //G

52 platformSpinLeft();
53 delay(350);

54 platformStop();

55 delay(20);

56

57 //H

58
59
60
61
62
63
64

platformForward();
delay(6000);
platformStop();
delay(20);

state9Setup();

Milestone 3

State 9
1 //Empty the dumpster
2
3 void state9Setup() {
4 platformStop();
5 delay(20);
6 state = 9;
7}
8
9 void state9() {
10
11 //Attach dumpster servo, dump it, return, detach
12 myservod.attach(9);
13 delay(1000);
14 myservod.write(180);
15 delay(1000);
16 myservod.write(55);
17 delay(50000);

Milestone 4

Michael Sherman & Michaela Curcio

CoONOOTUVDE WNER

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

//Milestone 4
//Author

2: Michaela

Curcio

// constants won't change. Used here to set pin numbers:

const
const
const
const
const
const

int
int
int
int
int
int

int state

unsigned long startTime;

leftA =
leftB =
rightA =
rightB =

analogInPin = AQ;

tH

4;
8;
7;

// Left Motor A pinbbh
// Left Motor B pin
// Right Motor A pin
// Right Motor B pin
// Analog input pin that the potentiometer is attached to

buzzerPin = 12; // Analog output pin that the LED is attached to
int sensorValue = 0;

:e;

//Setup Servos
#include <Servo.h>

Servo myservod;
Servo myservoc;
Servo myservos;

void setup() {
// set the digital pins as output:

pinMode(leftA, OUTPUT);
pinMode(leftB, OUTPUT);
pinMode(rightA, OUTPUT);
pinMode(rightB, OUTPUT);

//Dumpster
//Cradle
//Sniper

// value read from the pot

// variable to hold current state
// will store the time the state was setup

pinMode(buzzerPin, OUTPUT);

statelSetup();

}

void loop() {
// This loop simply calls the state function for the current State
switch (state) {
case 1:
statel();
break;
case 2:
state2();
break;
case 3:
state3();
break;
case 4:
state4d();
break;
case 5:
state5();
break;
case 6:
state6();
break;

Milestone 4

motorFunctions

1 // Never change these functions

2 // If they have the reversed outcome rewire the platform
3 // Do not re-write these functions
4 void platformForward()

5 A

6 leftForward();

7 rightForward();

8

9 void platformBackward()
10 {
11 leftBackward();
12 rightBackward();
13
14 void platformStop()
15 {

16 leftStop();
17 rightStop();

18 }

19 void platformSpinLeft()

20 {

21 leftBackward();

22 rightForward();

23}

24 void platformSpinRight()

25 {

26 rightBackward();

27 leftForward();

28}

29 //left

30 void leftForward()

31 {

32 digitalWrite(leftA, HIGH);
33 digitalWrite(leftB, LOW);
34 }

35 void leftBackward()

36 {

37 digitalWrite(leftA, LOW);
38 digitalWrite(leftB, HIGH);
39}

40

41 void leftStop()

42 A

43 digitalWrite(leftA, LOW);
44 digitalWrite(leftB, LOW);
45 }

46 //right

47 void rightForward()

48 {

49 digitalWrite(rightA, HIGH);
50 digitalWrite(rightB, LOW);
51}

52 void rightBackward()

53 {

54 digitalWrite(rightA, LOW);
55 digitalWrite(rightB, HIGH);
56}

58
59
60
61
62

void rightStop()

{

}

digitalWrite(rightA, LOW);
digitalWrite(rightB, LOW);

Milestone 4

State 1
1 //Get the block
2
3 void statelSetup() {
4 platformStop();
5 delay(20);
6 state = 1;
7}
8
9 void statel() {
10
11 //Sniper flicks block off wall
12 myservos.attach(6); //attaches sniper to pin 6
13 delay(100);
14 myservos.write(70); //moves down lower so it doesn't just smack it at full speed
15 delay(1000);
16 myservos.write(50); //flicks block in cradle
17 delay(1000);
18 myservos.write(90); //starting position
19 delay(1000);
20 myservos.detach();
21
22 //wiggle cradle
23 myservoc.attach(3); //attaches to pin 3
24 delay(100);
25 myservoc.write(60); //wiggles
26 delay(1000);
27 myservoc.write(80); //moves back to original spot
28 delay(250);
29 myservoc.detach();
30 delay(1000);
31
32 state2Setup();

Milestone 4

State 2
1 //read the color of the block
2
3 void state2Setup() {
4 platformStop();
5 delay(500);
6 state = 2;
7}
8
9 void state2() {
10 // initialize serial communications at 9600 bps:
11 Serial.begin(9600);
12
13 // read the analog in value:
14 sensorValue = analogRead(analogInPin);
15
16 // print the results to the Serial Monitor:
17 Serial.print("sensor = ");
18 Serial.println(sensorValue);
19
20 if (sensorValue < 149) { //for white block
21 startTime = millis();
22 while ((millis() - startTime) < 3000) {
23 tone(buzzerPin, 750, 200); //makes siren noise
24 delay(200);
25 tone(buzzerPin, 2600, 200);
26 delay(200);
27 state3Setup();
28 }
29
30 else if ((150 < sensorValue) && (sensorValue < 800)) { //for black block
31 tone(buzzerPin, 200, 2000); //makes single deep tune
32 delay(2000);
33 state3Setup();
34
35 else if (sensorValue > 801) { //no block
36 myservod.attach(10); //attaches dumpster to pin 1@
37 delay(1000);
38 myservod.write(175); //flings block out of dumpster
39 delay(1000);
40 myservod.write(55); //goes back to staring position
41 delay(1000);
42 myservod.detach();
43 delay(1000);
44 state6Setup(); //doesn't make any noise, sends straight to state 6 to try again incase
block is messed up in cradle
45 }

46 }

Milestone 4

State 3

1 //Empty cradle into dumpster

2

3 void state3Setup() {

4 platformStop();

5 delay(20);

6 state = 3;

7}

8

9 void state3() {
10
11 myservoc.attach(3); //attaches cradle to pin 3
12 delay(100);
13 myservoc.write(5); //throws block from cradle to dumpster
14 delay(1000);
15 myservoc.write(80); //starting position
16 delay(250);
17 myservoc.detach();
18 delay(1000);
19
20 stated4Setup();

Milestone 4

State 4

1 //Yeet block to empty dumpster

2

3 void statedSetup() {

4 platformStop();

5 delay(20);

6 state = 4;

7}

8

9 void state4() {
10
11 myservod.attach(10); //attaches dumpster to pin 10
12 delay(1000);
13 myservod.write(175); //flings block out of dumpster
14 delay(1000);
15 myservod.write(55); //goes back to starting position
16 delay(1000);
17 myservod.detach();
18 delay(1000);
19
20 state5Setup();

Milestone 4

State 5
1 //Scooch forward
2
3 void state5Setup() {
4 platformStop();
5 delay(20);
6 state = 5;
7 %
8
9 void state5() {

