DRAINAGE REPORT

DIVINITY CAMPUS

CITY OF ROCHESTER, MONROE COUNTY STATE OF NEW YORK

PREPARED FOR:

ROC GOODMAN, LLC 550 LATONA ROAD, BLDG. E, SUITE 501 ROCHESTER, NEW YORK 14626 (585) 225-0140

PREPARED BY:

217 Lake Avenue Rochester NY 14608

PROJECT NO. CE#6702 MAY, 2019 *REVISED: JULY 25th, 2019*

TABLE OF CONTENTS

TABLE OF CONTENTS	.1
APPENDICES	.2
OVERVIEW	3
DRAINAGE OVERVIEW	-4
DESCRIPTION OF SOILS	4
EXISTING CONDITIONS4	-5
TABLE 1 - EXISTING PEAK FLOW RATES	5
DEVELOPED CONDITIONS	10
TABLE 2 - DEVELOPED PEAK FLOW RATES	7
TABLE 3 - WATER QUALITY & RUNOFF REDUCTION VOLUMES	8
TABLE 4 – EXISTING & DEVELOPED 100- YEAR RUNOFF VOLUMES	9
TABLE 5 - STORMWATER ATTENUATION & VOLUMES PROVIDED FOR SCENARIOS 1 & 2	9
EROSION & SEDIMENT CONTROL MEASURES	10
SEQUENCE OF MAJOR ACTIVITIES	11

Project No. 6702 July 25, 2019 Page 2 of 11

APPENDICES

APPENDIX ISITE LOCATION SKETCH
SITE SOILS MAP & NRCS HYDROLOGIC SOIL REPORT
MONROE COUNTY GIS SOILS MAP
NYSDEC ENVIRONMENTAL RESOURCE MAP
NYSDEC STORMWATER INTERACTIVE MAPPER
NATIONAL WETLANDS INVENTORY
NYS CULTURAL RESOURCE MAPPER (CRIS)

APPENDIX II EXISTING DRAINAGE AREA MAP EXISTING HYDROCAD REPORT EXISTING SCS CALCULATIONS

- APPENDIX IIIDEVELOPED DRAINAGE AREA MAP
STORMWATER ATTENUATION SCENARIO EXHIBITS
CONCEPTUAL STORMWATER DESIGN SUMMARY CALCULATIONS
DEVELOPED HYDROCAD REPORTS
DEVELOPED SCS CALCULATIONS
WQv & RRv FEASIBILITY CALCULATIONS
- **APPENDIX IV**NYSDEC GUIDANCE FOR EROSION AND SEDIMENT CONTROL
PRACTICE INSTALLATION

DIVINITY CAMPUS CITY OF ROCHESTER, MONROE COUNTY STATE OF NEW YORK

STORMWATER FEASIBILITY REPORT

OVERVIEW

The stormwater feasibility analysis for the Divinity Campus Apartment Buildings, being proposed in the City of Rochester, New York, is outlined in this report. The project is located at the Divinity School Campus, existing at the north east corner of the intersection of Highland Avenue and South Goodman Street. Refer to the location sketch in Appendix I for reference.

The site currently exists as developed land for the existing Divinity School Campus. Two apartment buildings and associated parking are being proposed and the project will include improvements to the existing Saunders House and Andrews House. Impervious area to be disturbed includes parking and driveway paved surfaces. The site is bordered by a residential neighborhood to the north along Highland Parkway, and to the east.

Approximately 0.95 acres of new impervious area will be constructed with approximately 5.2± acres total being disturbed during construction activities.

This report will provide a feasibility analysis of pre and post-development stormwater runoff, water quality and runoff reduction volumes, for the associated site.

DRAINAGE OVERVIEW

The Soil Conservation Service (SCS) method TR-55 was used to generate hydrographs within the proposed site under existing and developed conditions. The redevelopment will result in an increase in impervious area. Existing and developed watersheds & required water quality, runoff reduction volumes will be discussed in this report.

Project No. 6702 July 25, 2019 Page 4 of 11

Since the site will disturb greater than one (1) acre of land during construction activity, a SPDES General Permit for Stormwater Discharges from Construction Activity will be required for this project.

DESCRIPTION OF SOILS

According to the Natural Resources Conservation Service Web Soil Survey 2.0, the predominant soils present onsite are classified as Hydrological Soil Group (HSG) Type D. The soils on site are listed as Urban. Please refer to appendix I for site soil mapping.

EXISTING CONDITIONS

The existing drainage areas are shown on the drawing entitled, "Existing Drainage Area Map" (See Appendix 2). The terminology existing hereto refers to site conditions pertinent to the drainage areas that will be disturbed by construction activities on the site. The existing drainage area consists of the existing Saunders and Andrews Houses, the Montgomery House (Presidents House), parking lot areas, a portion of Campus Drive, a portion of the access drive to Hope Lodge with associated parking, grass and wooded areas.

The total drainage area that will be affected under existing conditions is approximately the upper bounds of the property (9.13 acres). The site has been modeled as five (5) separate drainage areas (E-1, E-2, E-3, E-4.A & E-4.B) which discharge to three (3) separate points off site. These discharge points include the combined sewer along South Goodman Street (DP-1: E-1 & E-2), properties to the north east corner of the site (DP-2: E-3), and the existing storm sewer on Highland Avenue (DP-3: E-4.A & E-4.B). Existing drainage areas were found to have curve numbers (CN) of 87, 77, 79, 90 & 90 and time of concentrations (Tc) of 18.9, 11.3, 10.1, 13.3 and 11.5 mins, respectively.

Existing Drainage Area 1 (E-1) primarily flows overland on the property to the west property line on South Goodman Street where it is collected in drain inlets and conveyed to the existing City of Rochester combined sewer.

Project No. 6702 July 25, 2019 Page 5 of 11

The Existing Drainage Area 2 (E-2) primarily flows overland to the north/north west property lines and to adjacent properties.

Existing Drainage Area 3 (E-3) primarily flows overland to the north east corner property line and to adjacent properties.

Existing Drainage Area 4 (E-4.A & E-4.B) primarily flows overland and is collected in existing drainage inlets onsite, and conveyed to the south property line on Highland Avenue where it enters the existing City of Rochester storm sewer.

The SCS method TR-55 was used to obtain a peak flow rates for the 1, 2, 10 and 100-year storm events under the aforementioned conditions. Table 1 summarizes the existing flow rates for the drainage area.

Area Designation	Q ₁ (cfs)	Q ₂ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
E-1 (3.31 ac)	2.97	3.92	6.97	14.17
E-2 (1.67 ac)	0.77	1.19	2.71	6.78
E-3 (0.89 ac)	0.53	0.79	1.68	3.99
E-4.A (1.89 ac)	2.47	3.14	5.23	10.0
E-4.B (1.38 ac)	1.91	2.43	4.03	7.69
Total	8.31	11.03	19.88	41.13

 TABLE 1 - EXISTING FLOW RATES (9.13 ± Acres)

All corresponding data and calculations used to derive these results can be found in Appendix 2.

Project No. 6702 July 25, 2019 Page 6 of 11

DEVELOPED CONDITIONS

The developed drainage areas are shown on the drawing entitled, "Developed Drainage Area Map" (See Appendix 3). Under post developed conditions, drainage inlets and storm sewers will be used to collect the stormwater from all impervious areas where it will be conveyed to the proposed stormwater management facility, located at the south west property corner (Highland Avenue & South Goodman Street intersection). The stormwater management facility will attenuate stormwater and provide water quality volumes for the newly created impervious area. Refer to the "Stormwater Storage & Attenuation" maps (See Appendix 3) for conceptual stormwater management facility locations.

The total drainage area that will be affected under existing conditions is approximately the upper bounds of the property (9.13 acres). The developed site has been modeled as six (6) separate drainage areas (DA-1, DA-2, DA-3, DA-4.A, DA-4.B, DA-5) which discharge to three (3) separate points off site. These discharge points include the combined sewer along South Goodman Street (DA-1 & DA-2), properties to the north east corner of the site (DA-3) and the existing storm sewer on Highland Avenue (DA-4.A, DA-4.B, DA-5). Developed drainage areas were found to have curve numbers (CN) of 88, 77, 80, 93, 95 & 92 and time of concentrations (Tc) of 17.4, 11.3, 9.3, 5, 5 and 5 mins, respectively.

Developed Drainage Area 1 (DA-1) consists of the Campus Drive, pavement areas to be reconstructed, parking areas and existing grass areas. Stormwater primarily flows overland on the property to the west property line on South Goodman Street where it is collected in drain inlets and conveyed to the existing City of Rochester combined sewer.

Developed Drainage Area 2 (DA-2) consists of wooded areas not to be disturbed. Stormwater primarily flows overland to the north/north west property lines and to adjacent properties.

Project No. 6702 July 25, 2019 Page 7 of 11

Developed Drainage Area 3 (DA-3) consists of wooded areas, a portion of the access drive to Hope Lodge. Stormwater primarily flows overland to the north east corner property line and to adjacent properties.

Developed Drainage Area 4 (DA-4.A & DA-4.B) consists of the proposed residential buildings, existing Saunders House and parking areas. Stormwater primarily sheet flows where it is collected in drainage inlets, and conveyed to the proposed stormwater management facility located at the south west corner of the property.

Developed Drainage Area 5 (DA-5) consists of an existing parking lot, parking lot expansion work, and a portion of the access drive to Hope Lodge.

Table 2 summarizes the developed peak flow rates for the drainage area.

Area Designation	Q ₁ (cfs)	Q ₂ (cfs)	Q ₁₀ (cfs)	Q ₁₀₀ (cfs)
DA-1 (2.51 ac)	2.50	3.26	5.68	11.30
DA-2 (1.52 ac)	0.70	1.08	2.47	6.17
DA-3 (0.84 ac)	0.52	0.77	1.63	3.88
DA-4.A (1.34 ac)	2.76	3.39	5.31	9.59
DA-4.B (1.64 ac)	3.74	4.52	6.85	12.02
DA-5 (1.28 ac)	2.49	3.09	4.92	9.03
Total	11.21	14.22	23.77	46.22

 TABLE 2 -DEVELOPED FLOW RATES (9.13 ± Acres)

All supporting data and calculations used to derive the developed peak flow rates can be found in Appendix III.

