

MECHATRONICS

COMPETITION
Michaela Curcio & Michael Sherman

FALL 2020
Professor: Dr. Matthew Stein

i

Abstract
Mechatronics is a combination between Mechanics and Electronics. The class project was to

complete the final task to build and program an autonomous mobile device to score as many

points as possible in a 10-minute period by navigating a playfield while collecting and depositing

objects into designated bases. The final task was a competition between all the teams in the class.

There were 9 teams of 2-3 people in the class this semester. There were milestones throughout

the semester that would help us to complete the final task. The robot was first designed on

SolidWorks. Then it was made from scratch out of sheets of acrylic cut from a laser cutter, 3D

printed structures, Lego pieces, and electrical components such as motors, servos, buttons, and

ultrasonic. The robot was powered by an Arduino using C++ coding language to navigate around

the playfield and to handle blocks. There were two days at the end of the semester to display the

robot to complete the final task. The robot scored a perfect score of 64 points on the first day,

putting with a lead for first place. The perfect score was not able to be replicated on the second

day, but the robot scored 56 points, giving a total score of 116/128 points, landing in first place

overall out of all 9 groups with the only group to score a perfect score on one of the

demonstration days.

Table of Contents
Abstract .. i

Introduction .. Error! Bookmark not defined.

Milestone 1.. 1

Circuit Diagram .. 1

Pictures .. 2

Milestone 2.. 2

Circuit Diagram .. 3

Pictures .. 3

Milestone 3.. 4

Circuit Diagram .. 5

SolidWorks & Pictures ... 5

Milestone 4.. 8

Circuit Diagram .. 9

SolidWorks & Pictures ... 10

Milestone 5.. 11

Circuit Diagram .. 13

SolidWorks & Pictures ... 14

Final Product ... 16

Circuit Diagram .. 19

SolidWorks & Pictures ... 19

Appendix A ... 21

Independent Labs .. 21

Partner Labs .. 25

Appendix B ... 27

Semester In-Class Notes ... 27

Appendix C ... 52

Quizzes .. 52

Appendix D ... 56

Milestone Notebook Check Sheet ... 56

Task ... 57

Appendix E ... 64

Code for all Milestones and Final ... 64

1

Milestone 1
For our first milestone, we were instructed to make the Arduino play two easily distinguishable

tunes of our choosing on the buzzer by pushing either of two buttons. The tune had to be at least

14 notes. The first tune that we chose was “Pound the Alarm” and the second tune was

“Starships,” both by Nicki Minaj. Each button played the same tune and only that tune. After the

tune was played, the Arduino stopped and waited until either button was pressed again. If either

button was pressed while the tune was playing, the Arduino waited two seconds and began

playing the pending tune after completing the current tune. The Arduino correctly responded to

the instructor’s button pushes without rest.

The purpose of this milestone was to practice the use of buttons that would later be used for our

later milestones when navigating the robot around the playfield. This milestone was done just

with the use of a breadboard, Arduino, and computer. Other electronic components used were a

buzzer, and two switches.

Circuit Diagram

Below is the circuit diagram for Milestone 1.

Figure 1: Circuit Diagram for Milestone 1

Pictures

Below is a photograph of the breadboard and Arduino used in this milestone.

Figure 2: Photograph of Milestone 1 Setup

Milestone 2
For Milestone 2, we were told to navigate the playing field. The milestone directed to start the

robot in the starting cube, play a note/tune when touching the white side base rail, and a different

note/tune when touching the black side base rail (or vice versa), and then come back into the

starting cube and play a third note/tune.

We began by piecing the robot together by using the materials given in our kit and by looking at

the design already laid out for us. Legos had to be drilled, and wires had to be soldered together.

Once the structure of the robot was completed using the given model, we added three buttons

(switches). One in the front middle, one on the right side closer to the front, and another in the

back closer to the left side. The breadboard was also completed based off of the given model. We

adjusted the breadboard to add the buttons. Button holders were also created with the 3D printer

and attached to the buttons and the acrylic base of the robot.

Our robot started in the starting cube at a diagonal facing the top left corner. We programmed

our Arduino in order of states. State 1 caused the robot to move forward and once it touched the

black side base rail it played a tune and switched to state 2. State 2 sent the robot backwards until

it hit the back button against the back wall and switched to state 3. State 3 caused the robot to

turn right until it hit the side button against the back wall and switched to state 4. State 4 caused

the robot to “hug” the back wall. When the side button was pressed, the robot would move

forward. If the button was not pressed, it shimmied right to “hug” the wall. Once it hit the right

wall with the front button it was sent to State 5. State 5 caused the robot to turn left for a specific

amount of time. Once the time was up, it was sent to state 6. State 6 caused the robot to “hug”

the right wall until the front button was pressed on the white side base rail. This was similar to

State 4. When the side button was not pressed, it shimmied right. If the side button was pressed,

it went forward. Once the button was pressed, a second tune was played twice, it was then

switched to state 7. State 7 caused the robot to be sent backwards until the back button was

pushed and sent to state 8. State 8 caused the robot to turn left for a specific amount of time, then

move forward for a specific amount of time to then play the third tune three times while the back

two wheels landed inside the starting cube.

When we were testing our code, we found that our biggest issue was with the batteries on the

robot. We saw that, when the robot slammed against the walls, it would pop the batteries out of

place and cause the Arduino to reset. To fix this, we changed the orientation of the batteries and

we changed our turning time to cause it not to slam sideways.

Our robot performed just as we had planned for both our unofficial trial and our first official

trial. The robot did just as our code told it to do.

Circuit Diagram

Below is the circuit diagram for Milestone 2. The breadboard was initiated using a model given

by the professor. After the wire design was copied over, we added the front, back, and right

switches.

Figure 3: Circuit Diagram for Milestone 2

Pictures

Below is a photograph of our first robot used for Milestone 2. This robot is a replica of the model

robot given by our professor. The photograph was taken in the starting position on the playfield.

No SolidWorks assembly was completed for this milestone because every group in the class had

the same design.

Figure 4: Photograph of Milestone 2 robot

Milestone 3
For Milestone 3, our task was to pick up one block and deliver it to the opposite side bin. During

our brainstorming for this milestone, we decided that it would be a good idea to plan and design

for future milestones as well, rather than only focusing on this one. Our idea was to use a long

3D printed part called the “sniper,” attached to a servo to pull a block onto the robot. The block

would then fall into a 3D printed part called the “cradle.” The cradle then drops the block into

the “dumpster” which holds the block before eventually lifting it and dumping it out. In future

milestones, our goal is for the cradle to detect the color of the blocks and then put each block into

the appropriate dumpster.

The base of our robot, and the majority of the structures on it were cut out of acrylic. We used

some 3D printed parts in our design for the button holders, sniper, cradle, and Arduino support.

We also 3D printed an ultrasonic sensor holder, but we did not end up using that in our code. The

circuit used on the robot was mostly the same as the base robot from Milestone 2 with only a few

additions and pin changes.

Our robot started in the starting cube facing left. We programmed our Arduino in order of states.

State 1 moved the robot forward until it reached the left wall and switched to state 2. State 2

turned the robot to the right and switched to state 3. State 3 moved the robot forward until it

reached the back wall and sent it to state 4. State 4 turned it to the right and moved it into the

corner before moving to state 5. State 5 attempted to back the robot up into the other corner and

move to state 6. State 6 positioned the robot so that the left side was touching the wall and drove

up to where the blocks were and then switched to state 7. State 7 took the block off the wall with

the sniper and emptied the cradle into the dumpster before switching to state 8. State 8 used time-

based turns to move to the opposite corner of the play field so that it could empty the block. State

9 emptied the block by rotating the dumpster.

As we tested our code, the biggest problem we faced was the Arduino resetting often. We

attempted to fix this by adding “platformStop()” with a delay of 20 milliseconds between each

time the motors changed direction, we turned the battery pack sideways so that the batteries

would not move during a hard slam against the wall, and we attached and detached servos only

when they were being used. After none of these adjustments worked, we decided to power the

Arduino separately from the other components. Without much room for another large battery

pack, we used one double and two single battery packs spread out on the robot. There were no

other resets after this was done.

Our robot performed well in multiple unofficial trials, but unfortunately it could not perform for

any official trials. Many of our turns were based on time, and the robot did not always turn

exactly the same way each time it ran. We were able to consistently get to the blocks and pick

one up.

Circuit Diagram
Below is the circuit diagram for Milestone 3. This circuit diagram had the most drastic change from the

previous milestone because we had to completely dismantle the previous robot and come up with our own

design. As you can see below, we added three servos to retrieve and deposit the blocks. We the two small

servos were added to move the sniper and the cradle. The large servo was added to move the back

dumpster. We originally had problems with our first circuit diagram (not pictured), because of the lack of

batteries that we used. Once we added more batteries, the circuit diagram had to be adjusted as seen

below.

Figure 5: Circuit Diagram for Milestone 3

SolidWorks & Pictures

Below is a SolidWorks drawing of a layout of all the acrylic pieces that were cut using the laser

cutter. The top picture shows the pieces that were cut with 1/8 inch thick acrylic, and the bottom

picture shows the pieces that were cut with 3/32 inch thick acrylic. For the first milestone we did

not use an access amount of acrylic because we wanted to make sure that we had extra for our

following milestones, and for any pieces that could have broken in the process of assembling the

robot together.

Figure 6: SolidWorks Layout of All Laser Cut pieces for Milestone 3

Below is a photograph of a top view layout and the robot created for Milestone 3. The robot was

8 inches wide, and 10.5 inches long. This is because we wanted to make the structure as large as

possible to fit all of our components on it while still pushing most of our weight to the back

closer the back wheels. We also had a restraint of keeping the full robot inside a 12 inch by 12

inch starting position square. The restraint meant that all components and wires not just the base

itself had to be inside the starting square. We also knew that if we made the base too large, it

would be too hard to maneuver around the playfield. We established these dimensions so that the

robot could run as efficiently as possible.

Figure 7: SolidWorks screenshot of Top View of robot for Milestone 3. This figure shows dimensions and labels to all
components.

Below are SolidWorks screenshots of the robot paired with photographs of the robot for

Milestone 3.

Figures 8 & 8: SolidWorks Model of Back Left View and Photograph of Back View of robot for Milestone 3.

Figure 9 & 10: SolidWorks Model and Photograph of Front Right View of robot for Milestone 3.

Milestone 4
For Milestone 4, our robot could start anywhere on the gameboard. The robot must acquire at

least three blocks under its own power and recognize the color of each when delivered to the

sensor. The robot must play a note/tune when it senses a black block, and a different note/tune

when it senses a white block. The robot cannot play either of those notes/tunes if there is no

block.

For this milestone, we did not have to do much more laser cutting or assembling. Since we ran

into a problem with having to add extra batteries for Milestone 3, we decided to modify our

design. We added a new holder for our Arduino. Instead of having two single batteries and one

double battery back, we decided to switch it to a battery pack holding four batteries and put it

under our Arduino and attach it to the Arduino holder. We also decided to modify our “sniper.”

The sniper has the same shape as the one used in Milestone 3, but instead of it being two pieces,

it is only one. Lastly, we adjusted our “cradle.” Instead of just having some of the sides curved,

we decided to have all of them curved. We also added a hole in the bottom of it just large enough

for a sensor to fit through it. We also added a “backboard” to the inside of the cradle so that

when the sniper flicks the block in, it goes right into place in the cradle on top of the sensor. Our

buttons and ultrasonic are still placed in this robot, although they are not used for Milestone 4.

In this milestone, our robot is placed with its left side on the back wall of the gameboard with the

sniper directly above the first block. Our robot is programmed in states. The sniper flicks the

block into the cradle. The cradle wiggles, to then sense the color of the block. If the block is

white, the buzzer should play a siren tune. If it is black, the buzzer should play a single deep

note. If there is no block, no sound should be made. The cradle then dumps the block into the

dumpster, and the dumpster should empty by flinging the block out. The robot then turns a little

to the right, moves up a little bit, and turns a little more to the right, just so that the sniper is right

above the next block. This process repeats until we manually stop it when the milestone is

completed.

Our group got our unofficial trial on Tuesday, October 13. We realized the issues that were

appearing were with our cradle. The blocks were landing on the sides of the cradle instead of on

the sensor at the bottom of the cradle. We added a backboard on the cradle and programmed a

shimmy to fix the cradle into place. We also programmed the dumpster to drop back onto the

platform of the robot so that the robot would vibrate the block into place on the cradle in case it

was flicked in the wrong place by the sniper. With all of these adjustments, we were able to get

our first Official trial flawlessly.

Circuit Diagram

Below is the circuit diagram for Milestone 4. This circuit diagram is very similar to Milestone 3.

The only difference is that the display of batteries was rearranged, and the buttons were taken

out.

Figure 11: Circuit Diagram for Milestone 4

SolidWorks & Pictures

Figure 12: SolidWorks Layout of All Laser Cut pieces for Milestone 4

Figure 9: SolidWorks screenshot of Top View of robot for Milestone 4. This figure shows dimensions and labels to all

components.

Figure 10: Front Left View of SolidWorks Model and Photograph of Milestone 3 Robot

Figure 11: Back Right View of SolidWorks Model and Photograph of Milestone 3 robot

Milestone 5
For Milestone 5, our robot needed to start in the starting cube, navigate to the blocks, and deliver

two white blocks and no black blocks to the correct bin. For this milestone, we needed to add our

second dumpster and connect our “turntable” servo. These additions were simple to implement,

because we had planned for them when we designed most of the robot during Milestone 3.