10 leftStop();

11 rightForward(); //turns right to get back against back wall
12 delay(100);

13 platformStop();

14 delay(20);

15 platformForward(); //moves forward to get to next block

16 delay(115);

17 platformStop();

18 delay(2000);
19 leftStop();

20 rightForward(); //turns right to get back against back wall again just incase
21 delay(100);

22 platformStop();

23 delay(20);

24

25 statelSetup(); //repeats all 5 states again for next blocks

Milestone 4

State 6

CoONOOTUVDE WNER

//read the color of the block AGAIN
//this is to see if the dumpster fixed anything

void state6Setup() {

}

platformStop();
delay(500);
state = 6;

void state6() {

}

// read the analog in value:
sensorValue = analogRead(analogInPin);

// print the results to the Serial Monitor:
Serial.print("sensor = ");
Serial.println(sensorValue);

if (sensorValue < 149) { //for white block

startTime = millis();

while ((millis() - startTime) < 3000) {
tone(buzzerPin, 750, 200); //makes siren noise
delay(200);
tone(buzzerPin, 2600, 200);
delay(200);
state3Setup();

}

else if ((150 < sensorValue) && (sensorValue < 800)) { //for black block
tone(buzzerPin, 200, 2000); //makes single deep tune
delay(2000);
state3Setup();
}
else if (sensorValue > 801) { //no block
state5Setup(); //go straight to stae 5 because there is actually no block

}

Milestone 5

Author 1: Michael Sherman

CoONOOTUVDE WNER

//Milestone 5 Code
//Author 1: Michael Sherman

//Set
const
const
const
const
const
const
const
const
const
const

pin
int
int
int
int
int
int
int
int
int
int

numbers:

leftA = 5;
leftB = 4;
rightA = 8;
rightB = 7;

// Left Motor A pin
// Left Motor B pin
// Right Motor A pin
// Right Motor B pin

analogInPin = A@; //Color Sensor
buzzerPin = 12; //Buzzer

leftButton =
backButton =
trigPin = 13;
echoPin = A3;

A2; //Left Button Pin

Al; //Back Button Pin
//ultrasonic trigger
//ultrasonic echo

//Initialize Button States and Sensor Value
int backButtonState = 0;
int leftButtonState = 9;
int sensorValue = 0;

// Variables will change:
int blockCounter = 0;
int state = 0;
unsigned long startTime; // will store the time the state was setup
long duration;
float distanceCm;

//Setup Servos
#include <Servo.h>
backDumpster;
cradle;
sniper;
frontDumpster;
turntable;

Servo
Servo
Servo
Servo
Servo

//count number of blocks taken
// variable to hold current state

//duration used in ultrasonic
//distance used in ultrasonic

// Back Dumpster
//Cradle
//Sniper

//Front Dumpster
//Turntable

//Run this to read from ultrasonic

void ultrasonicRead() {

digitalWrite(trigPin,
delayMicroseconds(2);
digitalWrite(trigPin,
delayMicroseconds(10);
digitalWrite(trigPin, LOW);

= pulseIn(echoPin, HIGH);
distanceCm = duration * ©.034 / 2;

duration

}

void setup() {
// set the digital pins as output:
pinMode(leftA, OUTPUT);
pinMode(leftB, OUTPUT);
pinMode(rightA, OUTPUT);
pinMode(rightB, OUTPUT);
pinMode(leftButton, INPUT);
pinMode(backButton, INPUT);
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);

LOW);

HIGH);

58

59 //Begin Servos in the Right Spot
60 //sniper

61 sniper.attach(6);

62 delay(20);

63 sniper.write(165);

64 delay(250);

65 sniper.detach();

66 delay(20);

67

68 //back dumpster

69 backDumpster.attach(10);
70 delay(590);

71 backDumpster.write(60);
72 delay(150);

73 backDumpster.detach();

74

75 //front dumpster

76 frontDumpster.attach(11);
77 delay(50);

78 frontDumpster.write(110);

79 delay(150);
80 frontDumpster.detach();
81

82 //turntable

83 turntable.attach(9);
84 delay(20);

85 turntable.write(110);
86 delay(150);

87 turntable.detach();
88 delay(20);

89

90 //cradle

91 cradle.attach(3);
92 delay(50);

93 cradle.write(90);
94 delay(100);

95 cradle.detach();

96

97

98 //Start with state 1
99 statelSetup();

100 }

101

102 void loop() {

103 switch (state) {
104 case 1:

105 statel();

106 break;

107 case 2:

108 state2();

109 break;

110 case 3:

111 state3();

112 break;

113 case 4:

114 state4();

115 break;

116 case 5:

117 state5();

118 break;

119 case 6:

120 state6();

121 break;

122 case 7:

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

state7();
break;
case 8:
state8();
break;
case 9:
stated();
break;
case 10:
statelo();
break;
case 11:
statell();
break;

Milestone 5

Motor Functions

1 // Never change these functions

2 // If they have the reversed outcome rewire the platform
3 // Do not re-write these functions
4 void platformForward()

5 A

6 leftForward();

7 rightForward();

8

9 void platformBackward()
10 {
11 leftBackward();
12 rightBackward();
13
14 void platformStop()
15 {

16 leftStop();
17 rightStop();

18 }

19 void platformSpinLeft()

20 {

21 leftBackward();

22 rightForward();

23}

24 void platformSpinRight()

25 {

26 rightBackward();

27 leftForward();

28}

29 //left

30 void leftForward()

31 {

32 digitalWrite(leftA, HIGH);
33 digitalWrite(leftB, LOW);
34 }

35 void leftBackward()

36 {

37 digitalWrite(leftA, LOW);
38 digitalWrite(leftB, HIGH);
39}

40

41 void leftStop()

42 A

43 digitalWrite(leftA, LOW);
44 digitalWrite(leftB, LOW);
45 }

46 //right

47 void rightForward()

48 {

49 digitalWrite(rightA, HIGH);
50 digitalWrite(rightB, LOW);
51}

52 void rightBackward()

53 {

54 digitalWrite(rightA, LOW);
55 digitalWrite(rightB, HIGH);
56}

58
59
60
61
62

void rightStop()

{

digitalWrite(rightA, LOW);
digitalWrite(rightB, LOW);

Milestone 5

State 1

1 //Backwards Until Distance or Time
2

3 void statelSetup() {

4 platformBackward();

5 startTime = millis();

6 delay(500);

7 state = 1;

8 }

9

10 void statel() {

11 //call ultrasonic function

12 ultrasonicRead();

13

14 //Check distance to wall
15 if ((distanceCm < 8) and (distanceCm > 1)) {
16 platformStop();
17 delay(20);
18 state2Setup();
19 }
20
21 //Timeout
22 if ((millis() - startTime) > 3000) {
23 platformStop();
24 delay(20);
25 platformForward(); //move away from wall before turning
26 delay(200);
27 platformStop();
28 delay(20);
29 state2Setup();
30 }