Overall stormwater discharge rates from the redeveloped site will be reduced from the existing stormwater flow rates in accordance NYSDEC Phase II requirements. Due to increased impervious area and installation of storm sewers, the developed site will have an increased

Project No. 6702 July 25, 2019 Page 8 of 11

curve number and decreased time of concentration, resulting in a greater runoff volume and peak flow rates. The increase in stormwater runoff will be attenuated in the stormwater management facility, which will also provide water quality volume treatment before leaving the site.

In keeping with the goals of the NYSDEC Stormwater Pollution Prevention Control and SPDES General Permit GP-0-15-002, pollutant removal, runoff reduction and source control practices are to be implemented to provide at least minimum required Water Quality and Runoff Reduction volumes. All practices are to be designed pursuant to the current NYSDEC Stormwater Management Design Manual (January 2015). Preliminary calculations have estimated the additional storage required to meet the Runoff Reduction (RRv) & Water Quality (WQv) volumes and to provide peak flow attenuation.

Table 3 below shows the required and Water Quality & Runoff Reduction volumes for the development.

Water Quality	Runoff Reduction
WQv Req'd	Min RRv Req'd
ac-ft	ac-ft
0.1193	0.0150

TABLE 3 - WATER QUALITY & RUNOFF REDUCTION VOLUME

The Water Quality volume required will be reduced by green infrastructure practices onsite (EX. Bioretention facilities). The resulting water quality volume required in the stormwater management facility will be the difference of the water quality and runoff reduction volumes required (0.104 ac-ft).

Project No. 6702 July 25, 2019 Page 9 of 11

Table 4 below shows the existing & developed runoff volumes for a 100-Year storm event, and the storage volume required to attenuate the increased runoff.

	Existing	Developed	Increase in Runoff Volume		
	Ac-ft				
100-Year Runoff Volume	2.753	2.950	0.197		

TABLE 4 -	EXISTING	& DEVEL	OPED 100-	YEAR RI	INOFF VC	DUMES
INDLL I	LAIDTING	C DL I LL		I LI III III		

Stormwater management facilities will be required to provide the above volumes in order to meet the required Water Quality Volume and to attenuate the increase in stormwater runoff from existing to developed conditions. Green infrastructure practices will be implemented on site to provide the required runoff reduction volumes (EX: Bioretention) and a stormwater management facility is being proposed to provide water quality volumes.

Table 5 below shows the storage required and the storage provided in the Stormwater Management Facility.

Required Storage	Stormwater Management Facility Storage Provided				
ac-ft	ac-ft Pond Area 4-ft depth				
0.301	0.320	3,282 SF (0.075 ac)			

 TABLE 5 - STORMWATER ATENNUATION AND VOLUMES PROVIDED

All supporting data and calculations used to derive the storage required and provided can be found in Appendix III.

Green infrastructure is to be achieved where applicable by infiltration, groundwater recharge, reuse, recycle, evaporation/evapotranspiration through the use of green

Project No. 6702 July 25, 2019 Page 10 of 11

infrastructure techniques as a standard practice. These practices will be used to treat and provide runoff reduction volumes (RRv).

The following practices have been identified as feasible practices for the proposed development:

- Disconnection of Roof Top Areas (Area Reduction Practice)
- Sheet flow to Filter Strips (Treatment Practice)
- Bioretention (Treatment Practice)

EROSION AND SEDIMENT CONTROL MEASURES

All erosion and sediment control measures will be designed in accordance with the New York State Standards and Specifications for Erosion and Sediment Control." The site contractor and all assigned sub-contractors shall adhere to all erosion and sediment control measures as outlined on applicable plans.

All temporary measures will be installed as outlined in construction documents to control any potential pollutants leaving the construction site. Prior to a pre-construction meeting, all responsible contractors are to provide documentation of the 4-hour Erosion and Sediment Control training, and provide all necessary Contractor/sub-contractor certification formwork.

Temporary stabilization practices for this site include (but not limited to) sedimentation basins, siltation fence, inlet protection for existing inlets, filter fabric drop inlet protection of new inlets, stone filter check dam(s) and a stabilized construction entrances.

Permanent stabilization practices for this site include (but not limited to) landscaping, permanent seeding of all lawn areas and outlet protection.

Project No. 6702 July 25, 2019 Page 11 of 11

SEQUENCE OF MAJOR ACTIVITIES

The contractor will be responsible for implementing all erosion control and storm water management control measures. The contractor may designate these tasks to certain subcontractors as he sees fit, but the ultimate responsibility for implementing these controls and ensuring their proper functioning remains with the contractor. A detailed order of activities will be provided with final construction documents.

- Construct temporary stabilized construction entrance.
- Demolition of existing parking lot areas to be disturbed.
- Provide inlet protection to existing catch basins and new catch basins as utility installation progresses.
- Provide perimeter silt fencing as required.
- Strip topsoil from site. Topsoil for reuse shall be temporarily stockpiled and surrounded by siltation fencing.
- Construct Stormwater Management Facility.
- Grade area for building pads, and access drives
- Stabilize building pads with stone sub-base.
- Install utilities.
- Stabilize access drives and parking areas with stone sub-base.
- Stabilization measures (Temporary and/or permanent seeding, mulching, Geotextiles, Etc.) must be initiated within 14 days where construction activities have temporarily or permanently ceased, and not expected to resume within 21 days.

APPENDIX I

• SITE LOCATION SKETCH

• NRCS HYDROLOGIC SOIL MAPPING

MONROE COUNTY GIS SOILS MAP

• NYSDEC ENVIRONMENTAL RESOURCE MAPPER

• NYSDEC STORMWATER INTERACTIVE MAPPER

• NATIONAL WETLANDS INVENTORY

• NYS CULTURAL RESOURCE INFORMATION SYSTEM MAPPER (CRIS)

USDA Natural Resources

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
OdA	Odessa silt loam, 0 to 3 percent slopes	D	0.5	0.1%
SeA	Schoharie silt loam, 0 to 3 percent slopes	D	0.9	0.1%
Ub	Urban land		759.8	99.0%
W	Water		6.4	0.8%
Totals for Area of Interest			767.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Monroe County GIS Services Division

405050rf

Divinity School

April 29, 2019

1:9,028 0 0.1 0.2 0.4 mi 0 0.175 0.35 0.7 km

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, ICN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

> NYS Department of Environmental Conservation Not a legal document

Divinity School

April 29, 2019

0.175 0.35 0.7 km 0 Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance

0.2

0

0.1

Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

Author: Costich Engineering, DPC Not a legal document

0.4 mi

U.S. Fish and Wildlife Service National Wetlands Inventory

Divinity Campus

May 20, 2019

Wetlands

- Estuarine and Marine Wetland

Estuarine and Marine Deepwater

- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- **Freshwater Pond**

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

UTC Landmarks

VDr. Bullery Denne (Vers)

APPENDIX II

• EXISTING DRAINAGE AREA MAP

- EXISTING HYDROCAD ROUTING REPORT
 - EXISTING SCS CALCULATIONS

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
3.310	87	(E-1)
1.670	77	(E-2)
0.890	79	(E-3)
3.270	90	(E-4.A, E-4.B)
9.140	85	TOTAL AREA

Existing	Тy
Prepared by {enter your company name here}	
HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions	s LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE-1:	Runoff Area=3.310 ac 0.00% Impervious Runoff Depth>0.78" Tc=18.4 min CN=87 Runoff=2.97 cfs 0.215 af
SubcatchmentE-2:	Runoff Area=1.670 ac 0.00% Impervious Runoff Depth>0.36" Tc=11.3 min CN=77 Runoff=0.77 cfs 0.051 af
SubcatchmentE-3:	Runoff Area=0.890 ac 0.00% Impervious Runoff Depth>0.43" Tc=10.1 min CN=79 Runoff=0.53 cfs 0.032 af
SubcatchmentE-4.A:	Runoff Area=1.890 ac 0.00% Impervious Runoff Depth>0.96" Tc=13.3 min CN=90 Runoff=2.47 cfs 0.151 af
SubcatchmentE-4.B:	Runoff Area=1.380 ac 0.00% Impervious Runoff Depth>0.96" Tc=11.5 min CN=90 Runoff=1.91 cfs 0.110 af
Link 1L: WS	Inflow=8.31 cfs 0.558 af Primary=8.31 cfs 0.558 af
Link DP-1:	Inflow=3.62 cfs 0.265 af Primary=3.62 cfs 0.265 af
Link DP-2:	Inflow=0.53 cfs 0.032 af Primary=0.53 cfs 0.032 af
Link DP-3:	Inflow=4.36 cfs 0.261 af Primary=4.36 cfs 0.261 af

Total Runoff Area = 9.140 ac Runoff Volume = 0.558 af Average Runoff Depth = 0.73" 100.00% Pervious = 9.140 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment E-1:

Runoff = 2.97 cfs @ 12.12 hrs, Volume= 0.215 af, Depth> 0.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=1.84"

Summary for Subcatchment E-2:

Runoff = 0.77 cfs @ 12.05 hrs, Volume= 0.051 af, Depth> 0.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=1.84"

Summary for Subcatchment E-3:

Runoff = 0.53 cfs @ 12.03 hrs, Volume= 0.032 af, Depth> 0.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=1.84"

Summary for Subcatchment E-4.A:

Runoff = 2.47 cfs @ 12.05 hrs, Volume= 0.151 af, Depth> 0.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=1.84"

Summary for Subcatchment E-4.B:

Runoff = 1.91 cfs @ 12.03 hrs, Volume= 0.110 af, Depth> 0.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 1 Year Rainfall=1.84"

Summary for Link 1L: WS

Inflow A	Area =	9.140 ac,	0.00% Impervious,	Inflow Depth > 0).73" for 1 Ye	ear event
Inflow	=	8.31 cfs @	12.06 hrs, Volume	e= 0.558 a	f	
Primary	, =	8.31 cfs @	12.06 hrs, Volume	e= 0.558 a	f, Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 1L: WS