We also 3D printed an improved “cradle” design. By adjusting the angles and adding a vertical

side, we were able to position blocks on top of the color sensor much more effectively. Our back

button, left button, and ultrasonic sensor were connected to the Arduino for this milestone to help

with navigation.

In this milestone, our robot begins by reversing out of the starting cube towards the white block

bin. The ultrasonic sensor reads when the robot is under 8 cm away and tells it to turn right so

that it can reverse towards the blocks. After some timed turns and reversing, the robot is

perfectly aligned with the first block. Just as it did in Milestone 4, the “sniper” pulls the block

into the cradle where the color is sensed. If it is a black block, the cradle empties into the back

dumpster. If it is a white block, the robot turns away from the wall, rotates the turntable, lowers

the front dumpster, and empties the cradle. It then moves back to the way it was and moves

forward to the next block. After all of the blocks have been collected and sorted, the robot backs

up into the wall, turns and empties the front dumpster filled with white blocks to the correct bin.

Our group got our unofficial trial on Friday, October 30. Because this was the first milestone

requiring navigation since Milestone 3, we did not want to take any chances with potential

malfunctions. To combat this, we created a chart with all of the problematic areas listed so that

we could keep track of how frequently each one occurred. We also frequently took battery

readings at each battery pack and recorded those as well. Prior to calling an official trial, we had

completed 18 runs with a 100% success rate. Due to this preparation, we were successful on our

first official trial.

Our next major addition will be the implementation of a magnetometer. We are hoping that this

will allow us to have more control over our turns and rely less on unreliable timing. We plan on

improving our navigation and delivery to the black bin and we hope to attempt The Doubler.

Circuit Diagram

Figure 12: Circuit Diagram for Milestone 5

SolidWorks & Pictures

Figure 13: SolidWorks Layout of All Laser Cut pieces for Milestone 5

Figure 14: SolidWorks screenshot of Top View of robot for Milestone 5. This figure shows dimensions and labels to all
components.

Figure 15: Front Left View of SolidWorks Model and Photograph of Milestone 5 Robot

Figure 16: Back Right View of SolidWorks Model and Photograph of Milestone 5 Robot to dump white blocks

Figure 17: Back Right View of SolidWorks Model and Photograph of Milestone 5 Robot to dump black blocks

Final Product
The final mechatronics design project task is to score as many points as possible in a 10-minute

period by navigating a playfield while collecting and depositing white and black blocks into their

designated bases.

The final design for our robot was the same design we had constructed in Milestone 5. We did

not change any physical mechanical components. Because our robot was physically ready after

Milestone 5, we had a lot of time to experiment with our code and the electrical components. Our

Milestone 5 code was a good starting place for our final project, we kept it mostly the same. We

added delivering to the black bin, and then navigating to the second set of blocks. We copied

over the majority of the code from the first set of blocks to the second. We also added the

depositing of the blocks. Lastly, we added code to retrieve the doubler. This code was attached to

the beginning so that it could be the first thing that the robot does. We decided to get the doubler

first because we felt confident that our robot could get the majority of the blocks. We did not

want to see the robot retrieve all the blocks, then miss the doubler at the end. We could easily

restart the robot if it had missed the doubler in the beginning, saving time.

One of the hardest parts of this project was figuring out how to navigate the robot around the

playfield. This was because it depended a lot on the battery voltage that our robot had. Because

our robot was a larger robot, it burned out its batteries fast. The robot consisted of 11 batteries.

Four of the batteries connected to the Arduino, and the other 7 connected to the motor and

servos. If the robot had fresh new batteries, the 7 batteries usually added up to about 11 V. When

the robot was under 10.60 V, she was unable to turn and ride against a wall. The navigation was

also difficult because if the batteries varied, the degree of the turns varied. This is because we

base our turns off of time. We saw that this was an issue, so we tested out different ideas. We

decided to rule out the idea of a light sensor and tape because we did not want to waste time

taping down the playfield if we could not get it in the exact position every time. Different

electrical components we tried were connecting both a magnetometer and a gyroscope. We

decided not to go through with these because the magnetometer was not accurate enough and the

gyroscope only measured angular velocity, which could not reliably be related to position.

Some of the strengths that our design had was that it was capable of holding all of the blocks

from each rack. Because we had different dumpsters for each block color, we were able to

retrieve all the blocks from a rack at a time, and then deliver them all at the same time. This

reduced our time because we did not have to return to the same rack more than once, and we did

not have to navigate as much. Although we had a larger robot, with many components, we did a

good job of keeping the heaviest components near the back wheels of the robot. This caused the

robot to be able to turn easier. Another big advantage of our design was our “cradle.” Our cradle

allows us to retrieve the blocks before we sense what color they are. This is an advantage

because when other designs sense the block before retrieving it, they sometimes retrieve the

wrong color, or they get multiple blocks at once because it is not perfectly aligned. Our biggest

advantage was that we had the same design since Milestone 3. This was a huge benefit to us

because it allowed us to really get to know our robot. We knew exactly how it was able to

navigate, what the problem was if there was one, and what battery voltages it would perform the

best on. Having our design done early allowed us to spend less time on designing, and more time

on perfecting our navigation. We were able to run multiple tests, and we were able to see all of

the problems that could occur.

Weaknesses that we had in our design was our ability to get to the blocks the same way every

time. If the voltage was low, the increments between each block were lessened, but if the voltage

was high, she would go too far. To solve this issue, we decided to have shorter scooches, and

more sniping of the “sniper.” We did this because it would be better if the sniper hit the front

corner of the block rather than the back corner of the block. If the sniper hit the back corner of

the block, there was a chance that the block could just skip over the cradle and fall directly into

the black dumpster. If the sniper hit the front corner, the block would still shoot right into place

on the cradle because of the following block sitting next to it. We added extra snipes in case the

sniper missed a block. Another weakness in our design was relying on time for turns, but we still

thought that that would be the best option for our design. Another weakness in our design was

how large our robot was causing it to wear down batteries fast, and causing it to be harder to

maneuver around the playfield.

Lessons learned from this competition were how to design and program a robot from scratch. We

learned how to fabricate our 3D models using the laser cutter and 3D printer. We also learned

that it is much easier to have a mechanical error to solve than it is to find a bug in the code.

Before we were called up to the board for our final demonstrations, we went over a checklist of

things we needed to do. This checklist included changing the batteries; check all wires to make

sure they are attached correctly, especially the wires connected to the sensor on the cradle; check

to make sure the Lego pieces were attached correctly to the motors because they tend to fall out

from time to time; check to make sure the sensor was adhered to the cradle correctly, because we

found that if the sensor was sticking out a little bit, the block would be too close to it to sense the

color correctly, and it would also misalign the block from sitting in the cradle the correct way;

and check the entire robot for any loose screws. This checklist was created because these were

the most common mistakes that would occur to cause our robot to fail. We are extremely happy

with the result of our first performance on Thursday, November 19. After just a second run

through, our robot scored a perfect score of 64 points, putting us in the lead for first place. The

results of our second performance on Tuesday, November 24 was a score of 56 points, giving us

a total score of 116 points. This landed us in first place overall!!

Some of the things that our group would have done differently if we were able to start fresh

would be spending more time on the geometry of the cradle so that it catches the blocks better

and positions them on the color sensor better. We would also look into using tape for our block

increments, so we do not need to rely on time for those anymore.

Circuit Diagram

Figure 18: Circuit Diagram for Final Product

SolidWorks & Pictures

Figure 19: SolidWorks Layout of All Laser Cut pieces for Final Product

Figure 20: SolidWorks screenshot of Top View of robot for Final Product. This figure shows dimensions and labels to all
components.

Appendix A

Independent Labs

Partner Labs

Appendix B

Semester In-Class Notes

Appendix C

Quizzes

Appendix D

Milestone Notebook Check Sheet

Task

Appendix E

Code for all Milestones and Final

Milestone 1
Michael Sherman & Michaela Curcio

1 //Milestone 1 Code
2 //Authored by Michael Sherman
3
4 #include "pitches.h" // include pitches library
5
6 //millis stuff
7 unsigned long previousMillis = 0 ; // will store last time the note changed
8 int interval = 0; // time between button and first note
9
10 // constants to set pin numbers
11 const int buttonPin2 = 2; // the number of the pushbutton pin
12 const int buttonPin3 = 3; // the number of the pushbutton pin
13
14
15 // variables will change:
16 int buttonState2 = 0; // variable for reading the pushbutton status
17 int buttonState3 = 0; // variable for reading the pushbutton status
18
19 //boolean stuff to check if song added to queue
20 boolean press2 = false; // starts pin 2 as false
21 boolean press3 = false; // starts pin 3 as false
22
23 // Song Pin2 - POUND THE ALARM:
24
25 //array storing the notes of song
26 int melody2[] = {
27 NOTE_A4, NOTE_F4, NOTE_D4, NOTE_C4, 0, NOTE_B4, NOTE_B4, NOTE_B4, NOTE_B4, NOTE_A4,

NOTE_G4, NOTE_F4, NOTE_A4, NOTE_F4, NOTE_D4, NOTE_C4
28 };
29
30 //array storing note durations: 4 = quarter note, 8 = eighth note, etc.:
31 int noteDurations2[] = {
32 4, 4, 3, 2, 8, 6, 6, 6, 6, 6, 6, 6, 4, 4, 3, 2
33 };
34
35
36 //Song Pin3 - STARSHIPS:
37
38 //array storing the notes of song
39 int melody3[] = {
40 NOTE_FS4, NOTE_FS4, 0, NOTE_FS4, NOTE_A4, NOTE_A4, NOTE_B4, NOTE_FS4, NOTE_E4, NOTE_D4, 0,

NOTE_FS4, NOTE_FS4, 0, NOTE_D4, NOTE_E4, NOTE_E4, NOTE_FS4, NOTE_E4, NOTE_D4
41 };
42
43 //array storing note durations: 4 = quarter note, 8 = eighth note, etc.:
44 int noteDurations3[] = {
45 3, 3, 9, 7, 5, 6, 3, 6, 5, 6, 8, 3, 3, 8, 8, 5, 5, 4, 7, 7
46 };
47
48
49 void setup() {
50 Serial.begin(9600); //initialize serial monitor
51 pinMode(buttonPin2, INPUT); //initialize pushbutton pin 2 as input
52 pinMode(buttonPin3, INPUT); //initialize pushbutton pin 3 as input
53 }
54
55 void loop()

56 {
57 //read state of pushbutton values
58 buttonState2 = digitalRead(buttonPin2);
59 buttonState3 = digitalRead(buttonPin3);
60
61 //change boolean if button was pressed
62 if (buttonState2 == HIGH) {
63 Serial.println("Switch 2 Pressed");
64 press2 = true;
65 }
66 else if (buttonState3 == HIGH) {
67 Serial.println("Switch 3 Pressed");
68 press3 = true;
69 }
70
71 //Playing Song Pin2 - POUND THE ALARM:
72 else if (press2 == true) { //check to see if boolean is true
73 press2 = false; //change it back to false before starting the song
74 Serial.print("Playing Song Pin2");
75
76 for (int thisNote = 0; thisNote < 16;) { //for loop for each note
77 unsigned long currentMillis = millis(); //set variable equal to the number of

milliseconds passed from beginning
78
79 //Check other button continuosly
80 Serial.println("Checking Buttons");
81 buttonState3 = digitalRead(buttonPin3); //read pin 3
82 if (buttonState3 == HIGH) { //change boolean to true if it is pressed
83 Serial.println("Song Added to Queue");
84 press3 = true;
85 }
86 buttonState2 = digitalRead(buttonPin2); //read pin 2
87 if (buttonState2 == HIGH) { //change boolean to true if it is pressed
88 Serial.println("Song Added to Queue");
89 press2 = true;
90 }
91
92 if (currentMillis - previousMillis >= interval) { //check if time passed during

loop is greater than pause between notes
93 previousMillis = currentMillis; //set new previousMillis to

equal currentMillis
94 int noteDuration2 = 1000 / noteDurations2[thisNote]; //calculate note duration from

array, one second divided by note type
95 tone(8, melody2[thisNote], noteDuration2); //play tone from array on pin 8

for duration calculated above
96
97 // to distinguish the notes, set a minimum time between them.
98 int pauseBetweenNotes = noteDuration2 * 1.30; //calculate time between notes

time of note + 30%
99 interval = pauseBetweenNotes; //set variable "interval" equal to

this value
100 thisNote++; //add one to the count for the for

loop so it can play next note
101 }
102 }
103
104 // Adding two second delay before next song, but still checking for button presses during

delay
105 int difference;
106 unsigned long currentMillis = millis();
107 unsigned long previousMillis = millis();
108 difference = currentMillis - previousMillis;
109 while (difference < 2000) {
110 Serial.println("waiting...");
111 buttonState3 = digitalRead(buttonPin3); //read pin 3