31}

Milestone 5

State 2

1 //Turn Right into Wall (Time)
2

3 void state2Setup() {

4 platformSpinRight();

5 startTime = millis();

6 state = 2;

7}

8

9 void state2() {
10
11 //Timeout
12 if ((millis() - startTime) > 1500) {
13 platformStop();
14 delay(20);
15 state3Setup();
16 }

Milestone 5

State 3

CoONOOTUVDE WNER

//Backward Until Button, or Time

void state3Setup() {

}

platformBackward();
delay(250);

startTime = millis();
state = 3;

void state3() {

}

//Check Button
backButtonState = digitalRead(backButton);
if (backButtonState == HIGH)
{
platformStop();
delay(20);
state4Setup();

}

//Timeout
if ((millis() - startTime) > 5000)
{

platformStop();

delay(20);

stated4Setup();

}

Milestone 5

State 4
1 //Turn Left
2
3 void statedSetup() {
4 platformStop();
5 delay(20);
6 platformForward(); //Move away from wall before turning
7 delay(890);
8 platformStop();
9 delay(20);
10 startTime = millis();
11 state = 4;
12}
13
14 void stated() {
15
16 //Turn Left
17 platformSpinLeft();
18 delay(200);
19
20 //Stop if Left Button
21 if ((digitalRead(leftButton)) == HIGH) {
22 state5Setup();
23 }
24
25 //Stop if Time
26 if ((millis() - startTime) > 3000) {
27 state5Setup();
28 }

29}

Milestone 5

State 5

1 //Positioning into Corner
2

3 void state5Setup() {

4 platformStop();

5 delay(20);

6 startTime = millis();

7 state = 5;

8 '}

9
10 void state5() {
11 unsigned long currentTime = millis();
12
13 //Forward
14 platformForward();
15 delay(1500);
16 platformStop();
17 delay(20);
18
19 //Position by only moving one wheel
20 rightBackward();
21 leftStop();
22 delay(200);
23
24 platformStop();
25 delay(20);
26
27 state6Setup();

N
00
-

Milestone 5

State 6
1 //Parallel Parking
2
3 void state6Setup() {
4 platformStop();
5 delay(20);
6 startTime = millis();
7 state = 6;
8 platformBackward();
o }
10
11 void state6() {
12
13 //Buttons were extremely unreliable for this, so we used time
14 if ((millis() - startTime) > 2000) {
15 platformStop();
16 delay(20);
17 rightForward(); //Control individual wheels
18 delay(500);
19 platformStop();
20 delay(20);
21 platformBackward(); //back all the way into corner to align with first block
22 delay(1200);
23 platformStop();
24 delay(20);
25 rightForward(); //Controlling the wheels allowed us to turn without spinning
26 leftStop();
27 delay(150);
28 state7Setup();
29 }

Milestone 5

State 7

1 //Get the block

2

3 void state7Setup() {

4 platformStop();

5 delay(20);

6 state = 7;

7}

8

9 void state7() {
10
11 //Sniper flicks block off wall
12 sniper.attach(6); //attaches sniper to pin 6
13 delay(100);
14 sniper.write(70); //moves down lower so it doesn't just smack it at full speed
15 delay(500);
16 sniper.write(50); //flicks block in cradle
17 delay(500);
18 sniper.write(90); //starting position
19 delay(500);
20 sniper.detach();
21
22
23 //wiggle cradle
24 cradle.attach(3); //attaches to pin 3
25 delay(100);
26 cradle.write(65); //wiggles
27 delay(300);
28 cradle.write(90); //moves back to original spot
29 delay(200);
30 cradle.detach();
31 delay(590);
32
33 state8Setup();

Milestone 5

State 8

1 //Sensing

2 void state8Setup() {

3 platformStop();

4 delay(20);

5

6 //add block to counter

7 blockCounter = blockCounter + 1;
8 state = 8;

o }
10
11 void state8() {

12

13 delay(500); // make sure block is settled after wiggle
14 sensorValue = analogRead(analogInPin); //sense the color
15

16 //White Block

17 if (sensorValue < 149) {

18 statel0@Setup();

19 }

20

21 //Black Block

22 else if (150 < sensorValue) {

23 state9Setup();

24 }

Milestone 5

State 9

1 //Black Block

2

3 void state9Setup() {

4 platformStop();

5 delay(20);

6 state = 9;

7}

8

9 void state9() {

10

11 //receive block from cradle

12 cradle.attach(3); //attaches cradle to pin 3
13 delay(100);

14 cradle.write(5); //throws block from cradle to dumpster
15 delay(250);

16 cradle.write(90); //starting position

17 delay(250);

18 cradle.detach();

19 delay(20);

20

21 //1ift dumpster to move blocks

22 backDumpster.attach(10);

23 delay(20);

24 backDumpster.write(95);

25 delay(100);

26

27 //put dumpster down gently

28 for (int pos = 95; pos >= 60; pos -= 1) {
29 backDumpster.write(pos);

30 delay(20);

31 }

32

33 //scooch forward

34 leftStop();

35 rightForward(); //turns left to get back against back wall
36 delay(100);

37 platformStop();

38 delay(20);

39 platformForward(); //moves forward to get to next block
40 delay(55); //if bats are low, put at 120
41 platformStop();

42 delay(20);
43 leftStop();

44 rightForward(); //turns left to get back against back wall again just incase
45 delay(100);

46 platformStop();

47 delay(20);

48

49 //Depending on the counter, get another block, or bring the blocks to the bin
50 if (blockCounter > 6) {

51 statellSetup();

52 }

53 else {

54 state7Setup();

55 }

56}

Milestone 5

State 10

1 //White Block

2

3 void stateleSetup() {

4 platformStop();

5 delay(20);

6 state = 10;

7}

8

9 void statel0() {

10 //move away from wall

11 platformSpinRight();

12 delay(250);

13 platformStop();

14 delay(20);

15

16 //spin the turntable

17 turntable.attach(9);

18 delay(100);

19 turntable.write(25);

20 delay(500);

21 turntable.detach();

22

23 //bring down the front dumpster
24 frontDumpster.attach(11);

25 delay(100);

26 frontDumpster.write(52);

27 delay(500);

28 frontDumpster.detach();

29

30 //Empty the cradle

31 cradle.attach(3); //attaches cradle to pin 3
32 delay(100);

33 cradle.write(5); //throws block from cradle to dumpster
34 delay(500);

35 cradle.write(90); //starting position
36 delay(250);

37 cradle.detach();

38 delay(50);

39
40 //bring up dumpster gently
41 frontDumpster.attach(11);
42 delay(100);
43 for (int pos = 52; pos <= 110; pos += 1) {
44 frontDumpster.write(pos);
45 delay(10);
46 }
47 frontDumpster.detach();
48
49 //swing the turntable back

50 turntable.attach(9);
51 delay(100);

52 turntable.write(110);
53 delay(500);

54 turntable.detach();
55

56 //turn back

57 platformSpinLeft();