Summary for Link DP-1:

Inflow Are	a =	4.980 ac,	0.00% Impervious,	Inflow Depth > 0.6	64" for 1 Year event
Inflow	=	3.62 cfs @	12.10 hrs, Volume	= 0.265 af	
Primary	=	3.62 cfs @	12.10 hrs, Volume	= 0.265 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-1:

Summary for Link DP-2:

Inflow Are	a =	0.890 ac,	0.00% Impervious,	Inflow Depth > 0.4	43" for 1 Year event
Inflow	=	0.53 cfs @	12.03 hrs, Volume	= 0.032 af	
Primary	=	0.53 cfs @	12.03 hrs, Volume	= 0.032 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-2:
Summary for Link DP-3:

Inflow Area	a =	3.270 ac,	0.00% Impervious,	Inflow Depth > 0	.96" for 1 Year event
Inflow	=	4.36 cfs @	12.04 hrs, Volume	= 0.261 af	
Primary	=	4.36 cfs @	12.04 hrs, Volume	= 0.261 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-3:

Existing	Ту
Prepared by {enter your company name here}	
HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions	LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE-1:	Runoff Area=3.310 ac 0.00% Impervious Runoff Depth>1.02" Tc=18.4 min CN=87 Runoff=3.92 cfs 0.281 af
SubcatchmentE-2:	Runoff Area=1.670 ac 0.00% Impervious Runoff Depth>0.53" Tc=11.3 min CN=77 Runoff=1.19 cfs 0.074 af
SubcatchmentE-3:	Runoff Area=0.890 ac 0.00% Impervious Runoff Depth>0.61" Tc=10.1 min CN=79 Runoff=0.79 cfs 0.045 af
SubcatchmentE-4.A:	Runoff Area=1.890 ac 0.00% Impervious Runoff Depth>1.22" Tc=13.3 min CN=90 Runoff=3.14 cfs 0.192 af
SubcatchmentE-4.B:	Runoff Area=1.380 ac 0.00% Impervious Runoff Depth>1.22" Tc=11.5 min CN=90 Runoff=2.43 cfs 0.140 af
Link 1L: WS	Inflow=11.03 cfs 0.732 af Primary=11.03 cfs 0.732 af
Link DP-1:	Inflow=4.93 cfs 0.355 af Primary=4.93 cfs 0.355 af
Link DP-2:	Inflow=0.79 cfs 0.045 af Primary=0.79 cfs 0.045 af
Link DP-3:	Inflow=5.54 cfs 0.332 af Primary=5.54 cfs 0.332 af

Total Runoff Area = 9.140 ac Runoff Volume = 0.732 af Average Runoff Depth = 0.96" 100.00% Pervious = 9.140 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment E-1:

Runoff = 3.92 cfs @ 12.11 hrs, Volume= 0.281 af, Depth> 1.02"

Summary for Subcatchment E-2:

Runoff = 1.19 cfs @ 12.05 hrs, Volume= 0.074 af, Depth> 0.53"

Summary for Subcatchment E-3:

Runoff = 0.79 cfs @ 12.03 hrs, Volume= 0.045 af, Depth> 0.61"

Summary for Subcatchment E-4.A:

Runoff = 3.14 cfs @ 12.05 hrs, Volume= 0.192 af, Depth> 1.22"

Summary for Subcatchment E-4.B:

Runoff = 2.43 cfs @ 12.03 hrs, Volume= 0.140 af, Depth> 1.22"

Summary for Link 1L: WS

Inflow A	Area =	9.140 ac,	0.00% Impervious,	Inflow Depth > 0.	96" for 2 Year event
Inflow	=	11.03 cfs @	12.06 hrs, Volume	= 0.732 af	
Primary	y =	11.03 cfs @	12.06 hrs, Volume	= 0.732 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 1L: WS

Summary for Link DP-1:

Inflow Are	a =	4.980 ac,	0.00% Impervious,	Inflow Depth > 0.8	85" for 2 Year event
Inflow	=	4.93 cfs @	12.09 hrs, Volume	= 0.355 af	
Primary	=	4.93 cfs @	12.09 hrs, Volume	= 0.355 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-1:

Summary for Link DP-2:

Inflow Are	a =	0.890 ac,	0.00% Impervious,	Inflow Depth > 0	.61" for 2 Year event
Inflow	=	0.79 cfs @	12.03 hrs, Volume	= 0.045 at	F
Primary	=	0.79 cfs @	12.03 hrs, Volume	= 0.045 at	f, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-2:

Summary for Link DP-3:

Inflow Are	a =	3.270 ac,	0.00% Impervious,	Inflow Depth > 1.	22" for 2 Year event
Inflow	=	5.54 cfs @	12.04 hrs, Volume	= 0.332 af	
Primary	=	5.54 cfs @	12.04 hrs, Volume	= 0.332 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-3:

Existing	Type II 24-hr	10
Prepared by {enter your company name here}		
HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions	LLC	

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE-1:	Runoff Area=3.310 ac 0.00% Impervious Runoff Depth>1.81" Tc=18.4 min CN=87 Runoff=6.97 cfs 0.499 af
SubcatchmentE-2:	Runoff Area=1.670 ac 0.00% Impervious Runoff Depth>1.13" Tc=11.3 min CN=77 Runoff=2.71 cfs 0.157 af
SubcatchmentE-3:	Runoff Area=0.890 ac 0.00% Impervious Runoff Depth>1.25" Tc=10.1 min CN=79 Runoff=1.68 cfs 0.093 af
SubcatchmentE-4.A:	Runoff Area=1.890 ac 0.00% Impervious Runoff Depth>2.06" Tc=13.3 min CN=90 Runoff=5.23 cfs 0.325 af
SubcatchmentE-4.B:	Runoff Area=1.380 ac 0.00% Impervious Runoff Depth>2.06" Tc=11.5 min CN=90 Runoff=4.03 cfs 0.237 af
Link 1L: WS	Inflow=19.88 cfs 1.311 af Primary=19.88 cfs 1.311 af
Link DP-1:	Inflow=9.27 cfs 0.657 af Primary=9.27 cfs 0.657 af
Link DP-2:	Inflow=1.68 cfs 0.093 af Primary=1.68 cfs 0.093 af
Link DP-3:	Inflow=9.23 cfs 0.562 af Primary=9.23 cfs 0.562 af

Total Runoff Area = 9.140 ac Runoff Volume = 1.311 af Average Runoff Depth = 1.72" 100.00% Pervious = 9.140 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment E-1:

Runoff = 6.97 cfs @ 12.11 hrs, Volume= 0.499 af, Depth> 1.81"

Summary for Subcatchment E-2:

Runoff = 2.71 cfs @ 12.04 hrs, Volume= 0.157 af, Depth> 1.13"

Summary for Subcatchment E-3:

Runoff = 1.68 cfs @ 12.02 hrs, Volume= 0.093 af, Depth> 1.25"

Summary for Subcatchment E-4.A:

Runoff = 5.23 cfs @ 12.05 hrs, Volume= 0.325 af, Depth> 2.06"

Summary for Subcatchment E-4.B:

Runoff = 4.03 cfs @ 12.03 hrs, Volume= 0.237 af, Depth> 2.06"

Summary for Link 1L: WS

Inflow A	Area =	9.140 ac,	0.00% Impervious,	Inflow Depth > 1.	72" for 10 Year event
Inflow	=	19.88 cfs @	12.05 hrs, Volume	= 1.311 af	
Primary	/ =	19.88 cfs @	12.05 hrs, Volume	= 1.311 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 1L: WS

Summary for Link DP-1:

Inflow A	Area =	4.980 ac,	0.00% Impervious,	Inflow Depth > 1.	58" for 10 Year event
Inflow	=	9.27 cfs @	12.08 hrs, Volume	= 0.657 af	
Primary	y =	9.27 cfs @	12.08 hrs, Volume	= 0.657 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-1:

Summary for Link DP-2:

Inflow Are	a =	0.890 ac,	0.00% Impervious,	Inflow Depth > 1.	25" for 10 Year event
Inflow	=	1.68 cfs @	12.02 hrs, Volume	= 0.093 af	
Primary	=	1.68 cfs @	12.02 hrs, Volume	= 0.093 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-2:

Summary for Link DP-3:

Inflow A	Area =	3.270 ac,	0.00% Impervious,	Inflow Depth > 2.0	06" for 10 Year event
Inflow	=	9.23 cfs @	12.04 hrs, Volume	= 0.562 af	
Primary	y =	9.23 cfs @	12.04 hrs, Volume	= 0.562 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-3:

Existing	Type II 2
Prepared by {enter your company name here}	
HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solution	າs LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentE-1:	Runoff Area=3.310 ac 0.00% Impervious Runoff Depth>3.75" Tc=18.4 min CN=87 Runoff=14.17 cfs 1.035 af
SubcatchmentE-2:	Runoff Area=1.670 ac 0.00% Impervious Runoff Depth>2.79" Tc=11.3 min CN=77 Runoff=6.78 cfs 0.389 af
SubcatchmentE-3:	Runoff Area=0.890 ac 0.00% Impervious Runoff Depth>2.98" Tc=10.1 min CN=79 Runoff=3.99 cfs 0.221 af
SubcatchmentE-4.A:	Runoff Area=1.890 ac 0.00% Impervious Runoff Depth>4.07" Tc=13.3 min CN=90 Runoff=10.00 cfs 0.641 af
SubcatchmentE-4.B:	Runoff Area=1.380 ac 0.00% Impervious Runoff Depth>4.07" Tc=11.5 min CN=90 Runoff=7.69 cfs 0.468 af
Link 1L: WS	Inflow=41.13 cfs 2.753 af Primary=41.13 cfs 2.753 af
Link DP-1:	Inflow=20.06 cfs 1.423 af Primary=20.06 cfs 1.423 af
Link DP-2:	Inflow=3.99 cfs 0.221 af Primary=3.99 cfs 0.221 af
Link DP-3:	Inflow=17.63 cfs 1.109 af Primary=17.63 cfs 1.109 af