112 if (buttonState3 == HIGH) { //change boolean to true if it
is pressed

113 Serial.println("Song Added to Queue");
114 press3 = true;
115 }
116 buttonState2 = digitalRead(buttonPin2); //read pin 2
117 if (buttonState2 == HIGH) { //change boolean to true if it is

pressed
118 Serial.println("Song Added to Queue");
119 press2 = true;
120 }
121 unsigned long currentMillis = millis(); //update currentMillis
122 difference = currentMillis - previousMillis; //update difference
123 Serial.println(difference);
124 }
125 }
126
127 //Playing Song Pin3 - STARSHIPS:
128 else if (press3 == true) { //check to see if boolean is

true
129 press3 = false; //change it back to false before

starting the song
130 Serial.print("Playing Song Pin2");
131
132 for (int thisNote3 = 0; thisNote3 < 20;) { //for loop for each note
133 unsigned long currentMillis = millis(); //set variable equal to the

number of milliseconds passed from beginning
134
135 //Check buttons continuosly
136 buttonState3 = digitalRead(buttonPin3); //read pin 3
137 if (buttonState3 == HIGH) { //change boolean to true if it

is pressed
138 Serial.println("Song Added to Queue");
139 press3 = true;
140 }
141 buttonState2 = digitalRead(buttonPin2); //read pin 2
142 if (buttonState2 == HIGH) { //change boolean to true if it is

pressed
143 Serial.println("Song Added to Queue");
144 press2 = true;
145 }
146
147 if (currentMillis - previousMillis >= interval) { //check if time passed during

loop is greater than pause between notes
148 previousMillis = currentMillis; //set new previousMillis to

equal currentMillis
149 int noteDuration3 = 1000 / noteDurations3[thisNote3]; //calculate note duration from

array, one second divided by note
150 tone(8, melody3[thisNote3], noteDuration3); //play tone from array on pin 8

for duration calculated above
151
152 int pauseBetweenNotes3 = noteDuration3 * 1.30; //calculate time between notes

time of note + 30% *taken from toneMelody*
153 interval = pauseBetweenNotes3; //set variable "interval" equal

to this value
154 thisNote3++; //add one to the count for the

for loop so it can play next note
155 }
156 }
157
158 // Adding two second delay before next song, but still checking for button presses during

delay
159 int difference;
160 unsigned long currentMillis = millis();
161 unsigned long previousMillis = millis();

162 difference = currentMillis - previousMillis;
163 while (difference < 2000) {
164 Serial.println("waiting...");
165 buttonState3 = digitalRead(buttonPin3); //read pin 3
166 if (buttonState3 == HIGH) { //change boolean to true if it

is pressed
167 Serial.println("Song Added to Queue");
168 press3 = true;
169 }
170 buttonState2 = digitalRead(buttonPin2); //read pin 2
171 if (buttonState2 == HIGH) { //change boolean to true if it is

pressed
172 Serial.println("Song Added to Queue");
173 press2 = true;
174 }
175 unsigned long currentMillis = millis(); //update currentMillis
176 difference = currentMillis - previousMillis; //update difference
177 Serial.println(difference);
178 }
179 }
180 }

Milestone 1
pitches.h

1 /***
2 * Public Constants
3 ***/
4
5 #define NOTE_B0 31
6 #define NOTE_C1 33
7 #define NOTE_CS1 35
8 #define NOTE_D1 37
9 #define NOTE_DS1 39
10 #define NOTE_E1 41
11 #define NOTE_F1 44
12 #define NOTE_FS1 46
13 #define NOTE_G1 49
14 #define NOTE_GS1 52
15 #define NOTE_A1 55
16 #define NOTE_AS1 58
17 #define NOTE_B1 62
18 #define NOTE_C2 65
19 #define NOTE_CS2 69
20 #define NOTE_D2 73
21 #define NOTE_DS2 78
22 #define NOTE_E2 82
23 #define NOTE_F2 87
24 #define NOTE_FS2 93
25 #define NOTE_G2 98
26 #define NOTE_GS2 104
27 #define NOTE_A2 110
28 #define NOTE_AS2 117
29 #define NOTE_B2 123
30 #define NOTE_C3 131
31 #define NOTE_CS3 139
32 #define NOTE_D3 147
33 #define NOTE_DS3 156
34 #define NOTE_E3 165
35 #define NOTE_F3 175
36 #define NOTE_FS3 185
37 #define NOTE_G3 196
38 #define NOTE_GS3 208
39 #define NOTE_A3 220
40 #define NOTE_AS3 233
41 #define NOTE_B3 247
42 #define NOTE_C4 262
43 #define NOTE_CS4 277
44 #define NOTE_D4 294
45 #define NOTE_DS4 311
46 #define NOTE_E4 330
47 #define NOTE_F4 349
48 #define NOTE_FS4 370
49 #define NOTE_G4 392
50 #define NOTE_GS4 415
51 #define NOTE_A4 440
52 #define NOTE_AS4 466
53 #define NOTE_B4 494
54 #define NOTE_C5 523
55 #define NOTE_CS5 554
56 #define NOTE_D5 587
57 #define NOTE_DS5 622

58 #define NOTE_E5 659
59 #define NOTE_F5 698
60 #define NOTE_FS5 740
61 #define NOTE_G5 784
62 #define NOTE_GS5 831
63 #define NOTE_A5 880
64 #define NOTE_AS5 932
65 #define NOTE_B5 988
66 #define NOTE_C6 1047
67 #define NOTE_CS6 1109
68 #define NOTE_D6 1175
69 #define NOTE_DS6 1245
70 #define NOTE_E6 1319
71 #define NOTE_F6 1397
72 #define NOTE_FS6 1480
73 #define NOTE_G6 1568
74 #define NOTE_GS6 1661
75 #define NOTE_A6 1760
76 #define NOTE_AS6 1865
77 #define NOTE_B6 1976
78 #define NOTE_C7 2093
79 #define NOTE_CS7 2217
80 #define NOTE_D7 2349
81 #define NOTE_DS7 2489
82 #define NOTE_E7 2637
83 #define NOTE_F7 2794
84 #define NOTE_FS7 2960
85 #define NOTE_G7 3136
86 #define NOTE_GS7 3322
87 #define NOTE_A7 3520
88 #define NOTE_AS7 3729
89 #define NOTE_B7 3951
90 #define NOTE_C8 4186
91 #define NOTE_CS8 4435
92 #define NOTE_D8 4699
93 #define NOTE_DS8 4978

Milestone 2
Michael Sherman & Michaela Curcio

1 //Milestone 2
2 //Author 2: Michaela Curcio
3
4 // constants won't change. Used here to set pin numbers:
5 const int leftA = 2; // Left Motor A pin
6 const int leftB = 3; // Left Motor B pin
7 const int rightA = 6; // Right Motor A pin
8 const int rightB = 7; // Right Motor B pin
9 const int frontButton = 12; //Front Button Pin
10 const int rightButton = 8; //Right Button Pin
11 const int backButton = 5; //Back Button Pin
12 const int BuzzerPin = 4; //Buzzer Pin
13
14 //Initialize Button States
15 int frontButtonState = 0;
16 int backButtonState = 0;
17 int rightButtonState = 0;
18
19 // Variables will change:
20 int state = 0; // variable to hold current state
21 unsigned long startTime; // will store the time the state was setup
22
23 // the following variable is a long because the time, measured in miliseconds,
24 // will quickly become a bigger number than can be stored in an int.
25 long interval = 2000; // interval at which to change
26
27 void setup() {
28 // set the digital pins as outputs and inputs:
29 pinMode(leftA, OUTPUT);
30 pinMode(leftB, OUTPUT);
31 pinMode(rightA, OUTPUT);
32 pinMode(rightB, OUTPUT);
33 pinMode(frontButton, INPUT);
34 pinMode(rightButton, INPUT);
35 pinMode(backButton, INPUT);
36 pinMode(BuzzerPin, OUTPUT);
37 //state1Setup();
38 state = 1;
39 }
40 void loop() {
41 // This loop simply calls the state function for the current State
42
43 switch (state) {
44 case 1:
45 state1();
46 break;
47 case 2:
48 state2();
49 break;
50 case 3:
51 state3();
52 break;
53 case 4:
54 state4();
55 break;
56 case 5:
57 state5();

58 break;
59 case 6:
60 state6();
61 break;
62 case 7:
63 state7();
64 break;
65 case 8:
66 state8();
67 break;
68 }
69 }

Milestone 2
motorFunctions

1 // Never change these functions
2 // If they have the reversed outcome rewire the platform
3 // Do not re-write these functions
4 void platformForward()
5 {
6 leftForward();
7 rightForward();
8 }
9 void platformBackward()
10 {
11 leftBackward();
12 rightBackward();
13 }
14 void platformStop()
15 {
16 leftStop();
17 rightStop();
18 }
19 void platformSpinLeft()
20 {
21 leftBackward();
22 rightForward();
23 }
24 void platformSpinRight()
25 {
26 rightBackward();
27 leftForward();
28 }
29 //left
30 void leftForward()
31 {
32 digitalWrite(leftA, HIGH);
33 digitalWrite(leftB, LOW);
34 }
35 void leftBackward()
36 {
37 digitalWrite(leftA, LOW);
38 digitalWrite(leftB, HIGH);
39 }
40 void leftStop()
41 {
42 digitalWrite(leftA, LOW);
43 digitalWrite(leftB, LOW);
44
45 }
46 //right
47 void rightForward()
48 {
49 digitalWrite(rightA, HIGH);
50 digitalWrite(rightB, LOW);
51 }
52 void rightBackward()
53 {
54 digitalWrite(rightA, LOW);
55 digitalWrite(rightB, HIGH);
56 }
57 void rightStop()

58 {
59 digitalWrite(rightA, LOW);
60 digitalWrite(rightB, LOW);
61 }

Milestone 2
State 1

1 void state1Setup() {
2 startTime = millis();
3 state = 1;
4 }
5
6 void state1() {
7 // put your main code here, to run repeatedly:
8 unsigned long currentTime;
9
10 //Go Forward
11 platformForward();
12 //Check if front button is pressed
13 frontButtonState = digitalRead(frontButton);
14
15 if (frontButtonState == HIGH)
16 {
17 platformStop();
18 tone(BuzzerPin, 400, 1000); //plays 1st tone once button is pressed
19 delay(1000);
20 state2Setup(); //move to next state
21 }
22
23 //USE AS FAILSAFE
24 //Move to next state if it has been driving forward for 15 sec. w/o pushing button
25 currentTime = millis();
26 if ((currentTime - startTime) > 10000) {
27 platformStop();
28 tone(BuzzerPin, 400, 1000); //plays 1st tune incase it does not hit wall/button
29 delay(1000);
30 //Next State
31 state2Setup(); //move to next state
32 }
33 }

Milestone 2
State 2

1 void state2Setup() {
2 startTime = millis();
3 state = 2;
4 }
5
6 void state2() {
7 startTime = millis();
8 unsigned long currentTime;
9
10 //Go Backward
11 platformBackward();
12 //Check if back button is pressed
13 backButtonState = digitalRead(backButton);
14 if (backButtonState == HIGH)
15 {
16 platformStop();
17 delay(500);
18 state3Setup(); //moves to next state
19 }
20
21 //USE AS FAILSAFE
22 //Move to next state if it has been driving forward for 10 sec. w/o pushing button
23 currentTime = millis();
24 if ((currentTime - startTime) > 10000) {
25 platformStop();
26 delay(500);
27 //Next State
28 state3Setup(); //moves to next state
29 }
30 }

Milestone 2
State 3

1 void state3Setup() {
2 startTime = millis();
3 state = 3;
4 }
5
6 void state3() {
7 // put your main code here, to run repeatedly:
8 startTime = millis();
9 unsigned long currentTime;
10
11 //Turn Right until button or for 3 sec
12 platformSpinRight();
13
14 //Check if button is pressed
15 rightButtonState = digitalRead(rightButton); //once right button is pressed, stop
16
17 if (rightButtonState == HIGH)
18 {
19 platformStop();
20 delay(500);
21 state4Setup(); //move to next state
22 }
23
24 //Stop this state after a timeout
25 currentTime = millis();
26 if ((currentTime - startTime) > 3000) {
27 platformStop();
28 delay(1000);
29 //Next State
30 state4Setup(); //move to next state
31 }
32 }

Milestone 2
State 4

1 void state4Setup() {
2 startTime = millis();
3 state = 4;
4 }
5
6 void state4() {
7 startTime = millis();
8 // put your main code here, to run repeatedly:
9 unsigned long currentTime;
10
11 //check if front button is pressed
12 frontButtonState = digitalRead(frontButton);
13 currentTime = millis();
14
15 //if the time is less than 10 sec, and the front button is not pressed, begin "hugging"
16 while ((currentTime - startTime < 10000) and frontButtonState == LOW)
17 {
18 frontButtonState = digitalRead(frontButton); //check buttons
19 rightButtonState = digitalRead(rightButton);
20 if (rightButtonState == LOW) {
21 frontButtonState = digitalRead(frontButton);
22 //"hugging" makes the robot move against the side wall
23 platformForward();
24 delay(200);
25 platformSpinRight();
26 delay(200);
27 }
28 else
29 {
30 platformForward();
31 }
32 currentTime = millis();
33 }
34 platformStop();
35 delay(1000);
36 state5Setup(); //move to next state
37 }

Milestone 2
State 5

1 void state5Setup() {
2 startTime = millis();
3 state = 5;
4 }
5
6 void state5() {
7 startTime = millis();
8 unsigned long currentTime;
9
10 //Go back and turn left
11 platformBackward();
12 delay(100);
13 platformStop();
14 delay(50);
15 platformSpinLeft();
16 delay(650);
17 platformStop();
18 delay(500);
19 state6Setup(); //move to next state
20 }

Milestone 2
State 6

1 void state6Setup() {
2 startTime = millis();
3 state = 6;
4 }
5
6 void state6() {
7 startTime = millis();
8 unsigned long currentTime;
9
10 frontButtonState = digitalRead(frontButton); //check button
11 currentTime = millis();
12
13 while ((currentTime - startTime < 10000) and frontButtonState == LOW)
14 {
15 frontButtonState = digitalRead(frontButton); //check buttons
16 rightButtonState = digitalRead(rightButton);
17 if (rightButtonState == LOW) {
18 frontButtonState = digitalRead(frontButton);
19 platformForward();
20 delay(200);
21 platformSpinRight();
22 delay(100);
23 }
24 else
25 {
26 platformForward();
27 }
28 currentTime = millis();
29 }
30
31 //plays 2nd tone twice once button is pressed
32 platformStop();
33 tone(BuzzerPin, 600, 1000);
34 delay(2000);
35 tone(BuzzerPin, 600, 1000);
36 delay(1000);
37 state7Setup(); //move to next state
38 }