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

}

delay(500);
platformStop();
delay(20);

//scooch forward

leftStop();

rightForward(); //turns right to get back against back wall
delay(100);

platformStop();

delay(20);

platformForward(); //moves forward to get to next block
delay(45);

platformStop();

delay(20);

leftStop();

rightForward(); //turns right to get back against back wall again just in case
delay(100);

platformStop();

delay(20);

//Depending on the counter, get another block, or bring the blocks to the bin
if (blockCounter > 6) {
statellSetup();
}
else {
state7Setup();
}

Milestone 5

State 11
1 //Delivery
2
3 void stateliSetup() {
4
5
6 frontDumpster.attach(11);
7 delay(100);
8 frontDumpster.write(90);

9 delay(500);

10 frontDumpster.detach();

11

12 //drive backwards

13 platformBackward();

14 startTime = millis();

15 tone(buzzerPin, 2000, 250);
16 Serial.print("State 11");
17 state = 11;

18 }

19

20 void statell() {

21

22 //Reverse into wall

23 if ((digitalRead(backButton)
24 platformStop();

25 delay(20);

26 platformForward();

27 delay(100);

28 platformSpinRight();

29 delay(2000);

30 platformForward();

31 delay(5000);

32 platformStop();

33 delay(20);

34

35 //Dump the blocks

36 frontDumpster.attach(11);
37 delay(100);

38 frontDumpster.write(160);
39 delay(500);

40 frontDumpster.write(110);
41 delay(500);

42 frontDumpster.detach();
43 delay(20000);

44 }

//lower the front dumpster a bit so we don't lose blocks in transport

HIGH) or ((millis() - startTime) > 3000)) {

Final Project Demo

Michael Sherman & Michaela Curcio

1 //Final Project Demo Code

2 //Author 2: Michaela Curcio

3

4 //Set pin numbers:

5 const int leftA = 5; // Left Motor A pin
6 const int leftB = 4; // Left Motor B pin
7 const int rightA = 8; // Right Motor A pin
8 const int rightB = 7; // Right Motor B pin
9 const int analogInPin = A@; //Color sensor
10 const int buzzerPin = 12; //buzzer

11 const int leftButton
12 const int backButton

A2; //Left Button Pin
Al; //Back Button Pin

14 //Initialize Button States and
15 int backButtonState = 0;

16 int leftButtonState = 0;

17 int sensorValue = 0;

18

19 // Variables will change:

20 int blockCounter = @; // count number of blocks sniped
21 int state = 0; // variable to hold current state

22 unsigned long startTime; // will store the time the state was setup

24 //Setup Servos
25 #include <Servo.h>
26 Servo backDumpster; //Dumpster

27 Servo cradle; //Cradle

28 Servo sniper; //Sniper

29 Servo frontDumpster; //front dumpster
30 Servo turntable; //turntable

31

32 //ultrasonic

33 const int trigPin = 13;

34 const int echoPin = A3;

35 long duration;
36 float distanceCm;

38 //Run this to read from ultrasonic
39 void ultrasonicRead() {

40 digitalWrite(trigPin, LOW);

41 delayMicroseconds(2);

42 digitalWrite(trigPin, HIGH);

43 delayMicroseconds(10);

44 digitalWrite(trigPin, LOW);

45 duration = pulseIn(echoPin, HIGH);
46 distanceCm = duration * 0.034 / 2;
47 }

48

49 void setup() {

50 // set the digital pins as output:
51 pinMode(leftA, OUTPUT);

52 pinMode(leftB, OUTPUT);

53 pinMode(rightA, OUTPUT);

54 pinMode(rightB, OUTPUT);

55 pinMode(leftButton, INPUT);

56 pinMode(backButton, INPUT);

57 pinMode(trigPin, OUTPUT);

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

pinMode(echoPin, INPUT);

//Begin Servos in the Right
//sniper

sniper.attach(6);
delay(20);
sniper.write(165);
delay(250);
sniper.detach();

delay(20);

//back dumpster
backDumpster.attach(10);
delay(50);
backDumpster.write(60);
delay(150);
backDumpster.detach();

//front dumpster
frontDumpster.attach(11);
delay(590);
frontDumpster.write(110);
delay(150);
frontDumpster.detach();

//turntable
turntable.attach(9);
delay(20);
turntable.write(110);
delay(150);
turntable.detach();
delay(20);

//cradle
cradle.attach(3);
delay(50);
cradle.write(90);
delay(100);
cradle.detach();

Serial.begin(9600);

//Go to state 1
Doubler();

}

void loop() {
switch (state) {

case O:
Doubler();
break;

case 1:
Se1Backup();
break;

case 2:
S@2TurnRight();
break;

case 3:
S@3Backup();
break;

case 4:
S@4TurnLeft();
break;

case 5:
S@5ToCorner();

Spot

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

break;

case 6:
Se6ParallelPark();
break;

case 7:
S@7GoToBlock();
break;

case 8:
Se8SenseBlock();
break;

case 9:
S@9Black();
break;

case 10:
S1ewhite();
break;

case 11:
S1iWhiteDelivery();
break;

case 12:
S12BlackDelivery();
break;

case 13:
S13Turning();
break;

case 14:
S14Backup();
break;

case 15:
S15TurnRight();
break;

case 16:
S16Backup();
break;

case 17:
S17TurnLeft();
break;

case 18:
S18ToCorner();
break;

case 19:
S19ParallelPark();
break;

case 20:
S20GoToBlock();
break;

case 21:
S21SenseBlock();
break;

case 22:
S22Black();
break;

case 23:
S23White();
break;

case 24:
S24StartingPos();
break;

case 25:
S25WhiteDelivery();
break;

case 26:
S26BlackDelivery();
break;

187
188

}

}

Final Project Demo

motorFunctions

1 // Never change these functions

2 // If they have the reversed outcome rewire the platform
3 // Do not re-write these functions
4 void platformForward()

5 A

6 leftForward();

7 rightForward();

8

9 void platformBackward()
10 {
11 leftBackward();
12 rightBackward();
13
14 void platformStop()
15 {

16 leftStop();
17 rightStop();

18 }

19 void platformSpinLeft()

20 {

21 leftBackward();

22 rightForward();

23}

24 void platformSpinRight()

25 {

26 rightBackward();

27 leftForward();

28}

29 //left

30 void leftForward()

31 {

32 digitalWrite(leftA, HIGH);
33 digitalWrite(leftB, LOW);
34 }

35 void leftBackward()

36 {

37 digitalWrite(leftA, LOW);
38 digitalWrite(leftB, HIGH);
39}

40

41 void leftStop()

42 A

43 digitalWrite(leftA, LOW);
44 digitalWrite(leftB, LOW);
45 }

46 //right

47 void rightForward()

48 {

49 digitalWrite(rightA, HIGH);
50 digitalWrite(rightB, LOW);
51}

52 void rightBackward()

53 {

54 digitalWrite(rightA, LOW);
55 digitalWrite(rightB, HIGH);
56}

58
59
60
61
62

void rightStop()

