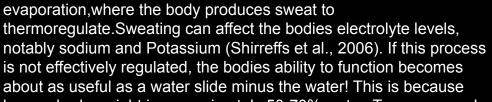


HYDRATIO1

DEHYDRATION ASSOCIATED RISK FACTORS



During Exercise the bodies number one cooling mechanism is

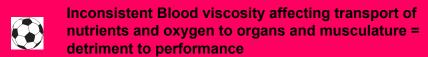
human body weight is approximately 50-70% water. To ensure peak performance, athletes need to be aware of the risks associated with inadequate hydration and incorporate strategies to mitigate the effects associated with dehydration (Belski et al., 2020)

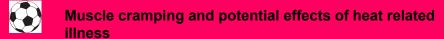
For each 1kg (BW) lost replace with 1.5L of fluid (deduct fluids & foods)

(UK Sports Institute)

Calculating Sweat Loss

Sweat Loss = Change (BW)g + Fluid Intake (ML) - Urine Loss (g) (Burke et al., 2021a)


INDIVIDUALISATION: (Shirreffs et al., 2006)


A (BW) variation of <2% is deemed acceptable Sweat Loss during Training & Competition. Individualisation factors critical to player wellness include; goals, the duration of the match, pre-game nutrition and physiological markers.

(Burke et al., 2021; Shirreffs et al., 2006)

POSSIBLE IMPLICATIONS OF DEHYDRATION

Increased Heart Rate & Fatigue Increased Perception of Effort

(Belski et al., 2020; Burke et al. 2021a)

	SUGGESTED	CONSIDERATIONS
Water Daily	Approx. 2L	
Pre-Exercise	5–10 ml·kg –1 BW	Urine can inform osmolality
During Exercise	400–800 ml·h–1 Avoid deficit <2% BW	Pre-determined Sweat Rate Loss Calculations
Post Exercise	125–150% of fluid deficit	

174mg

(AIS Supplements Framework - Sports Drinks)

A paper by Maysa de Sousa suggests that football athletes are at high risk of Hypohydration. Of interest, approx. 49% of female footballers suffer hypohydration prior to training and competition.

Individualism is most important to managing Hydration. In summary, consuming water is a fundamental requirement daily for the athlete and hydration can be sourced in various foods (eg. watermelon; cucumber etc) as a hydration

The manufacturers of Powerade suggest consuming 250ml per 15 mins during 60 mins of strenuous exercise. There is cited benefit to the use of sports drinks as a hydration agent (eg. Replenish Sodium and Glycogen stores (CHO)

(Burke et al., 2021a)

FIFA have endorsed Powerade since 2010 and are a sponsor of the USA **WOMEN'S Football Team**

TOPPING UP THE TANK

A nutritional guide for Elite Women Footballers during competition

Elite Football Athletes can cover between approx. 9-12 km+ per game. and therefore require the use of aerobic energy systems (Baker & **Heaney 2015).**

Intermittent bouts are a notable requirement in football and due to the intensity and duration of a match, fatigability can affect performance if CHO stores are depleted (Burke et al., 2021a). 60-70% of energy requirements are supplied by CHO during a match (Dasa et al., 2023). Hydration plays a critical role in peak performance outcomes for football athletes competing at all levels (de Sousa et al., 2022)

Restore Electrolytes (Sodium, Potassium)

WHY?

Sweat loss produced during exercise causes a hypotonic disrupted state, effective hydration maintains homeostasis

(Bonnici., 2019)

Restore Blood Glucose (CHO) Restore Muscle Glycogen(CHO)

WHY?

Maintain Metabolic Pathways
Efficient Muscle Contractions Reduce the onset of fatigue

(Bonnici., 2019)

KNOW YOUR INDIVIDUALISED **REQUIREMENTS AND** ENSURE THESE ARE MET.

Approximate Energy Expenditure during a match is 1300-1600KJ (Collins et al., 2021)

FUN FACT

FUN FACT

Exercise is termed a METABOLIC STRESSOR' (Coyle 2000)'

CALCULATING SWEAT LOSS

Sweat Loss = Change (BW)g ► Fluid Intake (ML) - Urine Loss (g) (Burke et al., 2021a)

Pretzels are given to Ironman athletes during competition , due to their high sodium and potassium content

The optimal time to refuel during a football match is at the half time break (45mins) (Bonnici., 2019).