Total Runoff Area = 9.140 ac Runoff Volume = 2.753 af Average Runoff Depth = 3.61" 100.00% Pervious = 9.140 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment E-1:

Runoff = 14.17 cfs @ 12.10 hrs, Volume= 1.035 af, Depth> 3.75"

Summary for Subcatchment E-2:

Runoff = 6.78 cfs @ 12.03 hrs, Volume= 0.389 af, Depth> 2.79"

Summary for Subcatchment E-3:

Runoff = 3.99 cfs @ 12.02 hrs, Volume= 0.221 af, Depth> 2.98"

Summary for Subcatchment E-4.A:

Runoff = 10.00 cfs @ 12.05 hrs, Volume= 0.641 af, Depth> 4.07"

Summary for Subcatchment E-4.B:

Runoff = 7.69 cfs @ 12.03 hrs, Volume= 0.468 af, Depth> 4.07"

Summary for Link 1L: WS

Inflow /	Area	=	9.140 ac,	0.00% Impervious,	Inflow Depth > 3.	61" for 100 Year event
Inflow		=	41.13 cfs @	12.05 hrs, Volume	= 2.753 af	
Primar	у	=	41.13 cfs @	12.05 hrs, Volume	= 2.753 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 1L: WS

Summary for Link DP-1:

Inflow A	rea =	4.980 ac,	0.00% Impervious,	Inflow Depth > 3.4	43" for 100 Year event
Inflow	=	20.06 cfs @	12.07 hrs, Volume	= 1.423 af	
Primary	=	20.06 cfs @	12.07 hrs, Volume	= 1.423 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-1:

Summary for Link DP-2:

Inflow A	Area =	0.890 ac,	0.00% Impervious,	Inflow Depth > 2.9	98" for 100 Year event
Inflow	=	3.99 cfs @	12.02 hrs, Volume	= 0.221 af	
Primary	y =	3.99 cfs @	12.02 hrs, Volume	= 0.221 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-2:

Summary for Link DP-3:

Inflow Ar	ea =	3.270 ac,	0.00% Impervious,	Inflow Depth > 4.	07" for 100 Year event
Inflow	=	17.63 cfs @	12.04 hrs, Volume	= 1.109 af	
Primary	=	17.63 cfs @	12.04 hrs, Volume	= 1.109 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-3:

E-1

LAND USE DESCRIPTION	%	A	Total	%	В	Total	%	С	Total	%	D	Total
Cultivated Land:												
Without conservation treatment		72			81			88			91	
With conservation treatment		62			71			78			81	
Pasture or Range Land:												
Poor Condition		68			79			86			89	
Fair Condition		54			70			80			85	
Good Condition		39			61			74			80	
Meadow:												
Good Condition		30			58			71			78	
Woods or Forest Land:												
Thin Stand, Poor Cover, No Mulch		45			66			77			83	
Fair Condition		25			55			70			77	
Open Spaces (lawns, parks, etc.)												
Good Condition with grass cover on		39			61			74		61	80	4880
75% or more of the area												
Fair Condition with grass cover on		49			69			79			84	
50%-75% of the area												
Commercial or Business Areas:												
(85% Impervious)		89			92			94			95	
Industrial Areas:												
(72% Impervious)		81			88			91			93	
Residential Areas:												
Avg. Lot Avg. % Imp.												
1/8 acre 65		77			85			90			92	
1/4 acre 38		61			75			83			87	
1/3 acre 30		57			72			81			86	
1/2 acre 25		54			70			80			85	
1 acre 20		51			68			79			84	
Paved Parking, Roofs, Driveways, Etc.												
		98			98			98		39	98	3822
Streets and Roads:												
Paved with curbs & storm sewers		98			98			98			98	
Gravel		76			85			89			91	
Dirt		72			82			87			69	
TOTAL	0		0	0		0	0		0	100		8702

WEIGHTED CURVE NUMBER =

TOTAL A + TOTAL B + TOTAL C + TOTAL D

100

87

- =

7/25/2019 CRA

E-2

LAND USE DESCRIPTION	%	A	Total	%	В	Total	%	С	Total	%	D	Total
Cultivated Land:												
Without conservation treatment		72			81			88			91	
With conservation treatment		62			71			78			81	
Pasture or Range Land:												
Poor Condition		68			79			86			89	
Fair Condition		54			70			80			85	
Good Condition		39			61			74			80	
Meadow:												
Good Condition		30			58			71			78	
Woods or Forest Land:												
Thin Stand, Poor Cover, No Mulch		45			66			77			83	
Fair Condition		25			55			70		100	77	7700
Open Spaces (lawns, parks, etc.)												
Good Condition with grass cover on		39			61			74			80	
75% or more of the area												
Fair Condition with grass cover on		49			69			79			84	
50%-75% of the area												
Commercial or Business Areas:												
(85% Impervious)		89			92			94			95	
Industrial Areas:												
(72% Impervious)		81			88			91			93	
Residential Areas:												
Avg. Lot Avg. % Imp.												
1/8 acre 65		77			85			90			92	
1/4 acre 38		61			75			83			87	
1/3 acre 30		57			72			81			86	
1/2 acre 25		54			70			80			85	
1 acre 20		51			68			79			84	
Paved Parking, Roofs, Driveways, Etc.												
		98			98			98			98	
Streets and Roads:												
Paved with curbs & storm sewers		98			98			98			98	
Gravel		76			85			89			91	
Dirt		72			82			87			69	
TOTAL	0		0	0		0	0		0	100		7700

WEIGHTED CURVE NUMBER =

TOTAL A + TOTAL B + TOTAL C + TOTAL D

100

77

- =

7/25/2019 CRA

E-3

LAND USE DESCRIPTION	%	A	Total	%	В	Total	%	С	Total	%	D	Total
Cultivated Land:												
Without conservation treatment		72			81			88			91	
With conservation treatment		62			71			78			81	
Pasture or Range Land:												
Poor Condition		68			79			86			89	
Fair Condition		54			70			80			85	
Good Condition		39			61			74			80	
Meadow:												
Good Condition		30			58			71			78	
Woods or Forest Land:												
Thin Stand, Poor Cover, No Mulch		45			66			77			83	
Fair Condition		25			55			70		89	77	6853
Open Spaces (lawns, parks, etc.)												
Good Condition with grass cover on		39			61			74			80	
75% or more of the area												
Fair Condition with grass cover on		49			69			79			84	
50%-75% of the area												
Commercial or Business Areas:												
(85% Impervious)		89			92			94			95	
Industrial Areas:												
(72% Impervious)		81			88			91			93	
Residential Areas:												
Avg. Lot Avg. % Imp.												
1/8 acre 65		77			85			90			92	
1/4 acre 38		61			75			83			87	
1/3 acre 30		57			72			81			86	
1/2 acre 25		54			70			80			85	
1 acre 20		51			68			79			84	
Paved Parking, Roofs, Driveways, Etc.												
		98			98			98		11	98	1078
Streets and Roads:												
Paved with curbs & storm sewers		98			98			98			98	
Gravel		76			85			89			91	
Dirt		72			82			87			69	
TOTAL	0		0	0		0	0		0	100		7931

WEIGHTED CURVE NUMBER =

TOTAL A + TOTAL B + TOTAL C + TOTAL D

100

7**9**

- =

7/25/2019 CRA

E-4.A

LAND USE DESCRIPTION	%	A	Total	%	В	Total	%	С	Total	%	D	Total
Cultivated Land:												
Without conservation treatment		72			81			88			91	
With conservation treatment		62			71			78			81	
Pasture or Range Land:												
Poor Condition		68			79			86			89	
Fair Condition		54			70			80			85	
Good Condition		39			61			74			80	
Meadow:												
Good Condition		30			58			71			78	
Woods or Forest Land:												
Thin Stand, Poor Cover, No Mulch		45			66			77			83	
Fair Condition		25			55			70			77	
Open Spaces (lawns, parks, etc.)												
Good Condition with grass cover on		39			61			74		45	80	3600
75% or more of the area												
Fair Condition with grass cover on		49			69			79			84	
50%-75% of the area												
Commercial or Business Areas:												
(85% Impervious)		89			92			94			95	
Industrial Areas:												
(72% Impervious)		81			88			91			93	
Residential Areas:												
Avg. Lot Avg. % Imp.												
1/8 acre 65		77			85			90			92	
1/4 acre 38		61			75			83			87	
1/3 acre 30		57			72			81			86	
1/2 acre 25		54			70			80			85	
1 acre 20		51			68			79			84	
Paved Parking, Roofs, Driveways, Etc.												
		98			98			98		55	98	5390
Streets and Roads:												
Paved with curbs & storm sewers		98			98			98			98	
Gravel		76			85			89			91	
Dirt		72			82			87			69	
TOTAL	0		0	0		0	0		0	100		8990

WEIGHTED CURVE NUMBER =

TOTAL A + TOTAL B + TOTAL C + TOTAL D

100

90

- =

7/25/2019 CRA

E-4.B

LAND USE DESCRIPTION	%	A	Total	%	В	Total	%	С	Total	%	D	Total
Cultivated Land:												
Without conservation treatment		72			81			88			91	
With conservation treatment		62			71			78			81	
Pasture or Range Land:												
Poor Condition		68			79			86			89	
Fair Condition		54			70			80			85	
Good Condition		39			61			74			80	
Meadow:												
Good Condition		30			58			71			78	
Woods or Forest Land:												
Thin Stand, Poor Cover, No Mulch		45			66			77			83	
Fair Condition		25			55			70			77	
Open Spaces (lawns, parks, etc.)												
Good Condition with grass cover on		39			61			74		45	80	3600
75% or more of the area												
Fair Condition with grass cover on		49			69			79			84	
50%-75% of the area												
Commercial or Business Areas:												
(85% Impervious)		89			92			94			95	
Industrial Areas:												
(72% Impervious)		81			88			91			93	
Residential Areas:												
Avg. Lot Avg. % Imp.												
1/8 acre 65		77			85			90			92	
1/4 acre 38		61			75			83			87	
1/3 acre 30		57			72			81			86	
1/2 acre 25		54			70			80			85	
1 acre 20		51			68			79			84	
Paved Parking, Roofs, Driveways, Etc.												
		98			98			98		55	98	5390
Streets and Roads:												
Paved with curbs & storm sewers		98			98			98			98	
Gravel		76			85			89			91	
Dirt		72			82			87			69	
TOTAL	0		0	0		0	0		0	100		8990