{

digitalWrite(rightA, LOW);
digitalWrite(rightB, LOW);

Final Project Demo

Doubler
1 void DoublerSetup() {
2 state = 0;
3}
4
5 void Doubler() {
6
7 //back up & place againt divider wall
8 platformBackward();

9 delay(900);
10 platformStop();

11 delay(20);

12 platformSpinRight();
13 delay(200);

14 platformStop();

15 delay(20);

16 platformBackward();

17 delay(1300);

18

19 leftStop();

20 rightForward();

21 delay(400);

22

23 platformBackward();

24 delay(900);

25

26

27 //position sniper into correct spot
28 sniper.attach(6); //attaches sniper to pin 6
29 delay(50);

30 sniper.write(55); //position to get doubler
31 delay(500);

32 sniper.detach();

33

34 //cradle

35 cradle.attach(3);

36 delay(50);

37 cradle.write(85);

38 delay(100);

39 cradle.detach();

40

41 //Drive by for doubler
42 //give 'em the shimm
43 startTime = millis();
44 platformForward();

45 delay(300);

46 while ((millis() - startTime) < 2000) {
47 platformForward();
48 delay(170);

49 platformSpinLeft();
50 delay(100);

51 }

52 platformForward();

53 delay(2000);

54 platformStop();

55 delay(20);

56

57 //fix sniper

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

sniper.attach(6);
delay(20);
sniper.write(165);
delay(250);
sniper.detach();
delay(20);

//cradle

cradle.attach(3); //attaches cradle to pin 3

delay(100);

cradle.write(5); //throws doubler from cradle to dumpster
delay(250);

cradle.write(90); //starting position

delay(250);

cradle.detach();

delay(20);

//turn to get to side wall
platformSpinLeft();
delay(475);
platformStop();

delay(20);

platformStop();
delay(20);
S@1BackupSetup();

Final Project Demo

S01Backup
1 //Backwards Until Distance or Time
2
3 void SeiBackupSetup() {
4 platformBackward(); //go backwards
5 startTime = millis();
6 delay(9900);
7 state = 1;
8 }
9
10 void Se@i1Backup() {
11 ultrasonicRead();
12 Serial.println(distanceCm);
13
14 //Check distance to wall
15 if ((distanceCm < 8) and (distanceCm > 1)) {
16 platformStop();
17 delay(20);
18 S02TurnRightSetup();
19 }
20
21 //Timeout
22 if ((millis() - startTime) > 2500) {
23 platformStop();
24 delay(20);
25 platformForward();
26 delay(200);
27 platformStop();
28 delay(20);
29 S@2TurnRightSetup();
30 }

w
=
—

Final Project Demo

S02TurnRight

1 //Turn Right into Wall (Time)
2

3 void S@2TurnRightSetup() {

4 platformSpinRight();

5 startTime = millis();

6 state = 2;

7}

8

9 void S@2TurnRight() {
10
11 //Timeout
12 if ((millis() - startTime) > 700) {
13 platformStop();
14 delay(20);
15 Se3BackupSetup();
16 }

Final Project Demo

S03Backup
1 //Backward Until Button, or Time
2
3 void Se3BackupSetup() {
4 platformBackward();
5 delay(250);
6 startTime = millis();
7 state = 3;
8 '}
9
10 void Se3Backup() {
11 unsigned long currentTime = millis();
12
13 //Dump that bad boy (the doubler)
14 if ((currentTime - startTime) > 750)
15 {
16 backDumpster.attach(10);
17 delay(100);
18 backDumpster.write(160);
19 delay(600);
20 backDumpster.write(60);
21 delay(600);
22 backDumpster.detach();
23 delay(20);
24 }
25
26 //Check Button
27 backButtonState = digitalRead(backButton);
28 if (backButtonState == HIGH)
29 {
30 platformStop();
31 delay(20);
32 Se4TurnLeftSetup();
33 }
34
35 //Timeout
36 if ((currentTime - startTime) > 3500)
37 {
38 platformStop();
39 delay(20);
40 Se4TurnLeftSetup();
41 }
42 }

Final Project Demo

S04TurnLeft

1 //Turn Left

2

3 void Se4TurnLeftSetup() {
4 platformStop();

5 delay(20);

6 platformForward();

7 delay(890);

8 platformStop();

9 delay(20);
10 startTime = millis();
11 state = 4;
12}
13
14 void Se@4TurnLeft() {
15
16 platformSpinLeft();

17 delay(300);
18 platformStop();
19 delay(50);

20

21 //Stop if Button

22 if ((digitalRead(leftButton)) == HIGH) {
23 S@5ToCornerSetup();

24 }

25

26 //Stop if Time

27 if ((millis() - startTime) > 2500) {

28 S@5ToCornerSetup();

29 }

30}

Final Project Demo

S05ToCorner
1 //Positioning into Corner
2
3 void Se5ToCornerSetup() {
4 platformStop();
5 delay(20);
6 state = 5;
7}
8
9 void Se5ToCorner() {
10
11 //Forward front of bot on divider
12 platformForward();
13 delay(1500);
14 platformStop();
15 delay(20);
16
17 //Position by only moving one wheel to put left wheel aginst back wall
18 rightBackward();

19 leftStop();
20 delay(150);

22 Se6ParallelParkSetup();

Final Project Demo

us to turn without spinning

us to turn without spinning

S06ParallelPark
1 //Parallel Parking
2
3 void Se6ParallelParkSetup() {
4 platformStop();
5 delay(20);
6 startTime = millis();
7 state = 6;
8 '}
9
10 void Se6ParallelPark() {
11 unsigned long currentTime;
12 currentTime = millis();
13
14 //Parallel Parking into corner
15 //Buttons were extremely unreliable for this, so we used time
16 platformBackward();
17 backButtonState = digitalRead(backButton);
18 if (backButtonState == HIGH)
19 {
20 platformStop();
21 delay(20);
22 rightForward();
23 delay(500);
24 platformStop();
25 delay(20);
26 platformBackward();
27 delay(1200);
28 platformStop();
29 delay(20);
30 rightForward(); //Controlling the wheels allowed
31 leftStop();
32 delay(150);
33 S07GoToBlockSetup();
34 }
35
36 //Timeout
37 currentTime = millis();
38 if ((currentTime - startTime) > 2000) {
39 platformStop();
40 delay(20);
41 rightForward();
42 delay(500);
43 platformStop();
44 delay(20);
45 platformBackward();
46 delay(1200);
47 platformStop();
48 delay(20);
49 rightForward(); //Controlling the wheels allowed
50 leftStop();
51 delay(150);
52 S@7GoToBlockSetup();
53 }
54 }

Final Project Demo

S07GoToBlock

1 //Get the block

2

3 void S@7GoToBlockSetup() {

4 platformStop();

5 delay(20);

6 state = 7;