During extreme weather circumstances organisers could provide athletes with an extra drinks break (Bonnici., 2019).

The recommended intake of CHO for an endurance intermittent sport between 1-2.5hrs in duration is 30-60 g/h (AIS Framework. Sports Drinks). Aim to consume 400-800ml of water/sports drink at the interval and ensure loss of BW mass (due to sweat) doesn't exceed 2% (Belski et al., 2020).

FUN FACT

In extreme cases pickle juice is used to reduce muscle cramping (Burke 2021b)

HOW

TRIED AND PROVEN IN TRAINING

Powerade (600ml) provides the athlete approx. 618ki, 35g CHO. 168mg of Sodium and 200mg of Potassium.

GU Espresso Love Gel

23g CHO, 60mg Sodium, 40mg Potassium, 40mg caffeine (Burke & Hawley 2018)

EASILY DIGESTIBLE

Pretzels provide a natural source of sodium and potassium and should be consumed with fluid (Shirreffs et al., 2006)

Fruits are filled with nutrients and some provide a valuable hydration alternative (eg. Watermelon)

Pre-Competition Fueling

A nutritional guide for Elite Women Footballers for pre-competition

The objective of an effective individualised nutrition strategy is to potentiate peak performance via central and peripheral Nervous Systems and delay the onset of fatigue (Burke et al., 2021; Shirreffs et al., 2006). This is achieved in competition by preparing, regulating the maintaining the body's blood glucose, muscle glycogen levels and via euhydration (Burke L.M 2021b).

During football competition, CHO account for 60-70% of energy expenditure (Dasa et al., 2023; FIFA 2016), thus targeted storage for this macronutrient should occur in the pre 24 hour cycle leading up to the event as a strategic priority. This type of periodised planning is critical during competition (Burke 2021b).

Great sports people know: Failing to prepare is preparing to 'CHO Load'

A creative plan can increase PCr stores and a consistent strategy can prevent gut disturbances (Burke 2021b)

Pre-Event Fluid planning likely ensures euhydration and reduces the risks associated with hyponatremia (Shirreffs et al., 2006)

Pre-loading of CHO allows for glycogen storage affecting glycogen synthesis, this makes for very satisfied metabolic pathways (eg. provide sufficient energy required for muscle contractions)

Adequate CHO loading ensures euglycemia, meaning that blood glucose levels are prepared for action enabling sustained bouts of energy conversion (Bonnici et al., 2019)

Pre match fueling should be individually strategic and structured. The loading patterns should be high in CHO, low in fats and low in fibre (De Sousa et al., 2022).

24 hours lead in: Maintain adequate CHO intake in line with recommendations and promote effective use of hydration strategies (Belski 2020)

3-4 Hours Prior: For an afternoon match the main pre- meal should follow a light breakfast, additionally aim to consume fluid approx. <u>5-7ml.kg</u> BW 2-4hours prior to the match (Bonnici 2019)

Pre Match Snack: A smart choice here (25-30g CHO) can spare muscle & liver glycogen and promote euglycemia (Bonnici 2019)

24hr PRE-MATCH FUELLING

CHO 7-12g.kg BW. Variation can be due to previous exercise

Know your dietary requirements & meet your habitual needs

In season (non match day) CHO consumption should be approx. 5-7g kg-1 BW (Moss., 2020)

MATCH DAY MEAL OPTIONS

3-4 hours prior to kickoff 1-3q.kq BM per meal (De Sousa et al., 2022)

No greater than 450-700k cal per / serve...Load up on the carbs!

(DeSousa et al., 2022)

Nitrate can enhance oxidation and muscle contractility (Burke 2021b)

An individualised dietary plan is designed to minimise key performance constraints with the implementation of key nutritional counter measures (Figure 1: Burke 2021b).

A food first approach should be prioritised in alignment with a well researched set of interventions.