Milestone 2
State 7

1 void state7Setup() {
2 startTime = millis();
3 state = 7;
4 }
5 void state7() {
6 startTime = millis();
7 unsigned long currentTime;
8
9 //Go Backward
10 platformBackward();
11
12 //Check if back button is pressed
13 backButtonState = digitalRead(backButton); //check back button
14 if (backButtonState == HIGH)
15 {
16 platformStop(); //stop when back button is pressed
17 delay(500);
18 state8Setup(); //move to next state
19 }
20
21 //Move to next state if it has been driving forward for 10 sec. w/o pushing button
22 currentTime = millis();
23 if ((currentTime - startTime) > 10000) {
24 platformStop();
25 delay(500);
26 //Next State
27 state8Setup();
28 }
29 }

Milestone 2
State 8

1 void state8Setup() {
2 startTime = millis();
3 state = 8;
4 }
5
6 void state8() {
7 startTime = millis();
8 unsigned long currentTime = millis();
9
10 platformForward(); //move forward
11 delay(250);
12
13 while (currentTime - startTime < 2450) //while time is less than 2450, begin "shimmy"
14 {
15 platformSpinLeft(); //"shimmy" moves slowly so that robot doesn't slam against board
16 delay(300);
17 platformStop();
18 delay(200);
19 currentTime = millis();
20 }
21
22 platformForward();
23 delay(1800);
24 platformStop();
25 //plays 3rd tone three times once button is pressed
26 tone(BuzzerPin, 800, 1000);
27 delay(2000);
28 tone(BuzzerPin, 800, 1000);
29 delay(2000);
30 tone(BuzzerPin, 800, 1000);
31 delay(1000);
32 delay(30000);
33 }

Milestone 3
Michael Sherman & Michaela Curcio

1 //Milestone 3 Code
2 //Authored By Michael Sherman
3
4 // set pin numbers:
5 const int leftA = 8; // Left Motor A pin
6 const int leftB = 11; // Left Motor B pin
7 const int rightA = 7; // Right Motor A pin
8 const int rightB = 10; // Right Motor B pin
9 const int frontButton = 2; //Front Button Pin
10 const int leftButton = 4; //Right Button Pin
11 const int backButton = A1; //Back Button Pin
12
13 //Initialize Button States
14 int frontButtonState = 0;
15 int backButtonState = 0;
16 int leftButtonState = 0;
17
18 // Variables will change:
19 int state = 0; // variable to hold current state
20 unsigned long startTime; // will store the time the state was setup
21
22 //Setup Servos
23 #include <Servo.h>
24 Servo myservod; //Dumpster
25 Servo myservoc; //Cradle
26 Servo myservos; //Sniper
27
28 void setup() {
29 // set the digital pins as output:
30 pinMode(leftA, OUTPUT);
31 pinMode(leftB, OUTPUT);
32 pinMode(rightA, OUTPUT);
33 pinMode(rightB, OUTPUT);
34 pinMode(frontButton, INPUT);
35 pinMode(leftButton, INPUT);
36 pinMode(backButton, INPUT);
37
38 //Begin Servos in the Right Spot
39 myservos.attach(6);
40 delay(500);
41 myservos.write(180);
42 delay(500);
43 myservos.detach();
44 delay(500);
45
46 state1Setup();
47 }
48
49
50 void loop() {
51 // This loop simply calls the state function for the current State
52 switch (state) {
53 case 1:
54 state1();
55 break;
56 case 2:
57 state2();

58 break;
59 case 3:
60 state3();
61 break;
62 case 4:
63 state4();
64 break;
65 case 5:
66 state5();
67 break;
68 case 6:
69 state6();
70 break;
71 case 7:
72 state7();
73 break;
74 case 8:
75 state8();
76 break;
77 case 9:
78 state9();
79 break;
80 }
81 }

Milestone 3
Motor Functions

1 // Never change these functions
2 // If they have the reversed outcome rewire the platform
3 // Do not re-write these functions
4 void platformForward()
5 {
6 leftForward();
7 rightForward();
8 }
9 void platformBackward()
10 {
11 leftBackward();
12 rightBackward();
13 }
14 void platformStop()
15 {
16 leftStop();
17 rightStop();
18 }
19 void platformSpinLeft()
20 {
21 leftBackward();
22 rightForward();
23 }
24 void platformSpinRight()
25 {
26 rightBackward();
27 leftForward();
28 }
29 //left
30 void leftForward()
31 {
32 digitalWrite(leftA, HIGH);
33 digitalWrite(leftB, LOW);
34 }
35 void leftBackward()
36 {
37 digitalWrite(leftA, LOW);
38 digitalWrite(leftB, HIGH);
39 }
40
41 void leftStop()
42 {
43 digitalWrite(leftA, LOW);
44 digitalWrite(leftB, LOW);
45 }
46 //right
47 void rightForward()
48 {
49 digitalWrite(rightA, HIGH);
50 digitalWrite(rightB, LOW);
51 }
52 void rightBackward()
53 {
54 digitalWrite(rightA, LOW);
55 digitalWrite(rightB, HIGH);
56 }
57

58 void rightStop()
59 {
60 digitalWrite(rightA, LOW);
61 digitalWrite(rightB, LOW);
62 }

Milestone 3
State 1

1 //Forward Until Button or Time
2
3 void state1Setup() {
4 platformForward();
5 startTime = millis();
6 state = 1;
7 }
8
9 void state1() {
10 unsigned long currentTime;
11 currentTime = millis();
12
13 //Go Until Front Button
14 frontButtonState = digitalRead(frontButton);
15 if (frontButtonState == HIGH)
16 {
17 state2Setup();
18 }
19
20
21 //Go Until Timeout
22 currentTime = millis();
23 if ((currentTime - startTime) > 7000) {
24 state2Setup();
25 }
26 }

Milestone 3
State 2

1 //Turn Right
2
3 void state2Setup() {
4 platformStop();
5 startTime = millis();
6 state = 2;
7 }
8
9 void state2() {
10
11 //Back Off Wall, Turn Right
12 delay(1000);
13 platformBackward();
14 delay(300);
15 platformStop();
16 delay(20);
17 platformSpinRight();
18 delay(400);
19 platformStop();
20 delay(20);
21 platformForward();
22 delay(1200);
23 platformStop();
24 delay(20);
25
26 state3Setup();
27 }

Milestone 3
State 3

1 //Forward Until Button or Time
2
3 void state3Setup() {
4 platformForward();
5 startTime = millis();
6 state = 3;
7 }
8
9 void state3() {
10 // put your main code here, to run repeatedly:
11 unsigned long currentTime;
12
13 currentTime = millis();
14
15 //Go until front button
16 frontButtonState = digitalRead(frontButton);
17 if (frontButtonState == HIGH)
18 {
19 state4Setup();
20 }
21
22 //Timeout
23 if ((currentTime - startTime) > 7000)
24 {
25 state4Setup();
26 }
27 }

Milestone 3
State 4

1 //Turn Right
2
3 void state4Setup() {
4 platformStop();
5 delay(20);
6 startTime = millis();
7 state = 4;
8
9 }
10
11 void state4() {
12
13 //Turn Right
14 platformBackward();
15 delay(500);
16 platformStop();
17 delay(20);
18 platformSpinRight();
19 delay(450);
20 platformStop();
21 delay(20);
22 state5Setup();
23 }

Milestone 3
State 5

1 //Positioning into Corner
2
3 void state5Setup() {
4 platformStop();
5 delay(20);
6 startTime = millis();
7 state = 5;
8 }
9
10 void state5() {
11 unsigned long currentTime;
12 currentTime = millis();
13
14 //Forward
15 platformForward();
16 delay(1500);
17 platformStop();
18 delay(20);
19
20 //Position by only moving one wheel
21 rightBackward();
22 leftStop();
23 delay(800);
24
25 platformStop();
26 delay(20);
27
28 state6Setup();
29 }

Milestone 3
State 6

1 //Parallel Parking
2
3 void state6Setup() {
4 platformStop();
5 delay(20);
6 startTime = millis();
7 state = 6;
8 }
9
10 void state6() {
11 // put your main code here, to run repeatedly:
12 unsigned long currentTime;
13 currentTime = millis();
14
15 //Parallel Parking into corner
16 //Buttons were extremely unreliable for this, so we used time
17 platformBackward();
18 backButtonState = digitalRead(backButton);
19 if (backButtonState == HIGH)
20 {
21 platformStop();
22 delay(20);
23 rightForward();
24 delay(500);
25 platformStop();
26 delay(20);
27 platformBackward();
28 delay(1000);
29 platformStop();
30 delay(20);
31 rightForward(); //Controlling the wheels allowed us to turn without spinning
32 leftStop();
33 delay(150);
34 platformForward();
35 delay(300);
36 platformStop();
37 delay(1000);
38 state7Setup();
39 }
40
41 //Timeout
42 currentTime = millis();
43 if ((currentTime - startTime) > 2000) {
44 platformStop();
45 delay(20);
46 rightForward();
47 delay(500);
48 platformStop();
49 delay(20);
50 platformBackward();
51 delay(1000);
52 platformStop();
53 delay(20);
54 rightForward(); //Controlling the wheels allowed us to turn without spinning
55 leftStop();
56 delay(150);
57 platformForward();

58 delay(300);
59 platformStop();
60 delay(1000);
61 state7Setup();
62 }
63 }

Milestone 3
State 7

1 //Get the block
2
3 void state7Setup() {
4 platformStop();
5 delay(20);
6 state = 7;
7 }
8
9 void state7() {
10
11 //Sniper takes block off wall
12 myservos.attach(6);
13 delay(100);
14 myservos.write(40);
15 delay(1000);
16 myservos.write(180);
17 delay(1000);
18 myservos.detach();
19
20 //Empty Cradle into Dumpster
21 myservoc.attach(3);
22 delay(100);
23 myservoc.write(0);
24 delay(1000);
25 myservoc.write(90);
26 delay(250);
27 myservoc.detach();
28 delay(1000);
29
30 state8Setup();
31 }

Milestone 3
State 8

1 //Return to Base
2
3 void state8Setup() {
4 platformStop();
5 delay(20);
6 state = 8;
7 }
8
9 void state8() {
10
11 //Move around the board counter-clockwise to reach the base
12 //All turns are timed because the buttons were unreliable
13 //Letters were used to organize positions on the board
14
15 //A
16 platformSpinRight();
17 delay(750);
18 platformStop();
19 delay(20);
20
21 //B
22 platformForward();
23 delay(6000);
24 platformStop();
25 delay(20);
26
27 //C
28 platformBackward();
29 delay(150);
30 platformStop();
31 delay(20);
32
33 //D
34 platformSpinLeft();
35 delay(800);
36 platformStop();
37 delay(20);
38
39 //E
40 platformForward();
41 delay(6000);
42 platformStop();
43 delay(20);
44
45 //F
46 platformBackward();
47 delay(200);
48 platformStop();
49 delay(20);
50
51 //G
52 platformSpinLeft();
53 delay(350);
54 platformStop();
55 delay(20);
56
57 //H

58 platformForward();
59 delay(6000);
60 platformStop();
61 delay(20);
62
63 state9Setup();
64 }

Milestone 3
State 9

1 //Empty the dumpster
2
3 void state9Setup() {
4 platformStop();
5 delay(20);
6 state = 9;
7 }
8
9 void state9() {
10
11 //Attach dumpster servo, dump it, return, detach
12 myservod.attach(9);
13 delay(1000);
14 myservod.write(180);
15 delay(1000);
16 myservod.write(55);
17 delay(50000);
18 }

Milestone 4
Michael Sherman & Michaela Curcio

1 //Milestone 4
2 //Author 2: Michaela Curcio
3
4 // constants won't change. Used here to set pin numbers:
5 const int leftA = 5; // Left Motor A pinbbh
6 const int leftB = 4; // Left Motor B pin
7 const int rightA = 8; // Right Motor A pin
8 const int rightB = 7; // Right Motor B pin
9 const int analogInPin = A0; // Analog input pin that the potentiometer is attached to
10 const int buzzerPin = 12; // Analog output pin that the LED is attached to
11 int sensorValue = 0; // value read from the pot
12
13 int state = 0; // variable to hold current state
14 unsigned long startTime; // will store the time the state was setup
15
16 //Setup Servos
17 #include <Servo.h>
18 Servo myservod; //Dumpster
19 Servo myservoc; //Cradle
20 Servo myservos; //Sniper
21
22 void setup() {
23 // set the digital pins as output:
24 pinMode(leftA, OUTPUT);
25 pinMode(leftB, OUTPUT);
26 pinMode(rightA, OUTPUT);
27 pinMode(rightB, OUTPUT);
28 pinMode(buzzerPin, OUTPUT);
29
30 state1Setup();
31 }
32
33 void loop() {
34 // This loop simply calls the state function for the current State
35 switch (state) {
36 case 1:
37 state1();
38 break;
39 case 2:
40 state2();
41 break;
42 case 3:
43 state3();
44 break;
45 case 4:
46 state4();
47 break;
48 case 5:
49 state5();
50 break;
51 case 6:
52 state6();
53 break;
54 }
55 }