7}

8

9 void S@7GoToBlock() {
10
11 //Sniper flicks block off wall
12 sniper.attach(6); //attaches sniper to pin 6
13 delay(50);
14 sniper.write(70); //moves down lower so it doesn't just smack it at full speed
15 delay(250);
16 sniper.write(50); //flicks block in cradle
17 delay(500);
18 sniper.write(90); //starting position
19 delay(500);
20 sniper.detach();
21
22
23 //wiggle cradle
24 cradle.attach(3); //attaches to pin 3
25 delay(50);
26 cradle.write(65); //wiggles
27 delay(250);
28 cradle.write(90); //moves back to original spot
29 delay(250);
30 cradle.detach();
31 delay(590);
32
33 Se8SenseBlockSetup();

Final Project Demo

S08SenseBlock

1 //Sensing

2 void Se8SenseBlockSetup() {

3 platformStop();

4 delay(20);

5

6 //add block to counter

7 blockCounter = blockCounter + 1;
8 Serial.println(blockCounter);

9 state = 8;

e }

11

12 void Se@8SenseBlock() {

13

14 // wait for block to fall and read the analog in value:
15 delay(300);
16 sensorValue = analogRead(analogInPin);
17
18 // print the results to the Serial Monitor:
19 Serial.print("sensor = ");
20 Serial.println(sensorValue);
21
22 //White Block
23 if (sensorValue < 149) {
24 S1leWhiteSetup();
25 }
26
27 //Black Block
28 else if (150 < sensorValue) {
29
30 Se9BlackSetup();
31 }

32}

Final Project Demo

S09Black

1 //Black Block

2

3 void Se9BlackSetup() {

4 platformStop();

5 delay(20);

6 state = 9;

7}

8

9 void Se@9Black() {

10

11 //receive block from cradle

12 cradle.attach(3); //attaches cradle to pin 3
13 delay(100);

14 cradle.write(5); //throws block from cradle to dumpster
15 delay(250);

16 cradle.write(90); //starting position

17 delay(250);

18 cradle.detach();

19 delay(20);

20

21 //1ift dumpster to move blocks

22 backDumpster.attach(10);

23 delay(20);

24 backDumpster.write(95);

25 delay(100);

26 //put it down gently

27 for (int pos = 95; pos >= 60; pos -= 1) {
28 backDumpster.write(pos);

29 delay(20);

30 }

31

32

33 //scooch

34 leftStop();

35 rightForward(); //turns left to get back against back wall
36 delay(100);

37 platformStop();

38 delay(20);

39 platformForward(); //moves forward to get to next block
40 delay(49);
41 platformStop();

42 delay(20);
43 leftStop();

44 rightForward(); //turns left to get back against back wall again just incase
45 delay(100);

46 platformStop();

47 delay(20);

48

49 if (blockCounter > 7) {

50 S1llWhiteDeliverySetup();
51 }

52 else {

53 S@7GoToBlockSetup();

54 }

Final Project Demo

S10White

1 //White Block

2

3 void Si1eWhiteSetup() {

4 platformStop();

5 delay(20);

6 state = 10;

7}

8

9 void Siewhite() {

10 //move away from wall

11 platformSpinRight();

12 delay(250);

13 platformStop();

14 delay(20);

15

16 //spin the turntable

17 turntable.attach(9);

18 delay(100);

19 turntable.write(25);

20 delay(500);

21 turntable.detach();

22

23 //bring down the front dumpster
24 frontDumpster.attach(11);

25 delay(100);

26 frontDumpster.write(52);

27 delay(500);

28 frontDumpster.detach();

29

30 //Empty the cradle

31 cradle.attach(3); //attaches cradle to pin 3
32 delay(100);

33 cradle.write(5); //throws block from cradle to dumpster
34 delay(500);

35 cradle.write(90); //starting position
36 delay(250);

37 cradle.detach();

38 delay(50);

39
40 //bring up the front dumpster
41 //bring up gently
42 frontDumpster.attach(11);
43 delay(100);
44 for (int pos = 52; pos <= 110; pos += 1) {
45 frontDumpster.write(pos);
46 delay(10);
47 }
48 frontDumpster.detach();
49

50 //swing the turntable back

51 turntable.attach(9);

52 delay(100);

53 turntable.write(110);

54 delay(500);

55 turntable.detach();

56

57 //turn back

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

}

platformSpinLeft();
delay(500);
platformStop();
delay(20);

//scooch

leftStop();

rightForward(); //turns right to get back against back wall
delay(100);

platformStop();

delay(20);

platformForward(); //moves forward to get to next block
delay(30);

platformStop();

delay(20);

leftStop();

rightForward(); //turns right to get back against back wall again just in case
delay(100);

platformStop();

delay(20);

if (blockCounter > 7) {

}

S1llWhiteDeliverySetup();

else {

}

S@7GoToBlockSetup();

Final Project Demo

S11WhiteDelivery
1 //Delivery
2
3 void SliWhiteDeliverySetup() {
4
5 //lower the front dumpster a bit so we don't lose blocks in transport
6 frontDumpster.attach(11);
7 delay(100);
8 frontDumpster.write(90);
9 delay(250);
10 frontDumpster.detach();
11
12 platformBackward();
13 startTime = millis();
14 state = 11;
15}
16
17 void SliWhiteDelivery() {
18
19 //Reverse for distance or time
20 if ((digitalRead(backButton) == HIGH) or ((millis() - startTime) > 2000)) {
21 platformStop();
22 delay(20);
23 platformForward();
24 delay(100);
25 platformSpinRight();
26 delay(2000);
27 platformForward();
28 delay(3000);
29 platformStop();
30 delay(20);
31
32 //Dump it
33 frontDumpster.attach(11);
34 delay(100);
35 frontDumpster.write(160);
36 delay(300);
37 frontDumpster.write(110);
38 delay(300);
39 frontDumpster.detach();
40 delay(20);
41
42 S12BlackDeliverySetup();
43 }

Final Project Demo

S12BlackDelivery
1 //Delivery on other side (black)
2
3 void S12BlackDeliverySetup() {
4 platformBackward();
5 delay(300);
6 state = 12;
7 startTime = millis();
8 '}
9
10 void Si2BlackDelivery() {
11 platformStop();
12 delay(20);
13
14 //Give 'em the shimm
15 while ((millis() - startTime < 1600)) {
16
17 platformSpinLeft();
18 delay(200);
19 platformForward();
20 delay(100);
21 }
22
23 platformStop();
24 delay(20);
25 platformForward();
26 delay(2500);
27 platformStop();
28 delay(20);
29 platformBackward();
30 delay(200);
31 platformStop();
32 delay(20);
33
34 //turning after got to black side in order to ride black wall
35 platformSpinLeft();
36 delay(400);
37 platformForward();
38 delay(400);
39
40 platformStop();
41 delay(20);
42
43 //Give 'em the shimm, but mostly forward
44 startTime = millis();
45 while ((millis() - startTime < 1600))
46 {
47 platformSpinRight();
48 delay(50);
49 platformForward();
50 delay(200);
51 }
52 //stop so she doesn't ride the wall and still gets to perfect angle
53 platformStop();
54 delay(20);
55
56 //Dump it
57 backDumpster.attach(10);