Player wellness and collaboration should be upheld in the High Performance Program with the use of horizontal leadership. This should be In conjunction (in this example) with the Dietitian and associated stakeholders with a vested interest in working with athlete health and wellbeing (Goleman, D. (2017)

Japanese rice and vegetables

2 x Buttermilk Pancakes + fruit

Chicken, vege & pasta soup

Water and **Beet Juice**

(AIS RECIPES)

PRE MATCH SNACK

Choose a CHO rich pre match snack thats easily digestible (Bonnici et al 2019)

hour

prior to

match

25-30g CHO

15mns PRIOR TO KICKOFF

CHO liquids (300ml) with a shot of caffeine could be effective (Burke & Hawley 2018)

REFERENCES:

Australian Institute of Sport. Nutrition Supplements - Group A, Sports Drinks. Accessed on 07.08.2025. AIS SPORTS DRINKS Group A

Australian Institute of Sport. Recipes. Accessed on 11.08.2025. Recipes | Australian Sports Commission

Baker, D., & Heaney, N. (2015). Review of the literature normative data for maximal aerobic speed for field sport athletes: a brief review. *J Aust Strength Cond*, 23(7), 60-67. (PDF) Review of the Literature - Normative Data for Maximal Aerobic Speed for field sport athletes

Caruana Bonnici, D., Greig, M. A. T. T. H. E. W., Akubat, I., Sparks, S. A., Bentley, D., & Mc Naughton, L. R. (2019). Nutrition in soccer: a brief review of the issues and solutions. *Journal of Science in Sport and Exercise*, 1(1), 3-12. DOI:10.1007/s42978-019-0014-7

Burke, L. M., & Hawley, J. A. (2018). Swifter, higher, stronger: what's on the menu?. *Science*, *362*(6416), 781-787. DOI: 10.1126/science.aau2093

Burke, Louise M., Hawley, John A., Stephen H S., Jeukendrup, Asker E. (2011). Carbohydrates for training and competition, Journal of Sports Sciences, 29:sup1, S17-S27, DOI: 10.1080/02640414.2011.58547 3 DOI: 10.1080/02640414.2011.585473

Burke, L. M. (2021b). Nutritional approaches to counter performance constraints in high-level sports competition. *Experimental physiology*, 106(12), 2304-2323. https://doi.org/10.1113/EP088188

Collins, J., Maughan, R. J., Gleeson, M., Bilsborough, J., Jeukendrup, A., Morton, J. P., ... & McCall, A. (2021). UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. *British journal of sports medicine*, *55*(8), 416-416.https://bjsm.bmj.com/content/55/8/416

Coyle, E. F. (2000). Physical activity as a metabolic stressor. American Journal of Clinical Nutrition, 72, 512S–520S. DOI: 10.1093/ajcn/72.2.512S

Dasa, M. S., Friborg, O., Kristoffersen, M., Pettersen, G., Plasqui, G., Sundgot-Borgen, J. K., & Rosenvinge, J. H. (2023). Energy expenditure, dietary intake and energy availability in female professional football players. *BMJ Open Sport & Exercise Medicine*, 9(1).doi: 10.1136/bmjsem-2023-001553

de Sousa, M. V., Lundsgaard, A. M., Christensen, P. M., Christensen, L., Randers, M. B., Mohr, M., ... & Fritzen, A. M. (2022). Nutritional optimization for female elite football players—Topical review. Scandinavian journal of medicine & science in sports, 32, 81-104. https://doi.org/10.1111/sms.14102

Goleman, D. (2017). Leadership that gets results. In Leadership perspectives (pp. 85-96).

Routledge.https://coaching4results.com/wp-content/uploads/2017/03/Leadership-that-gets-results-Daniel-Goleman.pdf

Moss SL, Randell RK, Burgess D et al. Assessment of energy availability and 1079 associated risk factors in professional female soccer players. Eur J Sport Sci 2020;1-1080 10. http://dx.doi.org/10.1080/17461391.2020.1788647

Shirreffs, S. M., Sawka, M N., Stone M. (2006). Water and electrolyte needs for football training and match-play. J Sports Sci 24(7): 699-707. https://doi.org/10.1080/02640410500482677

UK Sports Institute. Sports Nutrition Fundamentals to Improve Performance. Accessed on 08.08.2025. SPORTS NUTRITION FUNDAMENTALS TO IMPROVE PERFORMANCE

Publications

Belski, R. (Ed.). (2020). Nutrition for Sport, Exercise and Performance: A practical guide for students, sports enthusiasts and professionals. Routledge.

Burke, L., Minehan, M., & Deakin, V. (2021a). Clinical Sports Nutrition (Sixth edition.). McGraw Hill Medical.

Website Resources

FIFA, 2016. www.fifa.com. [Online] Available at: http://www.fifa.com [Accessed 10 August 2025].