Milestone 4
motorFunctions

1 // Never change these functions
2 // If they have the reversed outcome rewire the platform
3 // Do not re-write these functions
4 void platformForward()
5 {
6 leftForward();
7 rightForward();
8 }
9 void platformBackward()
10 {
11 leftBackward();
12 rightBackward();
13 }
14 void platformStop()
15 {
16 leftStop();
17 rightStop();
18 }
19 void platformSpinLeft()
20 {
21 leftBackward();
22 rightForward();
23 }
24 void platformSpinRight()
25 {
26 rightBackward();
27 leftForward();
28 }
29 //left
30 void leftForward()
31 {
32 digitalWrite(leftA, HIGH);
33 digitalWrite(leftB, LOW);
34 }
35 void leftBackward()
36 {
37 digitalWrite(leftA, LOW);
38 digitalWrite(leftB, HIGH);
39 }
40
41 void leftStop()
42 {
43 digitalWrite(leftA, LOW);
44 digitalWrite(leftB, LOW);
45 }
46 //right
47 void rightForward()
48 {
49 digitalWrite(rightA, HIGH);
50 digitalWrite(rightB, LOW);
51 }
52 void rightBackward()
53 {
54 digitalWrite(rightA, LOW);
55 digitalWrite(rightB, HIGH);
56 }
57

58 void rightStop()
59 {
60 digitalWrite(rightA, LOW);
61 digitalWrite(rightB, LOW);
62 }

Milestone 4
State 1

1 //Get the block
2
3 void state1Setup() {
4 platformStop();
5 delay(20);
6 state = 1;
7 }
8
9 void state1() {
10
11 //Sniper flicks block off wall
12 myservos.attach(6); //attaches sniper to pin 6
13 delay(100);
14 myservos.write(70); //moves down lower so it doesn't just smack it at full speed
15 delay(1000);
16 myservos.write(50); //flicks block in cradle
17 delay(1000);
18 myservos.write(90); //starting position
19 delay(1000);
20 myservos.detach();
21
22 //wiggle cradle
23 myservoc.attach(3); //attaches to pin 3
24 delay(100);
25 myservoc.write(60); //wiggles
26 delay(1000);
27 myservoc.write(80); //moves back to original spot
28 delay(250);
29 myservoc.detach();
30 delay(1000);
31
32 state2Setup();
33 }

Milestone 4
State 2

1 //read the color of the block
2
3 void state2Setup() {
4 platformStop();
5 delay(500);
6 state = 2;
7 }
8
9 void state2() {
10 // initialize serial communications at 9600 bps:
11 Serial.begin(9600);
12
13 // read the analog in value:
14 sensorValue = analogRead(analogInPin);
15
16 // print the results to the Serial Monitor:
17 Serial.print("sensor = ");
18 Serial.println(sensorValue);
19
20 if (sensorValue < 149) { //for white block
21 startTime = millis();
22 while ((millis() - startTime) < 3000) {
23 tone(buzzerPin, 750, 200); //makes siren noise
24 delay(200);
25 tone(buzzerPin, 2600, 200);
26 delay(200);
27 state3Setup();
28 }
29 }
30 else if ((150 < sensorValue) && (sensorValue < 800)) { //for black block
31 tone(buzzerPin, 200, 2000); //makes single deep tune
32 delay(2000);
33 state3Setup();
34 }
35 else if (sensorValue > 801) { //no block
36 myservod.attach(10); //attaches dumpster to pin 10
37 delay(1000);
38 myservod.write(175); //flings block out of dumpster
39 delay(1000);
40 myservod.write(55); //goes back to staring position
41 delay(1000);
42 myservod.detach();
43 delay(1000);
44 state6Setup(); //doesn't make any noise, sends straight to state 6 to try again incase

block is messed up in cradle
45 }
46 }

Milestone 4
State 3

1 //Empty cradle into dumpster
2
3 void state3Setup() {
4 platformStop();
5 delay(20);
6 state = 3;
7 }
8
9 void state3() {
10
11 myservoc.attach(3); //attaches cradle to pin 3
12 delay(100);
13 myservoc.write(5); //throws block from cradle to dumpster
14 delay(1000);
15 myservoc.write(80); //starting position
16 delay(250);
17 myservoc.detach();
18 delay(1000);
19
20 state4Setup();
21 }

Milestone 4
State 4

1 //Yeet block to empty dumpster
2
3 void state4Setup() {
4 platformStop();
5 delay(20);
6 state = 4;
7 }
8
9 void state4() {
10
11 myservod.attach(10); //attaches dumpster to pin 10
12 delay(1000);
13 myservod.write(175); //flings block out of dumpster
14 delay(1000);
15 myservod.write(55); //goes back to starting position
16 delay(1000);
17 myservod.detach();
18 delay(1000);
19
20 state5Setup();
21 }

Milestone 4
State 5

1 //Scooch forward
2
3 void state5Setup() {
4 platformStop();
5 delay(20);
6 state = 5;
7 }
8
9 void state5() {
10 leftStop();
11 rightForward(); //turns right to get back against back wall
12 delay(100);
13 platformStop();
14 delay(20);
15 platformForward(); //moves forward to get to next block
16 delay(115);
17 platformStop();
18 delay(2000);
19 leftStop();
20 rightForward(); //turns right to get back against back wall again just incase
21 delay(100);
22 platformStop();
23 delay(20);
24
25 state1Setup(); //repeats all 5 states again for next blocks
26 }

Milestone 4
State 6

1 //read the color of the block AGAIN
2 //this is to see if the dumpster fixed anything
3
4 void state6Setup() {
5 platformStop();
6 delay(500);
7 state = 6;
8 }
9
10 void state6() {
11 // read the analog in value:
12 sensorValue = analogRead(analogInPin);
13
14 // print the results to the Serial Monitor:
15 Serial.print("sensor = ");
16 Serial.println(sensorValue);
17
18 if (sensorValue < 149) { //for white block
19 startTime = millis();
20 while ((millis() - startTime) < 3000) {
21 tone(buzzerPin, 750, 200); //makes siren noise
22 delay(200);
23 tone(buzzerPin, 2600, 200);
24 delay(200);
25 state3Setup();
26 }
27 }
28 else if ((150 < sensorValue) && (sensorValue < 800)) { //for black block
29 tone(buzzerPin, 200, 2000); //makes single deep tune
30 delay(2000);
31 state3Setup();
32 }
33 else if (sensorValue > 801) { //no block
34 state5Setup(); //go straight to stae 5 because there is actually no block
35 }
36 }

Milestone 5
Author 1: Michael Sherman

1 //Milestone 5 Code
2 //Author 1: Michael Sherman
3
4 //Set pin numbers:
5 const int leftA = 5; // Left Motor A pin
6 const int leftB = 4; // Left Motor B pin
7 const int rightA = 8; // Right Motor A pin
8 const int rightB = 7; // Right Motor B pin
9 const int analogInPin = A0; //Color Sensor
10 const int buzzerPin = 12; //Buzzer
11 const int leftButton = A2; //Left Button Pin
12 const int backButton = A1; //Back Button Pin
13 const int trigPin = 13; //ultrasonic trigger
14 const int echoPin = A3; //ultrasonic echo
15
16 //Initialize Button States and Sensor Value
17 int backButtonState = 0;
18 int leftButtonState = 0;
19 int sensorValue = 0;
20
21 // Variables will change:
22 int blockCounter = 0; //count number of blocks taken
23 int state = 0; // variable to hold current state
24 unsigned long startTime; // will store the time the state was setup
25 long duration; //duration used in ultrasonic
26 float distanceCm; //distance used in ultrasonic
27
28 //Setup Servos
29 #include <Servo.h>
30 Servo backDumpster; // Back Dumpster
31 Servo cradle; //Cradle
32 Servo sniper; //Sniper
33 Servo frontDumpster; //Front Dumpster
34 Servo turntable; //Turntable
35
36
37 //Run this to read from ultrasonic
38 void ultrasonicRead() {
39 digitalWrite(trigPin, LOW);
40 delayMicroseconds(2);
41 digitalWrite(trigPin, HIGH);
42 delayMicroseconds(10);
43 digitalWrite(trigPin, LOW);
44 duration = pulseIn(echoPin, HIGH);
45 distanceCm = duration * 0.034 / 2;
46 }
47
48 void setup() {
49 // set the digital pins as output:
50 pinMode(leftA, OUTPUT);
51 pinMode(leftB, OUTPUT);
52 pinMode(rightA, OUTPUT);
53 pinMode(rightB, OUTPUT);
54 pinMode(leftButton, INPUT);
55 pinMode(backButton, INPUT);
56 pinMode(trigPin, OUTPUT);
57 pinMode(echoPin, INPUT);

58
59 //Begin Servos in the Right Spot
60 //sniper
61 sniper.attach(6);
62 delay(20);
63 sniper.write(165);
64 delay(250);
65 sniper.detach();
66 delay(20);
67
68 //back dumpster
69 backDumpster.attach(10);
70 delay(50);
71 backDumpster.write(60);
72 delay(150);
73 backDumpster.detach();
74
75 //front dumpster
76 frontDumpster.attach(11);
77 delay(50);
78 frontDumpster.write(110);
79 delay(150);
80 frontDumpster.detach();
81
82 //turntable
83 turntable.attach(9);
84 delay(20);
85 turntable.write(110);
86 delay(150);
87 turntable.detach();
88 delay(20);
89
90 //cradle
91 cradle.attach(3);
92 delay(50);
93 cradle.write(90);
94 delay(100);
95 cradle.detach();
96
97
98 //Start with state 1
99 state1Setup();

100 }
101
102 void loop() {
103 switch (state) {
104 case 1:
105 state1();
106 break;
107 case 2:
108 state2();
109 break;
110 case 3:
111 state3();
112 break;
113 case 4:
114 state4();
115 break;
116 case 5:
117 state5();
118 break;
119 case 6:
120 state6();
121 break;
122 case 7:

123 state7();
124 break;
125 case 8:
126 state8();
127 break;
128 case 9:
129 state9();
130 break;
131 case 10:
132 state10();
133 break;
134 case 11:
135 state11();
136 break;
137 }
138 }

Milestone 5
Motor Functions

1 // Never change these functions
2 // If they have the reversed outcome rewire the platform
3 // Do not re-write these functions
4 void platformForward()
5 {
6 leftForward();
7 rightForward();
8 }
9 void platformBackward()
10 {
11 leftBackward();
12 rightBackward();
13 }
14 void platformStop()
15 {
16 leftStop();
17 rightStop();
18 }
19 void platformSpinLeft()
20 {
21 leftBackward();
22 rightForward();
23 }
24 void platformSpinRight()
25 {
26 rightBackward();
27 leftForward();
28 }
29 //left
30 void leftForward()
31 {
32 digitalWrite(leftA, HIGH);
33 digitalWrite(leftB, LOW);
34 }
35 void leftBackward()
36 {
37 digitalWrite(leftA, LOW);
38 digitalWrite(leftB, HIGH);
39 }
40
41 void leftStop()
42 {
43 digitalWrite(leftA, LOW);
44 digitalWrite(leftB, LOW);
45 }
46 //right
47 void rightForward()
48 {
49 digitalWrite(rightA, HIGH);
50 digitalWrite(rightB, LOW);
51 }
52 void rightBackward()
53 {
54 digitalWrite(rightA, LOW);
55 digitalWrite(rightB, HIGH);
56 }
57

58 void rightStop()
59 {
60 digitalWrite(rightA, LOW);
61 digitalWrite(rightB, LOW);
62 }

Milestone 5
State 1

1 //Backwards Until Distance or Time
2
3 void state1Setup() {
4 platformBackward();
5 startTime = millis();
6 delay(500);
7 state = 1;
8 }
9
10 void state1() {
11 //call ultrasonic function
12 ultrasonicRead();
13
14 //Check distance to wall
15 if ((distanceCm < 8) and (distanceCm > 1)) {
16 platformStop();
17 delay(20);
18 state2Setup();
19 }
20
21 //Timeout
22 if ((millis() - startTime) > 3000) {
23 platformStop();
24 delay(20);
25 platformForward(); //move away from wall before turning
26 delay(200);
27 platformStop();
28 delay(20);
29 state2Setup();
30 }
31 }

Milestone 5
State 2

1 //Turn Right into Wall (Time)
2
3 void state2Setup() {
4 platformSpinRight();
5 startTime = millis();
6 state = 2;
7 }
8
9 void state2() {
10
11 //Timeout
12 if ((millis() - startTime) > 1500) {
13 platformStop();
14 delay(20);
15 state3Setup();
16 }
17 }

Milestone 5
State 3

1 //Backward Until Button, or Time
2
3 void state3Setup() {
4 platformBackward();
5 delay(250);
6 startTime = millis();
7 state = 3;
8 }
9
10 void state3() {
11
12 //Check Button
13 backButtonState = digitalRead(backButton);
14 if (backButtonState == HIGH)
15 {
16 platformStop();
17 delay(20);
18 state4Setup();
19 }
20
21 //Timeout
22 if ((millis() - startTime) > 5000)
23 {
24 platformStop();
25 delay(20);
26 state4Setup();
27 }
28 }

Milestone 5
State 4

1 //Turn Left
2
3 void state4Setup() {
4 platformStop();
5 delay(20);
6 platformForward(); //Move away from wall before turning
7 delay(80);
8 platformStop();
9 delay(20);
10 startTime = millis();
11 state = 4;
12 }
13
14 void state4() {
15
16 //Turn Left
17 platformSpinLeft();
18 delay(200);
19
20 //Stop if Left Button
21 if ((digitalRead(leftButton)) == HIGH) {
22 state5Setup();
23 }
24
25 //Stop if Time
26 if ((millis() - startTime) > 3000) {
27 state5Setup();
28 }
29 }