WEIGHTED CURVE NUMBER =

TOTAL A + TOTAL B + TOTAL C + TOTAL D

100

90

- =

7/25/2019 CRA
7/25/2019 CRA

E-1

SHEET FLOW (Applicable to Tc only)				
	Segment ID	A-B		
1. Surface Description (table 3-1)		Grass		
2. Mannings Roughness Coefficient, n (table 3-1)		0.24		
3. Flow Length, L (total L<300')	ft	95		
4. Two-year 24-hour rainfall, P ₂	in	2.15		
5. Land Slope, s	ft/ft	0.03		
$0.007 (nL)^{0.8}$	Compute T _t hr	0.237		0.237
6. $\Gamma_t = \frac{1}{10000000000000000000000000000000000$				
12 5				
SHALLOW CONCENTRATED FLOW				
	Segment ID	B-C	C-D	
7. Surface Description (paved or unpaved)		Paved	Unpaved	
8. Flow Length, L	ft	143	400	
9. Watercourse Slope, s	ft/ft	0.03	0.067	
10. Average Velocity, V (figure 3-1)	ft/s	2.5	1.8	
11 T – L	Compute T _t hr	0.016	0.062	0.078

11. $T_t = \frac{L}{3600 \text{ V}}$

CHANNEL FLOW			
	Segment ID		
12. Cross Sectional Flow Area, a	ft ²		
13. Wetted Perimeter, p _w	ft		
14. Hydraulic Radius, $r = a/p_w$	ft		
15. Channel Slope, s	ft/ft		
16. Manning's Roughness Coefficient, n			
17. V= $(1.49 r^{2/3} s^{1/2})/n$	ft/s		
18. Flow Length, L	ft		
19 T = L	Compute T _t hr		0.000
3600 V			
20. Watershed or subarea T_c or T_t (add in steps 6, 11, and	l 19)	 hr	0.314
		min	18.86

0.000

0.188

11.26

min

7/25/2019 CRA

E-2

SHEET ELOW (Applicable to Te ophy)					
SHEET FLOW (Applicable to 1c only)	. ID	4.5	D.G.	1	[
Segmen	nt ID	A-B	B-C		
1. Surface Description (table 3-1)		Grass	Woods		
2. Mannings Roughness Coefficient, n (table 3-1)		0.24	0.4		
3. Flow Length, L (total L<300')ft		40	60		
4. Two-year 24-hour rainfall, P ₂ in		2.15	2.15		
5. Land Slope, sft/ft	- F	0.05	0.42		
$6 T = 0.007 (nL)^{0.8}$ Compute T _t	hr	0.097	0.086		0.182
0. $I_t - \frac{P_0^{0.5} s^{0.4}}{P_0^{0.5} s^{0.4}}$				-	
SHALLOW CONCENTRATED FLOW					
SHALLOW CONCENTRATED FLOW	-4 ID	CD	[1	
Segmen	πD	C-D			
7. Surface Description (paved or unpaved)	F	UnPaved			
8. Flow Length, Lft		50			
9. Watercourse Slope, sft/ft		0.34			
10. Average Velocity, V (figure 3-1)ft/s	5	2.7			
11 T – L Compute T _t	hr	0.005			0.005
$11. 1_t - 3600 V$				-	
CHANNEL FLOW					
Segmer	nt ID				
12. Cross Sectional Flow Area, aft	2				
13. Wetted Perimeter, p _w	Ē				
14. Hydraulic Radius, $r = a/p_{ab}$	Ē				
15. Channel Slope, s. ft/ft	ŀ			1	
16 Manning's Roughness Coefficient n	ŀ				
16. Manning's Roughness Coefficient, n					

Compute T_thr

20. Watershed or subarea T_c or T_t (add in steps 6, 11, and 19)hr

17. V= $(1.49 r^{2/3} s^{1/2})/n$ ft/s 18. Flow Length, Lft

> L 3600 V

19. $T_t =$

7/25/2019 CRA

E-3

SHEET FLOW (Applicable to Tc only)			
Segment ID	A-B	B-C	
1. Surface Description (table 3-1)	Grass	Woods	
2. Mannings Roughness Coefficient, n (table 3-1)	0.24	0.4	
3. Flow Length, L (total L<300')ft	60	40	
4. Two-year 24-hour rainfall, P ₂ in	2.15	2.15	
5. Land Slope, sft/ft	0.15	0.25	
$6 T = \frac{0.007 (nL)^{0.8}}{Compute T_thr}$	0.086	0.076	0.163
$P_2^{0.5} s^{0.4}$			
SHALLOW CONCENTRATED FLOW		г – т	
Segment ID	C-D		
7. Surface Description (paved or unpaved)	UnPaved		
8. Flow Length, Lft	54		
9. Watercourse Slope, sft/ft	0.3		
10. Average Velocity, V (figure 3-1)ft/s	2.6		
11 T. = L Compute T _t hr	0.006		0.006
3600 V			
CHANNEL FLOW			
Segment ID			
12. Cross Sectional Flow Area, aft ²			
13. Wetted Perimeter, p _w ft			
14. Hydraulic Radius, r = a/p _w ft			
15. Channel Slope, sft/ft			
16. Manning's Roughness Coefficient, n			

17. $V=(1.49 r^{2/3} s^{1/2})/n$ ft/s

7/25/2019 CRA

E-4.A

SHEET FLOW (Applicable to Tc only)				
SHEET FEOW (Applicable to Te omy)	Segment ID	A_B	I I	
1 Surface Decorrintion (table 2, 1)	Segment ID	A-D	╂────┤	
1. Surface Description (table 3-1) \dots		Glass		
2. Mannings Roughness Coefficient, n (table 3-1)		0.24		
3. Flow Length, L (total L<300')	ft	88		
4. Two-year 24-hour rainfall, P ₂	in	2.15		
5. Land Slope, s	ft/ft	0.05		
ϵ T = 0.007 (nL) ^{0.8}	Compute T _t hr	0.182		0.182
0. $I_t = \frac{P_2^{0.5} s^{0.4}}{P_2^{0.5} s^{0.4}}$	-			
-				
SHALLOW CONCENTRATED FLOW				
	Segment ID	B-C	C-D	
7. Surface Description (paved or unpaved)	Segment ID	B-C Paved	C-D Unpaved	
 Surface Description (paved or unpaved) Flow Length, L 	Segment ID	B-C Paved 33	C-D Unpaved 78	
 Surface Description (paved or unpaved) Flow Length, L Watercourse Slope, s 	Segment ID 	B-C Paved 33 0.025	C-D Unpaved 78 0.09	
 Surface Description (paved or unpaved) Flow Length, L Watercourse Slope, s Average Velocity, V (figure 3-1) 	Segment ID 	B-C Paved 33 0.025 3.4	C-D Unpaved 78 0.09 2.1	
 7. Surface Description (paved or unpaved) 8. Flow Length, L 9. Watercourse Slope, s 10. Average Velocity, V (figure 3-1) 11. T = L 	Segment ID	B-C Paved 33 0.025 3.4 0.020	C-D Unpaved 78 0.09 2.1 0.020	 0.040
7. Surface Description (paved or unpaved) 8. Flow Length, L 9. Watercourse Slope, s 10. Average Velocity, V (figure 3-1) 11. $T_t = \frac{L}{3600 \text{ V}}$	Segment ID 	B-C Paved 33 0.025 3.4 0.020	C-D Unpaved 78 0.09 2.1 0.020	 0.040
7. Surface Description (paved or unpaved) 8. Flow Length, L 9. Watercourse Slope, s 10. Average Velocity, V (figure 3-1) 11. $T_t = \frac{L}{3600 \text{ V}}$	Segment ID 	B-C Paved 33 0.025 3.4 0.020	C-D Unpaved 78 0.09 2.1 0.020	 0.040
7. Surface Description (paved or unpaved) 8. Flow Length, L 9. Watercourse Slope, s 10. Average Velocity, V (figure 3-1) 11. $T_t = \frac{L}{3600 \text{ V}}$ CHANNEL FLOW	Segment ID 	B-C Paved 33 0.025 3.4 0.020	C-D Unpaved 78 0.09 2.1 0.020	0.040
7. Surface Description (paved or unpaved) 8. Flow Length, L 9. Watercourse Slope, s 10. Average Velocity, V (figure 3-1) 11. $T_t = \frac{L}{3600 \text{ V}}$ CHANNEL FLOW	Segment ID	B-C Paved 33 0.025 3.4 0.020	C-D Unpaved 78 0.09 2.1 0.020	0.040

12.	cross Sectional Flow Area, a		
13.	Wetted Perimeter, p _w ft		
14.	Hydraulic Radius, $r = a/p_w$ ft		
15.	Channel Slope, sft/ft		
16.	Manning's Roughness Coefficient, n		
17.	$V = (1.49 r^{2/3} s^{1/2})/n$ ft/s		
18.	Flow Length, Lft		
19	$T_{t} = L$ Compute T_{t} hr		0.000
17.	3600 V		
20.	Watershed or subarea T _c or T _t (add in steps 6, 11, and 19)hr	r	0.222
		min	13.29