58
59
60
61
62
63
64
65
66
67

delay(100);
backDumpster.write(160);
delay(600);
backDumpster.write(60);
delay(600);
backDumpster.detach();
delay(20);

S13TurningSetup();

Final Project Demo

S13Turning
1 //Back up to turn
2
3 void S13TurningSetup() {
4 state = 13;
5 '}
6
7 void S13Turning() {
8
9 //doesn't go back as much because it stops beforehand (and doesn't go forward)
10 platformBackward();
11 delay(200);
12
13 platformSpinLeft();
14 delay(800);
15 platformForward();
16 delay(400);
17
18
19 platformSpinRight();
20 delay(1600);
21
22 S14BackupSetup();

Final Project Demo

S14Backup
1 //Backwards Until Distance or Time
2
3 void Si14BackupSetup() {
4 platformBackward();
5 startTime = millis();
6 delay(500);
7 state = 14;
8 }
9
10 void Si4Backup() {
11
12 ultrasonicRead();
13 Serial.println(distanceCm);
14
15 //Check distance to wall
16 if ((distanceCm < 8) and (distanceCm > 1)) {
17 platformStop();
18 delay(20);
19 S15TurnRightSetup();
20 }
21
22
23 //Timeout
24 if ((millis() - startTime) > 2000) {
25 platformStop();
26 delay(20);
27 platformForward();
28 delay(100);
29 platformStop();
30 delay(20);
31 S15TurnRightSetup();
32 }

Final Project Demo

S15TurnRight

1 //Turn Right into Wall (Time)
2

3 void S15TurnRightSetup() {

4 platformSpinRight();

5 startTime = millis();

6 state = 15;

7}

8

9 void S15TurnRight() {
10
11 //Timeout
12 if ((millis() - startTime) > 700) {
13 platformStop();
14 delay(20);
15 S16BackupSetup();
16 }

Final Project Demo

S16Backup

1 //Backward Until Button, or Time

2

3 void Si16BackupSetup() {

4 platformBackward();

5 delay(250);

6 startTime = millis();

7 state = 16;

8 '}

9
10 void Si6Backup() {
11 unsigned long currentTime = millis();
12
13 //Check Button
14 backButtonState = digitalRead(backButton);
15 if (backButtonState == HIGH)
16 {
17 platformStop();
18 delay(20);
19 S17TurnLeftSetup();
20 }
21
22 //Timeout
23 if ((currentTime - startTime) > 2000)
24 {
25 platformStop();
26 delay(20);
27 S17TurnLeftSetup();
28 }
29 }

Final Project Demo

S17TurnLeft

1 //Turn Left

2

3 void S17TurnLeftSetup() {
4 platformStop();

5 delay(20);

6 platformForward();

7 delay(890);

8 platformStop();

9 delay(20);

10 startTime = millis();
11 state = 17;

12
13}
14
15 void S17TurnLeft() {
16
17 platformSpinLeft();
18
19 //Stop if Button
20 if ((digitalRead(leftButton)) == HIGH) {
21 S18ToCornerSetup();
22 }
23
24 //Stop if Time
25 if ((millis() - startTime) > 3000) {
26 S18ToCornerSetup();
27 }

28}

Final Project Demo

S18ToCorner
1 //Positioning into Corner
2
3 void S18ToCornerSetup() {
4 platformStop();
5 delay(20);
6 state = 18;
7}
8
9 void S18ToCorner() {
10
11 //Forward
12 platformForward();
13 delay(1500);
14 platformStop();
15 delay(20);
16
17 //Position by only moving one wheel
18 rightBackward();

19 leftStop();
20 delay(150);

21

22 platformStop();

23 delay(20);

24

25 S19ParallelParkSetup();

Final Project Demo

S19ParallelParking
1 //Parallel Parking
2
3 void S19ParallelParkSetup() {
4 platformStop();
5 delay(20);
6 startTime = millis();
7 state = 19;
8 '}
9
10 void S19ParallelPark() {
11 unsigned long currentTime;
12 blockCounter = 0;
13
14 //Parallel Parking into corner
15 platformBackward();
16
17 //Timeout
18 currentTime = millis();
19 if ((currentTime - startTime) > 2000) {
20 platformStop();
21 delay(20);
22 rightForward();
23 delay(500);
24 platformStop();
25 delay(20);
26 platformBackward();
27 delay(1200);
28 platformStop();
29 delay(20);
30 rightForward(); //Controlling the wheels allowed us to turn without spinning
31 leftStop();
32 delay(150);
33
34 //gets into position right in front of first block
35 platformStop();
36 delay(20);
37 platformForward();
38 delay(155);
39 platformStop();
40 delay(20);
41
42 S20GoToBlockSetup();
43}
44}

Final Project Demo

S20GoToBlock
1 //Get the block
2
3 void S20GoToBlockSetup() {
4 platformStop();
5 delay(20);
6 state = 20;
7}
8
9 void S20GoToBlock() {
10
11 //Sniper flicks block off wall
12 sniper.attach(6); //attaches sniper to pin 6
13 delay(20);
14 sniper.write(70); //moves down lower so it doesn't just smack it at full speed
15 delay(500);
16 sniper.write(50); //flicks block in cradle
17 delay(300);
18 sniper.write(90); //starting position
19 delay(300);
20 sniper.detach();
21 delay(20);
22
23
24 //wiggle cradle
25 cradle.attach(3); //attaches to pin 3
26 delay(20);
27 cradle.write(65); //wiggles
28 delay(250);
29 cradle.write(90); //moves back to original spot
30 delay(250);
31 cradle.detach();
32 delay(20);
33
34 S21SenseBlockSetup();
35

Final Project Demo

S21SenseBlock

1 //Sensing

2 void S21SenseBlockSetup() {

3 platformStop();

4 delay(20);

5

6 //add block to counter

7 blockCounter = blockCounter + 1;
8 Serial.println(blockCounter);

9 state = 21;

e }

11

12 void S21SenseBlock() {

13

14 //wait for block to settle and read the analog in value:
15 delay(500);
16 sensorValue = analogRead(analogInPin);
17
18 // print the results to the Serial Monitor:
19 Serial.print("sensor = ");
20 Serial.println(sensorValue);
21
22 //White Block
23 if (sensorValue < 149) {
24 S23WhiteSetup();
25 }
26
27 //Black Block
28 else if (150 < sensorValue) {
29
30 S22BlackSetup();
31 }