Milestone 5
State 5

1 //Positioning into Corner
2
3 void state5Setup() {
4 platformStop();
5 delay(20);
6 startTime = millis();
7 state = 5;
8 }
9
10 void state5() {
11 unsigned long currentTime = millis();
12
13 //Forward
14 platformForward();
15 delay(1500);
16 platformStop();
17 delay(20);
18
19 //Position by only moving one wheel
20 rightBackward();
21 leftStop();
22 delay(200);
23
24 platformStop();
25 delay(20);
26
27 state6Setup();
28 }

Milestone 5
State 6

1 //Parallel Parking
2
3 void state6Setup() {
4 platformStop();
5 delay(20);
6 startTime = millis();
7 state = 6;
8 platformBackward();
9 }
10
11 void state6() {
12
13 //Buttons were extremely unreliable for this, so we used time
14 if ((millis() - startTime) > 2000) {
15 platformStop();
16 delay(20);
17 rightForward(); //Control individual wheels
18 delay(500);
19 platformStop();
20 delay(20);
21 platformBackward(); //back all the way into corner to align with first block
22 delay(1200);
23 platformStop();
24 delay(20);
25 rightForward(); //Controlling the wheels allowed us to turn without spinning
26 leftStop();
27 delay(150);
28 state7Setup();
29 }
30 }

Milestone 5
State 7

1 //Get the block
2
3 void state7Setup() {
4 platformStop();
5 delay(20);
6 state = 7;
7 }
8
9 void state7() {
10
11 //Sniper flicks block off wall
12 sniper.attach(6); //attaches sniper to pin 6
13 delay(100);
14 sniper.write(70); //moves down lower so it doesn't just smack it at full speed
15 delay(500);
16 sniper.write(50); //flicks block in cradle
17 delay(500);
18 sniper.write(90); //starting position
19 delay(500);
20 sniper.detach();
21
22
23 //wiggle cradle
24 cradle.attach(3); //attaches to pin 3
25 delay(100);
26 cradle.write(65); //wiggles
27 delay(300);
28 cradle.write(90); //moves back to original spot
29 delay(200);
30 cradle.detach();
31 delay(50);
32
33 state8Setup();
34 }

Milestone 5
State 8

1 //Sensing
2 void state8Setup() {
3 platformStop();
4 delay(20);
5
6 //add block to counter
7 blockCounter = blockCounter + 1;
8 state = 8;
9 }
10
11 void state8() {
12
13 delay(500); // make sure block is settled after wiggle
14 sensorValue = analogRead(analogInPin); //sense the color
15
16 //White Block
17 if (sensorValue < 149) {
18 state10Setup();
19 }
20
21 //Black Block
22 else if (150 < sensorValue) {
23 state9Setup();
24 }
25 }

Milestone 5
State 9

1 //Black Block
2
3 void state9Setup() {
4 platformStop();
5 delay(20);
6 state = 9;
7 }
8
9 void state9() {
10
11 //receive block from cradle
12 cradle.attach(3); //attaches cradle to pin 3
13 delay(100);
14 cradle.write(5); //throws block from cradle to dumpster
15 delay(250);
16 cradle.write(90); //starting position
17 delay(250);
18 cradle.detach();
19 delay(20);
20
21 //lift dumpster to move blocks
22 backDumpster.attach(10);
23 delay(20);
24 backDumpster.write(95);
25 delay(100);
26
27 //put dumpster down gently
28 for (int pos = 95; pos >= 60; pos -= 1) {
29 backDumpster.write(pos);
30 delay(20);
31 }
32
33 //scooch forward
34 leftStop();
35 rightForward(); //turns left to get back against back wall
36 delay(100);
37 platformStop();
38 delay(20);
39 platformForward(); //moves forward to get to next block
40 delay(55); //if bats are low, put at 120
41 platformStop();
42 delay(20);
43 leftStop();
44 rightForward(); //turns left to get back against back wall again just incase
45 delay(100);
46 platformStop();
47 delay(20);
48
49 //Depending on the counter, get another block, or bring the blocks to the bin
50 if (blockCounter > 6) {
51 state11Setup();
52 }
53 else {
54 state7Setup();
55 }
56 }

Milestone 5
State 10

1 //White Block
2
3 void state10Setup() {
4 platformStop();
5 delay(20);
6 state = 10;
7 }
8
9 void state10() {
10 //move away from wall
11 platformSpinRight();
12 delay(250);
13 platformStop();
14 delay(20);
15
16 //spin the turntable
17 turntable.attach(9);
18 delay(100);
19 turntable.write(25);
20 delay(500);
21 turntable.detach();
22
23 //bring down the front dumpster
24 frontDumpster.attach(11);
25 delay(100);
26 frontDumpster.write(52);
27 delay(500);
28 frontDumpster.detach();
29
30 //Empty the cradle
31 cradle.attach(3); //attaches cradle to pin 3
32 delay(100);
33 cradle.write(5); //throws block from cradle to dumpster
34 delay(500);
35 cradle.write(90); //starting position
36 delay(250);
37 cradle.detach();
38 delay(50);
39
40 //bring up dumpster gently
41 frontDumpster.attach(11);
42 delay(100);
43 for (int pos = 52; pos <= 110; pos += 1) {
44 frontDumpster.write(pos);
45 delay(10);
46 }
47 frontDumpster.detach();
48
49 //swing the turntable back
50 turntable.attach(9);
51 delay(100);
52 turntable.write(110);
53 delay(500);
54 turntable.detach();
55
56 //turn back
57 platformSpinLeft();

58 delay(500);
59 platformStop();
60 delay(20);
61
62 //scooch forward
63 leftStop();
64 rightForward(); //turns right to get back against back wall
65 delay(100);
66 platformStop();
67 delay(20);
68 platformForward(); //moves forward to get to next block
69 delay(45);
70 platformStop();
71 delay(20);
72 leftStop();
73 rightForward(); //turns right to get back against back wall again just in case
74 delay(100);
75 platformStop();
76 delay(20);
77
78 //Depending on the counter, get another block, or bring the blocks to the bin
79 if (blockCounter > 6) {
80 state11Setup();
81 }
82 else {
83 state7Setup();
84 }
85 }

Milestone 5
State 11

1 //Delivery
2
3 void state11Setup() {
4
5 //lower the front dumpster a bit so we don't lose blocks in transport
6 frontDumpster.attach(11);
7 delay(100);
8 frontDumpster.write(90);
9 delay(500);
10 frontDumpster.detach();
11
12 //drive backwards
13 platformBackward();
14 startTime = millis();
15 tone(buzzerPin, 2000, 250);
16 Serial.print("State 11");
17 state = 11;
18 }
19
20 void state11() {
21
22 //Reverse into wall
23 if ((digitalRead(backButton) == HIGH) or ((millis() - startTime) > 3000)) {
24 platformStop();
25 delay(20);
26 platformForward();
27 delay(100);
28 platformSpinRight();
29 delay(2000);
30 platformForward();
31 delay(5000);
32 platformStop();
33 delay(20);
34
35 //Dump the blocks
36 frontDumpster.attach(11);
37 delay(100);
38 frontDumpster.write(160);
39 delay(500);
40 frontDumpster.write(110);
41 delay(500);
42 frontDumpster.detach();
43 delay(20000);
44 }
45 }

Final Project Demo
Michael Sherman & Michaela Curcio

1 //Final Project Demo Code
2 //Author 2: Michaela Curcio
3
4 //Set pin numbers:
5 const int leftA = 5; // Left Motor A pin
6 const int leftB = 4; // Left Motor B pin
7 const int rightA = 8; // Right Motor A pin
8 const int rightB = 7; // Right Motor B pin
9 const int analogInPin = A0; //Color sensor
10 const int buzzerPin = 12; //buzzer
11 const int leftButton = A2; //Left Button Pin
12 const int backButton = A1; //Back Button Pin
13
14 //Initialize Button States and
15 int backButtonState = 0;
16 int leftButtonState = 0;
17 int sensorValue = 0;
18
19 // Variables will change:
20 int blockCounter = 0; // count number of blocks sniped
21 int state = 0; // variable to hold current state
22 unsigned long startTime; // will store the time the state was setup
23
24 //Setup Servos
25 #include <Servo.h>
26 Servo backDumpster; //Dumpster
27 Servo cradle; //Cradle
28 Servo sniper; //Sniper
29 Servo frontDumpster; //front dumpster
30 Servo turntable; //turntable
31
32 //ultrasonic
33 const int trigPin = 13;
34 const int echoPin = A3;
35 long duration;
36 float distanceCm;
37
38 //Run this to read from ultrasonic
39 void ultrasonicRead() {
40 digitalWrite(trigPin, LOW);
41 delayMicroseconds(2);
42 digitalWrite(trigPin, HIGH);
43 delayMicroseconds(10);
44 digitalWrite(trigPin, LOW);
45 duration = pulseIn(echoPin, HIGH);
46 distanceCm = duration * 0.034 / 2;
47 }
48
49 void setup() {
50 // set the digital pins as output:
51 pinMode(leftA, OUTPUT);
52 pinMode(leftB, OUTPUT);
53 pinMode(rightA, OUTPUT);
54 pinMode(rightB, OUTPUT);
55 pinMode(leftButton, INPUT);
56 pinMode(backButton, INPUT);
57 pinMode(trigPin, OUTPUT);

58 pinMode(echoPin, INPUT);
59
60 //Begin Servos in the Right Spot
61 //sniper
62 sniper.attach(6);
63 delay(20);
64 sniper.write(165);
65 delay(250);
66 sniper.detach();
67 delay(20);
68
69 //back dumpster
70 backDumpster.attach(10);
71 delay(50);
72 backDumpster.write(60);
73 delay(150);
74 backDumpster.detach();
75
76 //front dumpster
77 frontDumpster.attach(11);
78 delay(50);
79 frontDumpster.write(110);
80 delay(150);
81 frontDumpster.detach();
82
83 //turntable
84 turntable.attach(9);
85 delay(20);
86 turntable.write(110);
87 delay(150);
88 turntable.detach();
89 delay(20);
90
91 //cradle
92 cradle.attach(3);
93 delay(50);
94 cradle.write(90);
95 delay(100);
96 cradle.detach();
97
98 Serial.begin(9600);
99

100 //Go to state 1
101 Doubler();
102 }
103
104 void loop() {
105 switch (state) {
106 case 0:
107 Doubler();
108 break;
109 case 1:
110 S01Backup();
111 break;
112 case 2:
113 S02TurnRight();
114 break;
115 case 3:
116 S03Backup();
117 break;
118 case 4:
119 S04TurnLeft();
120 break;
121 case 5:
122 S05ToCorner();

123 break;
124 case 6:
125 S06ParallelPark();
126 break;
127 case 7:
128 S07GoToBlock();
129 break;
130 case 8:
131 S08SenseBlock();
132 break;
133 case 9:
134 S09Black();
135 break;
136 case 10:
137 S10White();
138 break;
139 case 11:
140 S11WhiteDelivery();
141 break;
142 case 12:
143 S12BlackDelivery();
144 break;
145 case 13:
146 S13Turning();
147 break;
148 case 14:
149 S14Backup();
150 break;
151 case 15:
152 S15TurnRight();
153 break;
154 case 16:
155 S16Backup();
156 break;
157 case 17:
158 S17TurnLeft();
159 break;
160 case 18:
161 S18ToCorner();
162 break;
163 case 19:
164 S19ParallelPark();
165 break;
166 case 20:
167 S20GoToBlock();
168 break;
169 case 21:
170 S21SenseBlock();
171 break;
172 case 22:
173 S22Black();
174 break;
175 case 23:
176 S23White();
177 break;
178 case 24:
179 S24StartingPos();
180 break;
181 case 25:
182 S25WhiteDelivery();
183 break;
184 case 26:
185 S26BlackDelivery();
186 break;

187 }
188 }

Final Project Demo
motorFunctions

1 // Never change these functions
2 // If they have the reversed outcome rewire the platform
3 // Do not re-write these functions
4 void platformForward()
5 {
6 leftForward();
7 rightForward();
8 }
9 void platformBackward()
10 {
11 leftBackward();
12 rightBackward();
13 }
14 void platformStop()
15 {
16 leftStop();
17 rightStop();
18 }
19 void platformSpinLeft()
20 {
21 leftBackward();
22 rightForward();
23 }
24 void platformSpinRight()
25 {
26 rightBackward();
27 leftForward();
28 }
29 //left
30 void leftForward()
31 {
32 digitalWrite(leftA, HIGH);
33 digitalWrite(leftB, LOW);
34 }
35 void leftBackward()
36 {
37 digitalWrite(leftA, LOW);
38 digitalWrite(leftB, HIGH);
39 }
40
41 void leftStop()
42 {
43 digitalWrite(leftA, LOW);
44 digitalWrite(leftB, LOW);
45 }
46 //right
47 void rightForward()
48 {
49 digitalWrite(rightA, HIGH);
50 digitalWrite(rightB, LOW);
51 }
52 void rightBackward()
53 {
54 digitalWrite(rightA, LOW);
55 digitalWrite(rightB, HIGH);
56 }
57

58 void rightStop()
59 {
60 digitalWrite(rightA, LOW);
61 digitalWrite(rightB, LOW);
62 }