11.50

min

7/25/2019 CRA

E-4.B

SHEET FLOW (Applicable to Tc only)					
	Segment ID	A-B			
1. Surface Description (table 3-1)		Unpaved			
2. Mannings Roughness Coefficient, n (table 3-1)		0.24			
3. Flow Length, L (total L<300')	ft	100			
4. Two-year 24-hour rainfall, P ₂	in	2.15			
5. Land Slope, s	ft/ft	0.07			
$(T_{\rm e} = 0.007 (nL)^{0.8})$	Compute T _t hr	0.176			0.176
6. $I_t = \frac{P_2^{0.5} s^{0.4}}{P_2^{0.5} s^{0.4}}$			•	•	·
2 ~					
SHALLOW CONCENTRATED FLOW					
	Segment ID	C-D			
7. Surface Description (paved or unpaved)		UnPaved			
8. Flow Length, L	ft	143			
9. Watercourse Slope, s	ft/ft	0.13			
10. Average Velocity, V (figure 3-1)	ft/s	2.5			
11 T = <u>L</u>	Compute T _t hr	0.016			0.016
$11. T_t = 3600 V$	-				
CHANNEL FLOW					
	Segment ID		ļ		
12. Cross Sectional Flow Area, a	ft ²				
13. Wetted Perimeter, p _w	ft	L			
14. Hydraulic Radius, $r = a/p_w$	ft				
15. Channel Slope, s	ft/ft				
16. Manning's Roughness Coefficient, n	[
17. $V=(1.49 r^{2/3} s^{1/2})/n$	ft/s				
18. Flow Length, L	ft		İ		
10 T – L	Compute T _t hr				0.000
19. $I_t = 3600 V$	· · ·				
20. Watershed or subarea T_c or T_t (add in steps 6, 11, and	nd 19)			hr	0.192

2-Year 24 Hour Rainfall Event = 2.15 (Updated 2019)

Roughness coefficients (Manning's n) for sheet flow Table 3-1

Surface description				
Snooth surfaces (concrete, asphait,				
gravel, or bare soil)	0.01			
Fallow (no residue)	0.05			
Cultivated soils:				
Residue cover ≤20%	0.06			
Residue cover >20%	0.17			
Grass:				
Short grass prairie	0.15			
Dense grasses 2/	-0.24			
Bernudagrass	0.41			
Range (natural)	0.13			
Woods:#				
Light underbrush	0.40			
Dease underbrash	0.80			

⁴ The n values are a composite of information compiled by Enginan

2 The neutron account (1986).
2 Includes species such as weeping lovegrass, bluegrass, buffalo geass, blue grant grass, and native grass mixtures.
2 When selecting n, consider rower to a height of about 0.4 ft. This is the only part of the plant cover that will obstruct sheet flow.

E-1

Velocity (ft/s)

APPENDIX III

• DEVELOPED DRAINAGE AREA MAP

STORMWATER ATTENUATION SCENARIO EXHIBITS
CONCEPTUAL STORMWATER DESIGN SUMMARY

CALCULATONS

- DEVELOPED HYDROCAD ROUTING REPORT
 - DEVELOPOPED SCS CALCULATIONS
 - WQv, RRv & CPv CALCULATIONS

Project No. 6702 July 25, 2019 Page 1

DIVINITY CAMPUS CITY OF ROCHESTER, NEW YORK

CONCEPTUAL STORMWATER ANALYSIS

SITE DATA:

Total Drainage Area Evaluated for Stormwater Attenuation in Pond = 9.13 acres

Site Soils = Urban (UB) – HSG D

Area Evaluated For Required Water Quality & Runoff Reduction Volumes:

	Impervious Cover	Pervious Cover
Existing:	2.23 acres	3.08 acres
Developed:	3.18 acres	2.13 acres

New Impervious Cover = 0.95 acres

RUNOFF REDUCTION & WATER QUALITY VOLUME:

Water Quality Volume:

- Calculated For Redevelopment
- To Treat 100% of New Impervious Cover (0.95 acres) & 25% of Existing Impervious Cover To Be Disturbed (2.23 acres)

Required Water Quality Volume = 0.1193 ac-ft = 5,199 CF

Runoff Reduction Volume:

• 100% HSG D \rightarrow S = 0.20

Minimum Runoff Reduction Volume = 0.0150 ac-ft = 655 CF

Filter Bed Sizing:

- To Treat wQv Req. = 8,665 SF
- To Treat RRv Min = 1,092 SF

Project No. 6702 July 25, 2019 Page 1

PEAK FLOW ATTENUATION STORAGE:

*See Drainage Area Exhibits For Reference

Existing Conditions:

- Area = 9.13 acres
- 100- Year Storm Total Rainfall Volume
 - Volume of Runoff = 2.753 ac-ft = 119,920 CF

Developed Conditions:

- Area = 9.13 acres
- 100- Year Storm Total Rainfall Volume
 - Volume of Runoff = 2.950 ac-ft = 128,502 CF

Storage Required To Attenuate Stormwater:

- Difference in Runoff From Existing To Developed Conditions
- Storage Required (100-Year Storm) = 128,502 CF 119,920 CF = 8,582 CF

Project No. 6702 July 25, 2019 Page 1

Stormwater Storage & Attenuation:

- 1. Stormwater Management Facility (Pond)
 - To Attenuate Stormwater & Provide Water Quality Volumes

Summary of Volumes Required:

Stormwater Attenuation:

• Storage Required: 8,582 CF = 0.197 ac-ft

Water Quality Volume:

• Required after RRv Reductions = 4,544 CF = 0.104 ac-ft

Total Storage Required:

• Required Storage = 13,126 CF = 0.301 ac-ft

Scenario No. 01: Stormwater Management Facility (Pond)

Stormwater Management Facility (Pond):

- Required Storage = 13,126 CF = 0.301 ac-ft
- Depth of Pond = 4'
- Surface Area of Pond = 3,282 SF = 0.075 acres

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
2.510	88	(DA-1)
1.520	77	(DA-2)
0.840	79	(DA-3)
1.340	93	(DA-4.A)
1.640	95	(DA-4.B)
1.280	92	(DA-5)
9.130	88	TOTAL AREA

Developed -with conecpetual grading

Prepared by {enter your company name here} HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

Type II 24-hr 1 Year Rainfall=1.84" Printed 7/24/2019 LC Page 3

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentDA-1:	Runoff Area=2.510 ac 0.00% Impervious Runoff Depth>0.83" Tc=17.4 min CN=88 Runoff=2.50 cfs 0.174 af
SubcatchmentDA-2:	Runoff Area=1.520 ac 0.00% Impervious Runoff Depth>0.36" Tc=11.3 min CN=77 Runoff=0.70 cfs 0.046 af
SubcatchmentDA-3:	Runoff Area=0.840 ac 0.00% Impervious Runoff Depth>0.43" Tc=9.3 min CN=79 Runoff=0.52 cfs 0.030 af
SubcatchmentDA-4.A:	Runoff Area=1.340 ac 0.00% Impervious Runoff Depth>1.17" Tc=5.0 min CN=93 Runoff=2.76 cfs 0.130 af
SubcatchmentDA-4.B:	Runoff Area=1.640 ac 0.00% Impervious Runoff Depth>1.33" Tc=5.0 min CN=95 Runoff=3.74 cfs 0.182 af
SubcatchmentDA-5:	Runoff Area=1.280 ac 0.00% Impervious Runoff Depth>1.09" Tc=5.0 min CN=92 Runoff=2.49 cfs 0.117 af
Link 4L: Whole Site	Inflow=11.21 cfs 0.679 af Primary=11.21 cfs 0.679 af
Link DP-1:	Inflow=3.12 cfs 0.221 af Primary=3.12 cfs 0.221 af
Link DP-2:	Inflow=8.99 cfs 0.429 af Primary=8.99 cfs 0.429 af
Link DP-3:	Inflow=0.52 cfs 0.030 af Primary=0.52 cfs 0.030 af

Total Runoff Area = 9.130 ac Runoff Volume = 0.679 af Average Runoff Depth = 0.89" 100.00% Pervious = 9.130 ac 0.00% Impervious = 0.000 ac

HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

Page 8

Summary for Link 4L: Whole Site

Inflow Ar	rea =	9.130 ac,	0.00% Impervious,	Inflow Depth > 0.8	89" for 1 Year event
Inflow	=	11.21 cfs @	11.97 hrs, Volume	= 0.679 af	
Primary	=	11.21 cfs @	11.97 hrs, Volume	= 0.679 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 4L: Whole Site

Summary for Link DP-1:

Inflow Are	ea =	4.030 ac,	0.00% Impervious,	Inflow Depth > 0.6	66" for 1 Year event
Inflow	=	3.12 cfs @	12.09 hrs, Volume	= 0.221 af	
Primary	=	3.12 cfs @	12.09 hrs, Volume	= 0.221 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-1:

Summary for Link DP-2:

Inflow Are	a =	4.260 ac,	0.00% Impervious,	Inflow Depth > 1.2	21" for 1 Year event
Inflow	=	8.99 cfs @	11.95 hrs, Volume	= 0.429 af	
Primary	=	8.99 cfs @	11.95 hrs, Volume	= 0.429 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-2:

Summary for Link DP-3:

Inflow Area	a =	0.840 ac,	0.00% Impervious,	Inflow Depth > 0	.43" for 1 Year event
Inflow	=	0.52 cfs @	12.02 hrs, Volume	= 0.030 af	
Primary	=	0.52 cfs @	12.02 hrs, Volume	= 0.030 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-3:

Developed -with conecpetual grading

Prepared by {enter your company name here} HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