32}

Final Project Demo

S22Black
1 //Black Block
2
3 void S22BlackSetup() {
4 platformStop();
5 delay(20);
6 state = 22;
7}
8
9 void S22Black() {
10
11 //receive block from cradle
12 cradle.attach(3); //attaches cradle to pin 3
13 delay(100);
14 cradle.write(5); //throws block from cradle to dumpster
15 delay(250);
16 cradle.write(90); //starting position
17 delay(250);
18 cradle.detach();
19 delay(20);
20
21 //1ift dumpster to move blocks
22 backDumpster.attach(10);
23 delay(20);
24 backDumpster.write(95);
25 delay(100);
26 //put it down gently
27 for (int pos = 95; pos >= 60; pos -= 1) {
28 backDumpster.write(pos);
29 delay(20);
30
31
32 //scooch
33 leftStop();
34 rightForward(); //turns left to get back against back wall
35 delay(100);
36 platformStop();
37 delay(20);
38 platformForward(); //moves forward to get to next block
39 delay(35);
40 platformStop();
41 delay(20);
42 leftStop();
43 rightForward(); //turns left to get back against back wall again just incase
44 delay(100);
45 platformStop();
46 delay(20);
47
48 if (blockCounter > 8) {
49 S24StartingPosSetup();
50 }
51 else {
52 S20GoToBlockSetup();
53 }
54 }

Final Project Demo

S23White

1 //White Block

2

3 void S23WhiteSetup() {

4 platformStop();

5 delay(20);

6 state = 23;

7}

8

9 void S23White() {

10 //move away from wall

11 platformSpinRight();

12 delay(250);

13 platformStop();

14 delay(20);

15

16 //spin the turntable

17 turntable.attach(9);

18 delay(100);

19 turntable.write(25);

20 delay(500);

21 turntable.detach();

22

23 //bring down the front dumpster
24 frontDumpster.attach(11);

25 delay(100);

26 frontDumpster.write(52);

27 delay(500);

28 frontDumpster.detach();

29

30 //Empty the cradle

31 cradle.attach(3); //attaches cradle to pin 3
32 delay(100);

33 cradle.write(5); //throws block from cradle to dumpster
34 delay(500);

35 cradle.write(90); //starting position
36 delay(250);

37 cradle.detach();

38 delay(50);

39
40 //bring up the front dumpster
41
42 //bring up gently
43 frontDumpster.attach(11);
44 delay(100);
45 for (int pos = 52; pos <= 110; pos += 1) {
46 frontDumpster.write(pos);
47 delay(10);
48 }
49 frontDumpster.detach();

50

51 //swing the turntable back

52 turntable.attach(9);

53 delay(100);

54 turntable.write(110);

55 delay(500);

56 turntable.detach();

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

}

//turn back

platformSpinLeft();

delay(500);
platformStop();
delay(20);

//scooch
leftStop();
rightForward();
delay(100);
platformStop();
delay(20);

//turns right to get back against back wall

platformForward(); //moves forward to get to next block

delay(25);
platformStop();
delay(20);
leftStop();
rightForward();
delay(100);
platformStop();
delay(20);

//turns right to get back against back wall again just in case

if (blockCounter > 8) {
S24StartingPosSetup();

}

else {

S20GoToBlockSetup();

}

Final Project Demo

S24StartingPos

//Third Delivery
void S24StartingPosSetup() {

//lower the front dumpster a bit so we don't lose blocks in transport
frontDumpster.attach(11);

delay(100);

frontDumpster.write(90);

9 delay(500);

10 frontDumpster.detach();

11

12 platformBackward();

13 startTime = millis();

14 tone(buzzerPin, 2000, 250);
15 Serial.print("State 24");
16 state = 24;

17}

18

19 void S24StartingPos() {

20

21 //turn to get to divider wall, then forward to get to starting position
22 if (((millis() - startTime) > 4000) or (digitalRead(backButton)==HIGH)){
23 platformStop();

24 delay(20);

25 platformForward();

26 delay(100);

27 platformSpinRight();

28 delay(2000);

29 platformForward();

30 delay(4500);

31 platformStop();

32 delay(20);

33

34 //turn to get to white side wall
35 platformSpinLeft();

36 delay(600);

37 platformStop();

38 delay(20);

39

40 S25WhiteDeliverySetup();
41 }

42}

Final Project Demo

S25WhiteDelivery
1 //Backwards Until Distance or Time
2
3 void S25WhiteDeliverySetup() {
4 platformBackward();
5 startTime = millis();
6 delay(500);
7 state = 25;
8 '}
9
10 void S25WhiteDelivery() {
11 unsigned long currentTime = millis();
12
13 ultrasonicRead();
14 Serial.println(distanceCm);
15
16 //Check distance to wall
17 if ((distanceCm < 8) and (distanceCm > 1)) {
18 platformStop();
19 delay(20);
20
21 //spin to move against white wall
22 platformSpinRight();
23 delay(900);
24 platformForward();
25 delay(1000);
26
27 //Dump it
28 frontDumpster.attach(11);
29 delay(100);
30 frontDumpster.write(160);
31 delay(500);
32 frontDumpster.write(110);
33 delay(500);
34 frontDumpster.detach();
35 delay(200);
36
37 S26BlackDeliverySetup();
38 }
39
40
41 //Timeout
42 if ((millis() - startTime) > 3000) {
43 platformStop();
44 delay(20);
45 platformForward();
46 delay(200);
47 platformStop();
48 delay(20);
49
50 //spin againt white wall
51 platformSpinRight();
52 delay(400);
53 platformForward();
54 delay(1000);
55
56 //Dump it

57 frontDumpster.attach(11);

58
59
60
61
62
63
64
65
66
67
68

delay(100);
frontDumpster.write(160);
delay(500);
frontDumpster.write(110);
delay(500);
frontDumpster.detach();
delay(200);

S26BlackDeliverySetup();

Final Project Demo

S26BlackDelivery
1 //Delivery on other side (black)
2
3 void S26BlackDeliverySetup() {
4 platformBackward();
5 delay(300);
6 state = 26;
7 startTime = millis();
8 '}
9
10 void S26BlackDelivery() {
11 platformStop();
12 delay(20);
13
14 //Give 'em the shimm
15 while ((millis() - startTime < 1500))
16 {
17 platformSpinLeft();
18 delay(200);
19 platformForward();
20 delay(100);
21 }
22
23 //delay(2000);
24 platformStop();
25 delay(20);
26 platformForward();
27 delay(3000);
28 platformStop();
29 delay(20);
30 platformBackward();
31 delay(200);
32 platformStop();
33 delay(20);
34
35 //turn to ride black wall
36 platformSpinLeft();
37 delay(400);
38 platformForward();
39 delay(400);
40
41 platformStop();
42 delay(20);
43
44 //Give 'em the shimm, but mostly forward
45
46 startTime = millis();
47 while ((millis() - startTime < 2000))
48 {
49 platformSpinRight();
50 delay(50);
51 platformForward();
52 delay(200);
53
54
55 //Dump it
56 backDumpster.attach(10);

57 delay(100);

58
59
60
61
62
63
64
65
66
67

backDumpster.write(160);
delay(600);
backDumpster.write(60);
delay(600);
backDumpster.detach();
delay(200);

platformStop();
delay(1000);