Final Project Demo
Doubler

1 void DoublerSetup() {
2 state = 0;
3 }
4
5 void Doubler() {
6
7 //back up & place againt divider wall
8 platformBackward();
9 delay(900);
10 platformStop();
11 delay(20);
12 platformSpinRight();
13 delay(200);
14 platformStop();
15 delay(20);
16 platformBackward();
17 delay(1300);
18
19 leftStop();
20 rightForward();
21 delay(400);
22
23 platformBackward();
24 delay(900);
25
26
27 //position sniper into correct spot
28 sniper.attach(6); //attaches sniper to pin 6
29 delay(50);
30 sniper.write(55); //position to get doubler
31 delay(500);
32 sniper.detach();
33
34 //cradle
35 cradle.attach(3);
36 delay(50);
37 cradle.write(85);
38 delay(100);
39 cradle.detach();
40
41 //Drive by for doubler
42 //give 'em the shimm
43 startTime = millis();
44 platformForward();
45 delay(300);
46 while ((millis() - startTime) < 2000) {
47 platformForward();
48 delay(170);
49 platformSpinLeft();
50 delay(100);
51 }
52 platformForward();
53 delay(2000);
54 platformStop();
55 delay(20);
56
57 //fix sniper

58 sniper.attach(6);
59 delay(20);
60 sniper.write(165);
61 delay(250);
62 sniper.detach();
63 delay(20);
64
65 //cradle
66 cradle.attach(3); //attaches cradle to pin 3
67 delay(100);
68 cradle.write(5); //throws doubler from cradle to dumpster
69 delay(250);
70 cradle.write(90); //starting position
71 delay(250);
72 cradle.detach();
73 delay(20);
74
75 //turn to get to side wall
76 platformSpinLeft();
77 delay(475);
78 platformStop();
79 delay(20);
80
81 platformStop();
82 delay(20);
83 S01BackupSetup();
84 }

Final Project Demo
S01Backup

1 //Backwards Until Distance or Time
2
3 void S01BackupSetup() {
4 platformBackward(); //go backwards
5 startTime = millis();
6 delay(900);
7 state = 1;
8 }
9
10 void S01Backup() {
11 ultrasonicRead();
12 Serial.println(distanceCm);
13
14 //Check distance to wall
15 if ((distanceCm < 8) and (distanceCm > 1)) {
16 platformStop();
17 delay(20);
18 S02TurnRightSetup();
19 }
20
21 //Timeout
22 if ((millis() - startTime) > 2500) {
23 platformStop();
24 delay(20);
25 platformForward();
26 delay(200);
27 platformStop();
28 delay(20);
29 S02TurnRightSetup();
30 }
31 }

Final Project Demo
S02TurnRight

1 //Turn Right into Wall (Time)
2
3 void S02TurnRightSetup() {
4 platformSpinRight();
5 startTime = millis();
6 state = 2;
7 }
8
9 void S02TurnRight() {
10
11 //Timeout
12 if ((millis() - startTime) > 700) {
13 platformStop();
14 delay(20);
15 S03BackupSetup();
16 }
17 }

Final Project Demo
S03Backup

1 //Backward Until Button, or Time
2
3 void S03BackupSetup() {
4 platformBackward();
5 delay(250);
6 startTime = millis();
7 state = 3;
8 }
9
10 void S03Backup() {
11 unsigned long currentTime = millis();
12
13 //Dump that bad boy (the doubler)
14 if ((currentTime - startTime) > 750)
15 {
16 backDumpster.attach(10);
17 delay(100);
18 backDumpster.write(160);
19 delay(600);
20 backDumpster.write(60);
21 delay(600);
22 backDumpster.detach();
23 delay(20);
24 }
25
26 //Check Button
27 backButtonState = digitalRead(backButton);
28 if (backButtonState == HIGH)
29 {
30 platformStop();
31 delay(20);
32 S04TurnLeftSetup();
33 }
34
35 //Timeout
36 if ((currentTime - startTime) > 3500)
37 {
38 platformStop();
39 delay(20);
40 S04TurnLeftSetup();
41 }
42 }

Final Project Demo
S04TurnLeft

1 //Turn Left
2
3 void S04TurnLeftSetup() {
4 platformStop();
5 delay(20);
6 platformForward();
7 delay(80);
8 platformStop();
9 delay(20);
10 startTime = millis();
11 state = 4;
12 }
13
14 void S04TurnLeft() {
15
16 platformSpinLeft();
17 delay(300);
18 platformStop();
19 delay(50);
20
21 //Stop if Button
22 if ((digitalRead(leftButton)) == HIGH) {
23 S05ToCornerSetup();
24 }
25
26 //Stop if Time
27 if ((millis() - startTime) > 2500) {
28 S05ToCornerSetup();
29 }
30 }

Final Project Demo
S05ToCorner

1 //Positioning into Corner
2
3 void S05ToCornerSetup() {
4 platformStop();
5 delay(20);
6 state = 5;
7 }
8
9 void S05ToCorner() {
10
11 //Forward front of bot on divider
12 platformForward();
13 delay(1500);
14 platformStop();
15 delay(20);
16
17 //Position by only moving one wheel to put left wheel aginst back wall
18 rightBackward();
19 leftStop();
20 delay(150);
21
22 S06ParallelParkSetup();
23 }

Final Project Demo
S06ParallelPark

1 //Parallel Parking
2
3 void S06ParallelParkSetup() {
4 platformStop();
5 delay(20);
6 startTime = millis();
7 state = 6;
8 }
9
10 void S06ParallelPark() {
11 unsigned long currentTime;
12 currentTime = millis();
13
14 //Parallel Parking into corner
15 //Buttons were extremely unreliable for this, so we used time
16 platformBackward();
17 backButtonState = digitalRead(backButton);
18 if (backButtonState == HIGH)
19 {
20 platformStop();
21 delay(20);
22 rightForward();
23 delay(500);
24 platformStop();
25 delay(20);
26 platformBackward();
27 delay(1200);
28 platformStop();
29 delay(20);
30 rightForward(); //Controlling the wheels allowed us to turn without spinning
31 leftStop();
32 delay(150);
33 S07GoToBlockSetup();
34 }
35
36 //Timeout
37 currentTime = millis();
38 if ((currentTime - startTime) > 2000) {
39 platformStop();
40 delay(20);
41 rightForward();
42 delay(500);
43 platformStop();
44 delay(20);
45 platformBackward();
46 delay(1200);
47 platformStop();
48 delay(20);
49 rightForward(); //Controlling the wheels allowed us to turn without spinning
50 leftStop();
51 delay(150);
52 S07GoToBlockSetup();
53 }
54 }

Final Project Demo
S07GoToBlock

1 //Get the block
2
3 void S07GoToBlockSetup() {
4 platformStop();
5 delay(20);
6 state = 7;
7 }
8
9 void S07GoToBlock() {
10
11 //Sniper flicks block off wall
12 sniper.attach(6); //attaches sniper to pin 6
13 delay(50);
14 sniper.write(70); //moves down lower so it doesn't just smack it at full speed
15 delay(250);
16 sniper.write(50); //flicks block in cradle
17 delay(500);
18 sniper.write(90); //starting position
19 delay(500);
20 sniper.detach();
21
22
23 //wiggle cradle
24 cradle.attach(3); //attaches to pin 3
25 delay(50);
26 cradle.write(65); //wiggles
27 delay(250);
28 cradle.write(90); //moves back to original spot
29 delay(250);
30 cradle.detach();
31 delay(50);
32
33 S08SenseBlockSetup();
34 }

Final Project Demo
S08SenseBlock

1 //Sensing
2 void S08SenseBlockSetup() {
3 platformStop();
4 delay(20);
5
6 //add block to counter
7 blockCounter = blockCounter + 1;
8 Serial.println(blockCounter);
9 state = 8;
10 }
11
12 void S08SenseBlock() {
13
14 // wait for block to fall and read the analog in value:
15 delay(300);
16 sensorValue = analogRead(analogInPin);
17
18 // print the results to the Serial Monitor:
19 Serial.print("sensor = ");
20 Serial.println(sensorValue);
21
22 //White Block
23 if (sensorValue < 149) {
24 S10WhiteSetup();
25 }
26
27 //Black Block
28 else if (150 < sensorValue) {
29
30 S09BlackSetup();
31 }
32 }

Final Project Demo
S09Black

1 //Black Block
2
3 void S09BlackSetup() {
4 platformStop();
5 delay(20);
6 state = 9;
7 }
8
9 void S09Black() {
10
11 //receive block from cradle
12 cradle.attach(3); //attaches cradle to pin 3
13 delay(100);
14 cradle.write(5); //throws block from cradle to dumpster
15 delay(250);
16 cradle.write(90); //starting position
17 delay(250);
18 cradle.detach();
19 delay(20);
20
21 //lift dumpster to move blocks
22 backDumpster.attach(10);
23 delay(20);
24 backDumpster.write(95);
25 delay(100);
26 //put it down gently
27 for (int pos = 95; pos >= 60; pos -= 1) {
28 backDumpster.write(pos);
29 delay(20);
30 }
31
32
33 //scooch
34 leftStop();
35 rightForward(); //turns left to get back against back wall
36 delay(100);
37 platformStop();
38 delay(20);
39 platformForward(); //moves forward to get to next block
40 delay(40);
41 platformStop();
42 delay(20);
43 leftStop();
44 rightForward(); //turns left to get back against back wall again just incase
45 delay(100);
46 platformStop();
47 delay(20);
48
49 if (blockCounter > 7) {
50 S11WhiteDeliverySetup();
51 }
52 else {
53 S07GoToBlockSetup();
54 }
55 }

Final Project Demo
S10White

1 //White Block
2
3 void S10WhiteSetup() {
4 platformStop();
5 delay(20);
6 state = 10;
7 }
8
9 void S10White() {
10 //move away from wall
11 platformSpinRight();
12 delay(250);
13 platformStop();
14 delay(20);
15
16 //spin the turntable
17 turntable.attach(9);
18 delay(100);
19 turntable.write(25);
20 delay(500);
21 turntable.detach();
22
23 //bring down the front dumpster
24 frontDumpster.attach(11);
25 delay(100);
26 frontDumpster.write(52);
27 delay(500);
28 frontDumpster.detach();
29
30 //Empty the cradle
31 cradle.attach(3); //attaches cradle to pin 3
32 delay(100);
33 cradle.write(5); //throws block from cradle to dumpster
34 delay(500);
35 cradle.write(90); //starting position
36 delay(250);
37 cradle.detach();
38 delay(50);
39
40 //bring up the front dumpster
41 //bring up gently
42 frontDumpster.attach(11);
43 delay(100);
44 for (int pos = 52; pos <= 110; pos += 1) {
45 frontDumpster.write(pos);
46 delay(10);
47 }
48 frontDumpster.detach();
49
50 //swing the turntable back
51 turntable.attach(9);
52 delay(100);
53 turntable.write(110);
54 delay(500);
55 turntable.detach();
56
57 //turn back

58 platformSpinLeft();
59 delay(500);
60 platformStop();
61 delay(20);
62
63 //scooch
64 leftStop();
65 rightForward(); //turns right to get back against back wall
66 delay(100);
67 platformStop();
68 delay(20);
69 platformForward(); //moves forward to get to next block
70 delay(30);
71 platformStop();
72 delay(20);
73 leftStop();
74 rightForward(); //turns right to get back against back wall again just in case
75 delay(100);
76 platformStop();
77 delay(20);
78
79 if (blockCounter > 7) {
80 S11WhiteDeliverySetup();
81 }
82 else {
83 S07GoToBlockSetup();
84 }
85 }

Final Project Demo
S11WhiteDelivery

1 //Delivery
2
3 void S11WhiteDeliverySetup() {
4
5 //lower the front dumpster a bit so we don't lose blocks in transport
6 frontDumpster.attach(11);
7 delay(100);
8 frontDumpster.write(90);
9 delay(250);
10 frontDumpster.detach();
11
12 platformBackward();
13 startTime = millis();
14 state = 11;
15 }
16
17 void S11WhiteDelivery() {
18
19 //Reverse for distance or time
20 if ((digitalRead(backButton) == HIGH) or ((millis() - startTime) > 2000)) {
21 platformStop();
22 delay(20);
23 platformForward();
24 delay(100);
25 platformSpinRight();
26 delay(2000);
27 platformForward();
28 delay(3000);
29 platformStop();
30 delay(20);
31
32 //Dump it
33 frontDumpster.attach(11);
34 delay(100);
35 frontDumpster.write(160);
36 delay(300);
37 frontDumpster.write(110);
38 delay(300);
39 frontDumpster.detach();
40 delay(20);
41
42 S12BlackDeliverySetup();
43 }
44 }

Final Project Demo
S12BlackDelivery

1 //Delivery on other side (black)
2
3 void S12BlackDeliverySetup() {
4 platformBackward();
5 delay(300);
6 state = 12;
7 startTime = millis();
8 }
9
10 void S12BlackDelivery() {
11 platformStop();
12 delay(20);
13
14 //Give 'em the shimm
15 while ((millis() - startTime < 1600)) {
16
17 platformSpinLeft();
18 delay(200);
19 platformForward();
20 delay(100);
21 }
22
23 platformStop();
24 delay(20);
25 platformForward();
26 delay(2500);
27 platformStop();
28 delay(20);
29 platformBackward();
30 delay(200);
31 platformStop();
32 delay(20);
33
34 //turning after got to black side in order to ride black wall
35 platformSpinLeft();
36 delay(400);
37 platformForward();
38 delay(400);
39
40 platformStop();
41 delay(20);
42
43 //Give 'em the shimm, but mostly forward
44 startTime = millis();
45 while ((millis() - startTime < 1600))
46 {
47 platformSpinRight();
48 delay(50);
49 platformForward();
50 delay(200);
51 }
52 //stop so she doesn't ride the wall and still gets to perfect angle
53 platformStop();
54 delay(20);
55
56 //Dump it
57 backDumpster.attach(10);

58 delay(100);
59 backDumpster.write(160);
60 delay(600);
61 backDumpster.write(60);
62 delay(600);
63 backDumpster.detach();
64 delay(20);
65
66 S13TurningSetup();
67 }