Type II 24-hr 2 Year Rainfall=2.15" Printed 7/24/2019 LC Page 14

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentDA-1:	Runoff Area=2.510 ac 0.00% Impervious Runoff Depth>1.08" Tc=17.4 min CN=88 Runoff=3.26 cfs 0.226 af
SubcatchmentDA-2:	Runoff Area=1.520 ac 0.00% Impervious Runoff Depth>0.53" Tc=11.3 min CN=77 Runoff=1.08 cfs 0.067 af
SubcatchmentDA-3:	Runoff Area=0.840 ac 0.00% Impervious Runoff Depth>0.61" Tc=9.3 min CN=79 Runoff=0.77 cfs 0.043 af
SubcatchmentDA-4.A:	Runoff Area=1.340 ac 0.00% Impervious Runoff Depth>1.45" Tc=5.0 min CN=93 Runoff=3.39 cfs 0.162 af
SubcatchmentDA-4.B:	Runoff Area=1.640 ac 0.00% Impervious Runoff Depth>1.62" Tc=5.0 min CN=95 Runoff=4.52 cfs 0.222 af
SubcatchmentDA-5:	Runoff Area=1.280 ac 0.00% Impervious Runoff Depth>1.37" Tc=5.0 min CN=92 Runoff=3.09 cfs 0.146 af
Link 4L: Whole Site	Inflow=14.22 cfs 0.867 af Primary=14.22 cfs 0.867 af
Link DP-1:	Inflow=4.22 cfs 0.293 af Primary=4.22 cfs 0.293 af
Link DP-2:	Inflow=10.99 cfs 0.530 af Primary=10.99 cfs 0.530 af
Link DP-3:	Inflow=0.77 cfs 0.043 af Primary=0.77 cfs 0.043 af

Total Runoff Area = 9.130 ac Runoff Volume = 0.867 af Average Runoff Depth = 1.14" 100.00% Pervious = 9.130 ac 0.00% Impervious = 0.000 ac

HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

Runoff

Type II 24-hr 2 Year Rainfall=2.15"

Developed -with conecpetual grading

Prepared by {enter your company name here} HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

Type II 24-hr 2 Year Rainfall=2.15" Printed 7/24/2019 LC Page 20

Summary for Link 4L: Whole Site

Inflow A	Area =	=	9.130 ac,	0.00% Impervious,	Inflow Depth >	1.14	4" for 2 Y	ear event
Inflow	=		14.22 cfs @	11.97 hrs, Volume	= 0.867	af		
Primary	/ =		14.22 cfs @	11.97 hrs, Volume	= 0.867	af, /	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 4L: Whole Site

Summary for Link DP-1:

Inflow Are	ea =	4.030 ac,	0.00% Impervious,	Inflow Depth > 0.	87" for 2 Year event
Inflow	=	4.22 cfs @	12.08 hrs, Volume	= 0.293 af	
Primary	=	4.22 cfs @	12.08 hrs, Volume	= 0.293 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-1:

Summary for Link DP-2:

Inflow Ar	ea =	4.260 ac,	0.00% Impervious,	Inflow Depth > 1.4	49" for 2 Year event
Inflow	=	10.99 cfs @	11.95 hrs, Volume	= 0.530 af	
Primary	=	10.99 cfs @	11.95 hrs, Volume	= 0.530 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-2:

Summary for Link DP-3:

Inflow Area	a =	0.840 ac,	0.00% Impervious,	Inflow Depth > 0.	61" for 2 Year event
Inflow	=	0.77 cfs @	12.02 hrs, Volume	= 0.043 af	
Primary	=	0.77 cfs @	12.02 hrs, Volume	= 0.043 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-3:

Developed	_with	conecnetual (aradina
Developed		conecpetual v	ulaullu

Type II 24-hr 10 Year Rainfall=3.09" Printed 7/24/2019 Page 25

Prepared by {enter your company name here} HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentDA-1:	Runoff Area=2.510 ac 0.00% Impervious Runoff Depth>1.89" Tc=17.4 min CN=88 Runoff=5.68 cfs 0.396 af
SubcatchmentDA-2:	Runoff Area=1.520 ac 0.00% Impervious Runoff Depth>1.13" Tc=11.3 min CN=77 Runoff=2.47 cfs 0.143 af
SubcatchmentDA-3:	Runoff Area=0.840 ac 0.00% Impervious Runoff Depth>1.25" Tc=9.3 min CN=79 Runoff=1.63 cfs 0.088 af
SubcatchmentDA-4.A:	Runoff Area=1.340 ac 0.00% Impervious Runoff Depth>2.34" Tc=5.0 min CN=93 Runoff=5.31 cfs 0.261 af
SubcatchmentDA-4.B:	Runoff Area=1.640 ac 0.00% Impervious Runoff Depth>2.54" Tc=5.0 min CN=95 Runoff=6.85 cfs 0.347 af
SubcatchmentDA-5:	Runoff Area=1.280 ac 0.00% Impervious Runoff Depth>2.24" Tc=5.0 min CN=92 Runoff=4.92 cfs 0.239 af
Link 4L: Whole Site	Inflow=23.77 cfs 1.473 af Primary=23.77 cfs 1.473 af
Link DP-1:	Inflow=7.90 cfs 0.539 af Primary=7.90 cfs 0.539 af
Link DP-2:	Inflow=17.08 cfs 0.847 af Primary=17.08 cfs 0.847 af
Link DP-3:	Inflow=1.63 cfs 0.088 af Primary=1.63 cfs 0.088 af

Total Runoff Area = 9.130 ac Runoff Volume = 1.473 af Average Runoff Depth = 1.94" 100.00% Pervious = 9.130 ac 0.00% Impervious = 0.000 ac

Developed -with conecpetual grading Prepared by {enter your company name here}

HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

Type II 24-hr 10 Year Rainfall=3.09" Printed 7/24/2019

11 12 13

Time (hours)

14 15 16 17 18 19 20 21

22 23 24

i ż

3 4 5 6 7 8 9 10

Ó

Prepared by {enter your company name here} HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

 Type II 24-hr
 10 Year Rainfall=3.09"

 Printed
 7/24/2019

 LLC
 Page 27

Type II 24-hr 10 Year Rainfall=3.09"

Developed -with conecpetual grading

11 12 13

Time (hours)

Runoff Volume=0.347 af

14 15 16 17 18 19 20 21

Runoff Depth>2.54"

Tc=5.0 min

CN=95

22 23 24

5-

4

3-

2-

1

0

Ó

1 ż 3 4 5 6 7 8 9 10

Flow (cfs)

Prepared by {enter your company name here}

Type II 24-hr 10 Year Rainfall=3.09" Printed 7/24/2019

Developed -with conceptual gradingTypePrepared by {enter your company name here}HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

Summary for Link 4L: Whole Site

Inflow A	Area =	9.130 ac,	0.00% Impervious,	Inflow Depth > 1.	94" for 10 Year event
Inflow	=	23.77 cfs @	11.97 hrs, Volume	= 1.473 af	
Primary	/ =	23.77 cfs @	11.97 hrs, Volume	= 1.473 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 4L: Whole Site

Summary for Link DP-1:

Inflow Are	a =	4.030 ac,	0.00% Impervious,	Inflow Depth > 1.6	60" for 10 Year event
Inflow	=	7.90 cfs @	12.07 hrs, Volume	= 0.539 af	
Primary	=	7.90 cfs @	12.07 hrs, Volume	= 0.539 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-1:

Summary for Link DP-2:

Inflow A	Area =	4.260 ac,	0.00% Impervious,	Inflow Depth > 2.3	39" for 10 Year event
Inflow	=	17.08 cfs @	11.95 hrs, Volume	= 0.847 af	
Primary	y =	17.08 cfs @	11.95 hrs, Volume	= 0.847 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-2:

Summary for Link DP-3:

Inflow Area	a =	0.840 ac,	0.00% Impervious,	Inflow Depth > 1.2	25" for 10 Year event
Inflow	=	1.63 cfs @	12.01 hrs, Volume	= 0.088 af	
Primary	=	1.63 cfs @	12.01 hrs, Volume	= 0.088 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-3:

Developed -with conecpetual grading

Prepared by {enter your company name here}

 Type II 24-hr
 100 Year Rainfall=5.21"

 Printed
 7/24/2019

 s LLC
 Page 36

HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentDA-1:	Runoff Area=2.510 ac 0.00% Impervious Runoff Depth>3.86" Tc=17.4 min CN=88 Runoff=11.30 cfs 0.806 af
SubcatchmentDA-2:	Runoff Area=1.520 ac 0.00% Impervious Runoff Depth>2.79" Tc=11.3 min CN=77 Runoff=6.17 cfs 0.354 af
SubcatchmentDA-3:	Runoff Area=0.840 ac 0.00% Impervious Runoff Depth>2.98" Tc=9.3 min CN=79 Runoff=3.88 cfs 0.208 af
SubcatchmentDA-4.A:	Runoff Area=1.340 ac 0.00% Impervious Runoff Depth>4.40" Tc=5.0 min CN=93 Runoff=9.59 cfs 0.491 af
SubcatchmentDA-4.B:	Runoff Area=1.640 ac 0.00% Impervious Runoff Depth>4.62" Tc=5.0 min CN=95 Runoff=12.02 cfs 0.632 af
SubcatchmentDA-5:	Runoff Area=1.280 ac 0.00% Impervious Runoff Depth>4.29" Tc=5.0 min CN=92 Runoff=9.03 cfs 0.458 af
Link 4L: Whole Site	Inflow=46.22 cfs 2.950 af Primary=46.22 cfs 2.950 af
Link DP-1:	Inflow=16.93 cfs 1.160 af Primary=16.93 cfs 1.160 af
Link DP-2:	Inflow=30.64 cfs 1.581 af Primary=30.64 cfs 1.581 af
Link DP-3:	Inflow=3.88 cfs 0.208 af Primary=3.88 cfs 0.208 af

Total Runoff Area = 9.130 ac Runoff Volume = 2.950 af Average Runoff Depth = 3.88" 100.00% Pervious = 9.130 ac 0.00% Impervious = 0.000 ac

HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

Type II 24-hr 100 Year Rainfall=5.21"

Developed -with conecpetual grading

Type II 24-hr 100 Year Rainfall=5.21"

Developed -with conecpetual grading

Summary for Subcatchment DA-4.A:

Runoff = 9.59 cfs @ 11.95 hrs, Volume= 0.491 af, Depth> 4.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 100 Year Rainfall=5.21"

Summary for Subcatchment DA-4.B:

Page 41

Runoff 12.02 cfs @ 11.95 hrs, Volume= 0.632 af, Depth> 4.62" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 100 Year Rainfall=5.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type II 24-hr 100 Year Rainfall=5.21"