Final Project Demo
S13Turning

1 //Back up to turn
2
3 void S13TurningSetup() {
4 state = 13;
5 }
6
7 void S13Turning() {
8
9 //doesn't go back as much because it stops beforehand (and doesn't go forward)
10 platformBackward();
11 delay(200);
12
13 platformSpinLeft();
14 delay(800);
15 platformForward();
16 delay(400);
17
18
19 platformSpinRight();
20 delay(1600);
21
22 S14BackupSetup();
23 }

Final Project Demo
S14Backup

1 //Backwards Until Distance or Time
2
3 void S14BackupSetup() {
4 platformBackward();
5 startTime = millis();
6 delay(500);
7 state = 14;
8 }
9
10 void S14Backup() {
11
12 ultrasonicRead();
13 Serial.println(distanceCm);
14
15 //Check distance to wall
16 if ((distanceCm < 8) and (distanceCm > 1)) {
17 platformStop();
18 delay(20);
19 S15TurnRightSetup();
20 }
21
22
23 //Timeout
24 if ((millis() - startTime) > 2000) {
25 platformStop();
26 delay(20);
27 platformForward();
28 delay(100);
29 platformStop();
30 delay(20);
31 S15TurnRightSetup();
32 }
33 }

Final Project Demo
S15TurnRight

1 //Turn Right into Wall (Time)
2
3 void S15TurnRightSetup() {
4 platformSpinRight();
5 startTime = millis();
6 state = 15;
7 }
8
9 void S15TurnRight() {
10
11 //Timeout
12 if ((millis() - startTime) > 700) {
13 platformStop();
14 delay(20);
15 S16BackupSetup();
16 }
17 }

Final Project Demo
S16Backup

1 //Backward Until Button, or Time
2
3 void S16BackupSetup() {
4 platformBackward();
5 delay(250);
6 startTime = millis();
7 state = 16;
8 }
9
10 void S16Backup() {
11 unsigned long currentTime = millis();
12
13 //Check Button
14 backButtonState = digitalRead(backButton);
15 if (backButtonState == HIGH)
16 {
17 platformStop();
18 delay(20);
19 S17TurnLeftSetup();
20 }
21
22 //Timeout
23 if ((currentTime - startTime) > 2000)
24 {
25 platformStop();
26 delay(20);
27 S17TurnLeftSetup();
28 }
29 }

Final Project Demo
S17TurnLeft

1 //Turn Left
2
3 void S17TurnLeftSetup() {
4 platformStop();
5 delay(20);
6 platformForward();
7 delay(80);
8 platformStop();
9 delay(20);
10 startTime = millis();
11 state = 17;
12
13 }
14
15 void S17TurnLeft() {
16
17 platformSpinLeft();
18
19 //Stop if Button
20 if ((digitalRead(leftButton)) == HIGH) {
21 S18ToCornerSetup();
22 }
23
24 //Stop if Time
25 if ((millis() - startTime) > 3000) {
26 S18ToCornerSetup();
27 }
28 }

Final Project Demo
S18ToCorner

1 //Positioning into Corner
2
3 void S18ToCornerSetup() {
4 platformStop();
5 delay(20);
6 state = 18;
7 }
8
9 void S18ToCorner() {
10
11 //Forward
12 platformForward();
13 delay(1500);
14 platformStop();
15 delay(20);
16
17 //Position by only moving one wheel
18 rightBackward();
19 leftStop();
20 delay(150);
21
22 platformStop();
23 delay(20);
24
25 S19ParallelParkSetup();
26 }

Final Project Demo
S19ParallelParking

1 //Parallel Parking
2
3 void S19ParallelParkSetup() {
4 platformStop();
5 delay(20);
6 startTime = millis();
7 state = 19;
8 }
9
10 void S19ParallelPark() {
11 unsigned long currentTime;
12 blockCounter = 0;
13
14 //Parallel Parking into corner
15 platformBackward();
16
17 //Timeout
18 currentTime = millis();
19 if ((currentTime - startTime) > 2000) {
20 platformStop();
21 delay(20);
22 rightForward();
23 delay(500);
24 platformStop();
25 delay(20);
26 platformBackward();
27 delay(1200);
28 platformStop();
29 delay(20);
30 rightForward(); //Controlling the wheels allowed us to turn without spinning
31 leftStop();
32 delay(150);
33
34 //gets into position right in front of first block
35 platformStop();
36 delay(20);
37 platformForward();
38 delay(155);
39 platformStop();
40 delay(20);
41
42 S20GoToBlockSetup();
43 }
44 }

Final Project Demo
S20GoToBlock

1 //Get the block
2
3 void S20GoToBlockSetup() {
4 platformStop();
5 delay(20);
6 state = 20;
7 }
8
9 void S20GoToBlock() {
10
11 //Sniper flicks block off wall
12 sniper.attach(6); //attaches sniper to pin 6
13 delay(20);
14 sniper.write(70); //moves down lower so it doesn't just smack it at full speed
15 delay(500);
16 sniper.write(50); //flicks block in cradle
17 delay(300);
18 sniper.write(90); //starting position
19 delay(300);
20 sniper.detach();
21 delay(20);
22
23
24 //wiggle cradle
25 cradle.attach(3); //attaches to pin 3
26 delay(20);
27 cradle.write(65); //wiggles
28 delay(250);
29 cradle.write(90); //moves back to original spot
30 delay(250);
31 cradle.detach();
32 delay(20);
33
34 S21SenseBlockSetup();
35
36 }

Final Project Demo
S21SenseBlock

1 //Sensing
2 void S21SenseBlockSetup() {
3 platformStop();
4 delay(20);
5
6 //add block to counter
7 blockCounter = blockCounter + 1;
8 Serial.println(blockCounter);
9 state = 21;
10 }
11
12 void S21SenseBlock() {
13
14 //wait for block to settle and read the analog in value:
15 delay(500);
16 sensorValue = analogRead(analogInPin);
17
18 // print the results to the Serial Monitor:
19 Serial.print("sensor = ");
20 Serial.println(sensorValue);
21
22 //White Block
23 if (sensorValue < 149) {
24 S23WhiteSetup();
25 }
26
27 //Black Block
28 else if (150 < sensorValue) {
29
30 S22BlackSetup();
31 }
32 }

Final Project Demo
S22Black

1 //Black Block
2
3 void S22BlackSetup() {
4 platformStop();
5 delay(20);
6 state = 22;
7 }
8
9 void S22Black() {
10
11 //receive block from cradle
12 cradle.attach(3); //attaches cradle to pin 3
13 delay(100);
14 cradle.write(5); //throws block from cradle to dumpster
15 delay(250);
16 cradle.write(90); //starting position
17 delay(250);
18 cradle.detach();
19 delay(20);
20
21 //lift dumpster to move blocks
22 backDumpster.attach(10);
23 delay(20);
24 backDumpster.write(95);
25 delay(100);
26 //put it down gently
27 for (int pos = 95; pos >= 60; pos -= 1) {
28 backDumpster.write(pos);
29 delay(20);
30 }
31
32 //scooch
33 leftStop();
34 rightForward(); //turns left to get back against back wall
35 delay(100);
36 platformStop();
37 delay(20);
38 platformForward(); //moves forward to get to next block
39 delay(35);
40 platformStop();
41 delay(20);
42 leftStop();
43 rightForward(); //turns left to get back against back wall again just incase
44 delay(100);
45 platformStop();
46 delay(20);
47
48 if (blockCounter > 8) {
49 S24StartingPosSetup();
50 }
51 else {
52 S20GoToBlockSetup();
53 }
54 }

Final Project Demo
S23White

1 //White Block
2
3 void S23WhiteSetup() {
4 platformStop();
5 delay(20);
6 state = 23;
7 }
8
9 void S23White() {
10 //move away from wall
11 platformSpinRight();
12 delay(250);
13 platformStop();
14 delay(20);
15
16 //spin the turntable
17 turntable.attach(9);
18 delay(100);
19 turntable.write(25);
20 delay(500);
21 turntable.detach();
22
23 //bring down the front dumpster
24 frontDumpster.attach(11);
25 delay(100);
26 frontDumpster.write(52);
27 delay(500);
28 frontDumpster.detach();
29
30 //Empty the cradle
31 cradle.attach(3); //attaches cradle to pin 3
32 delay(100);
33 cradle.write(5); //throws block from cradle to dumpster
34 delay(500);
35 cradle.write(90); //starting position
36 delay(250);
37 cradle.detach();
38 delay(50);
39
40 //bring up the front dumpster
41
42 //bring up gently
43 frontDumpster.attach(11);
44 delay(100);
45 for (int pos = 52; pos <= 110; pos += 1) {
46 frontDumpster.write(pos);
47 delay(10);
48 }
49 frontDumpster.detach();
50
51 //swing the turntable back
52 turntable.attach(9);
53 delay(100);
54 turntable.write(110);
55 delay(500);
56 turntable.detach();
57

58 //turn back
59 platformSpinLeft();
60 delay(500);
61 platformStop();
62 delay(20);
63
64 //scooch
65 leftStop();
66 rightForward(); //turns right to get back against back wall
67 delay(100);
68 platformStop();
69 delay(20);
70 platformForward(); //moves forward to get to next block
71 delay(25);
72 platformStop();
73 delay(20);
74 leftStop();
75 rightForward(); //turns right to get back against back wall again just in case
76 delay(100);
77 platformStop();
78 delay(20);
79
80 if (blockCounter > 8) {
81 S24StartingPosSetup();
82 }
83 else {
84 S20GoToBlockSetup();
85 }
86 }

Final Project Demo
S24StartingPos

1 //Third Delivery
2
3 void S24StartingPosSetup() {
4
5 //lower the front dumpster a bit so we don't lose blocks in transport
6 frontDumpster.attach(11);
7 delay(100);
8 frontDumpster.write(90);
9 delay(500);
10 frontDumpster.detach();
11
12 platformBackward();
13 startTime = millis();
14 tone(buzzerPin, 2000, 250);
15 Serial.print("State 24");
16 state = 24;
17 }
18
19 void S24StartingPos() {
20
21 //turn to get to divider wall, then forward to get to starting position
22 if (((millis() - startTime) > 4000) or (digitalRead(backButton)==HIGH)){
23 platformStop();
24 delay(20);
25 platformForward();
26 delay(100);
27 platformSpinRight();
28 delay(2000);
29 platformForward();
30 delay(4500);
31 platformStop();
32 delay(20);
33
34 //turn to get to white side wall
35 platformSpinLeft();
36 delay(600);
37 platformStop();
38 delay(20);
39
40 S25WhiteDeliverySetup();
41 }
42 }

Final Project Demo
S25WhiteDelivery

1 //Backwards Until Distance or Time
2
3 void S25WhiteDeliverySetup() {
4 platformBackward();
5 startTime = millis();
6 delay(500);
7 state = 25;
8 }
9
10 void S25WhiteDelivery() {
11 unsigned long currentTime = millis();
12
13 ultrasonicRead();
14 Serial.println(distanceCm);
15
16 //Check distance to wall
17 if ((distanceCm < 8) and (distanceCm > 1)) {
18 platformStop();
19 delay(20);
20
21 //spin to move against white wall
22 platformSpinRight();
23 delay(900);
24 platformForward();
25 delay(1000);
26
27 //Dump it
28 frontDumpster.attach(11);
29 delay(100);
30 frontDumpster.write(160);
31 delay(500);
32 frontDumpster.write(110);
33 delay(500);
34 frontDumpster.detach();
35 delay(200);
36
37 S26BlackDeliverySetup();
38 }
39
40
41 //Timeout
42 if ((millis() - startTime) > 3000) {
43 platformStop();
44 delay(20);
45 platformForward();
46 delay(200);
47 platformStop();
48 delay(20);
49
50 //spin againt white wall
51 platformSpinRight();
52 delay(400);
53 platformForward();
54 delay(1000);
55
56 //Dump it
57 frontDumpster.attach(11);

58 delay(100);
59 frontDumpster.write(160);
60 delay(500);
61 frontDumpster.write(110);
62 delay(500);
63 frontDumpster.detach();
64 delay(200);
65
66 S26BlackDeliverySetup();
67 }
68 }

Final Project Demo
S26BlackDelivery

1 //Delivery on other side (black)
2
3 void S26BlackDeliverySetup() {
4 platformBackward();
5 delay(300);
6 state = 26;
7 startTime = millis();
8 }
9
10 void S26BlackDelivery() {
11 platformStop();
12 delay(20);
13
14 //Give 'em the shimm
15 while ((millis() - startTime < 1500))
16 {
17 platformSpinLeft();
18 delay(200);
19 platformForward();
20 delay(100);
21 }
22
23 //delay(2000);
24 platformStop();
25 delay(20);
26 platformForward();
27 delay(3000);
28 platformStop();
29 delay(20);
30 platformBackward();
31 delay(200);
32 platformStop();
33 delay(20);
34
35 //turn to ride black wall
36 platformSpinLeft();
37 delay(400);
38 platformForward();
39 delay(400);
40
41 platformStop();
42 delay(20);
43
44 //Give 'em the shimm, but mostly forward
45
46 startTime = millis();
47 while ((millis() - startTime < 2000))
48 {
49 platformSpinRight();
50 delay(50);
51 platformForward();
52 delay(200);
53 }
54
55 //Dump it
56 backDumpster.attach(10);
57 delay(100);

58 backDumpster.write(160);
59 delay(600);
60 backDumpster.write(60);
61 delay(600);
62 backDumpster.detach();
63 delay(200);
64
65 platformStop();
66 delay(1000);
67 }