Summary for Link 4L: Whole Site

Inflow A	Area	=	9.130 ac,	0.00% Impervious,	Inflow Depth > 3.8	88" for 100 Year event
Inflow		=	46.22 cfs @	11.97 hrs, Volume	= 2.950 af	
Primary	y	=	46.22 cfs @	11.97 hrs, Volume	= 2.950 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 4L: Whole Site

Summary for Link DP-1:

Inflow A	vrea =	4.030 ac,	0.00% Impervious,	Inflow Depth > 3.4	45" for 100 Year event
Inflow	=	16.93 cfs @	12.06 hrs, Volume	= 1.160 af	
Primary		16.93 cfs @	12.06 hrs, Volume	= 1.160 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-1:

Developed -with conceptual gradingTypePrepared by {enter your company name here}HydroCAD® 10.00-20s/n 08278© 2017 HydroCAD Software Solutions LLC

Summary for Link DP-2:

Inflow A	Area =	4.260 ac,	0.00% Impervious,	Inflow Depth > 4.4	45" for 100 Year event
Inflow	=	30.64 cfs @	11.95 hrs, Volume	= 1.581 af	
Primary	y =	30.64 cfs @	11.95 hrs, Volume	= 1.581 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-2:

Summary for Link DP-3:

Inflow Are	ea =	0.840 ac,	0.00% Impervious,	Inflow Depth > 2.9	98" for 100 Year event
Inflow	=	3.88 cfs @	12.01 hrs, Volume	= 0.208 af	
Primary	=	3.88 cfs @	12.01 hrs, Volume	= 0.208 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link DP-3:

DA-1

LAND USE DESCRIPTION	%	A	Total	%	В	Total	%	С	Total	%	D	Total
Cultivated Land:												
Without conservation treatment		72			81			88			91	
With conservation treatment		62			71			78			81	
Pasture or Range Land:												
Poor Condition		68			79			86			89	
Fair Condition		54			70			80			85	
Good Condition		39			61			74			80	
Meadow:												
Good Condition		30			58			71			78	
Woods or Forest Land:												
Thin Stand, Poor Cover, No Mulch		45			66			77			83	
Fair Condition		25			55			70			77	
Open Spaces (lawns, parks, etc.)												
Good Condition with grass cover on		39			61			74		58	80	4640
75% or more of the area												
Fair Condition with grass cover on		49			69			79			84	
50%-75% of the area												
Commercial or Business Areas:												
(85% Impervious)		89			92			94			95	
Industrial Areas:												
(72% Impervious)		81			88			91			93	
Residential Areas:												
Avg. Lot Avg. % Imp.												
1/8 acre 65		77			85			90			92	
1/4 acre 38		61			75			83			87	
1/3 acre 30		57			72			81			86	
1/2 acre 25		54			70			80			85	
1 acre 20		51			68			79			84	
Paved Parking, Roofs, Driveways, Etc.												
		98			98			98		42	98	4116
Streets and Roads:												
Paved with curbs & storm sewers		98			98			98			98	
Gravel		76			85			89			91	
Dirt		72			82			87			69	
TOTAL	0		0	0		0	0		0	100		8756

Curve Number Worksheet

7/25/2019 CRA

88

- =

WEIGHTED CURVE NUMBER =

TOTAL A + TOTAL B + TOTAL C + TOTAL D

100

DA-2

LAND USE DESCRIPTION	%	Α	Total	%	В	Total	%	С	Total	%	D	Total
Cultivated Land:												
Without conservation treatment		72			81			88			91	
With conservation treatment		62			71			78			81	
Pasture or Range Land:												
Poor Condition		68			79			86			89	
Fair Condition		54			70			80			85	
Good Condition		39			61			74			80	
Meadow:												
Good Condition		30			58			71			78	
Woods or Forest Land:												
Thin Stand, Poor Cover, No Mulch		45			66			77			83	
Fair Condition		25			55			70		100	77	7700
Open Spaces (lawns, parks, etc.)												
Good Condition with grass cover on		39			61			74			80	
75% or more of the area												
Fair Condition with grass cover on		49			69			79			84	
50%-75% of the area												
Commercial or Business Areas:												
(85% Impervious)		89			92			94			95	
Industrial Areas:												
(72% Impervious)		81			88			91			93	
Residential Areas:												
Avg. Lot <u>Avg. % Imp.</u>												
1/8 acre 65		77			85			90			92	
1/4 acre 38		61			75			83			87	
1/3 acre 30		57			72			81			86	
1/2 acre 25		54			70			80			85	
1 acre 20		51			68			79			84	
Paved Parking, Roofs, Driveways, Etc.												
		98			98			98			98	
Streets and Roads:												
Paved with curbs & storm sewers		98			98			98			98	
Gravel		76			85			89			91	
Dirt		72			82			87			69	
TOTAL	0		0	0		0	0		0	100		7700

7/25/2019 CRA

77

- =

WEIGHTED CURVE NUMBER =

TOTAL A + TOTAL B + TOTAL C + TOTAL D

100

DA-3

LAND USE DESCRIPTION	%	Α	Total	%	В	Total	%	С	Total	%	D	Total
Cultivated Land:												
Without conservation treatment		72			81			88			91	
With conservation treatment		62			71			78			81	
Pasture or Range Land:												
Poor Condition		68			79			86			89	
Fair Condition		54			70			80			85	
Good Condition		39			61			74			80	
Meadow:												
Good Condition		30			58			71			78	
Woods or Forest Land:												
Thin Stand, Poor Cover, No Mulch		45			66			77			83	
Fair Condition		25			55			70		71	77	5467
Open Spaces (lawns, parks, etc.)												
Good Condition with grass cover on		39			61			74		20	80	1600
75% or more of the area												
Fair Condition with grass cover on		49			69			79			84	
50%-75% of the area												
Commercial or Business Areas:												
(85% Impervious)		89			92			94			95	
Industrial Areas:												
(72% Impervious)		81			88			91			93	
Residential Areas:												
Avg. Lot <u>Avg. % Imp.</u>												
1/8 acre 65		77			85			90			92	
1/4 acre 38		61			75			83			87	
1/3 acre 30		57			72			81			86	
1/2 acre 25		54			70			80			85	
1 acre 20		51			68			79			84	
Paved Parking, Roofs, Driveways, Etc.												
		98			98			98		9	98	882
Streets and Roads:												
Paved with curbs & storm sewers		98			98			98			98	
Gravel		76			85			89			91	
Dirt		72			82			87			69	
TOTAL	0		0	0		0	0		0	100		7949

WEIGHTED CURVE NUMBER =

TOTAL A + TOTAL B + TOTAL C + TOTAL D

100

7**9**

- =

7/25/2019 CRA

DA-4.A

LAND USE DESCRIPTION	%	Α	Total	%	В	Total	%	С	Total	%	D	Total
Cultivated Land:												
Without conservation treatment		72			81			88			91	
With conservation treatment		62			71			78			81	
Pasture or Range Land:												
Poor Condition		68			79			86			89	
Fair Condition		54			70			80			85	
Good Condition		39			61			74			80	
Meadow:												
Good Condition		30			58			71			78	
Woods or Forest Land:												
Thin Stand, Poor Cover, No Mulch		45			66			77			83	
Fair Condition		25			55			70			77	
Open Spaces (lawns, parks, etc.)												
Good Condition with grass cover on		39			61			74		28	80	2240
75% or more of the area												
Fair Condition with grass cover on		49			69			79			84	
50%-75% of the area												
Commercial or Business Areas:												
(85% Impervious)		89			92			94			95	
Industrial Areas:												
(72% Impervious)		81			88			91			93	
Residential Areas:												
Avg. Lot <u>Avg. % Imp.</u>												
1/8 acre 65		77			85			90			92	
1/4 acre 38		61			75			83			87	
1/3 acre 30		57			72			81			86	
1/2 acre 25		54			70			80			85	
1 acre 20		51			68			79			84	
Paved Parking, Roofs, Driveways, Etc.												
		98			98			98		72	98	7056
Streets and Roads:												
Paved with curbs & storm sewers		98			98			98			98	
Gravel		76			85			89			91	
Dirt		72			82			87			69	
TOTAL	0		0	0		0	0		0	100		9296

TOTAL A + TOTAL B + TOTAL C + TOTAL D

100

WEIGHTED CURVE NUMBER =

NOTES:

7/25/2019 CRA

93

- =

DA-4.B

LAND USE DESCRIPTION	%	Α	Total	%	В	Total	%	С	Total	%	D	Total
Cultivated Land:												
Without conservation treatment		72			81			88			91	
With conservation treatment		62			71			78			81	
Pasture or Range Land:												
Poor Condition		68			79			86			89	
Fair Condition		54			70			80			85	
Good Condition		39			61			74			80	
Meadow:												
Good Condition		30			58			71			78	
Woods or Forest Land:												
Thin Stand, Poor Cover, No Mulch		45			66			77			83	
Fair Condition		25			55			70			77	
Open Spaces (lawns, parks, etc.)												
Good Condition with grass cover on		39			61			74		19	80	1520
75% or more of the area												
Fair Condition with grass cover on		49			69			79			84	
50%-75% of the area												
Commercial or Business Areas:												
(85% Impervious)		89			92			94			95	
Industrial Areas:												
(72% Impervious)		81			88			91			93	
Residential Areas:												
Avg. Lot Avg. % Imp.												
1/8 acre 65		77			85			90			92	
1/4 acre 38		61			75			83			87	
1/3 acre 30		57			72			81			86	
1/2 acre 25		54			70			80			85	
1 acre 20		51			68			79			84	
Paved Parking, Roofs, Driveways, Etc.												
		98			98			98		81	98	7938
Streets and Roads:												
Paved with curbs & storm sewers		98			98			98			98	
Gravel		76			85			89			91	
Dirt		72			82			87			69	
TOTAL	0		0	0		0	0		0	100		9458

TOTAL A + TOTAL B + TOTAL C + TOTAL D

100

WEIGHTED CURVE NUMBER =

NOTES:

7/25/2019 CRA

95

- =

DA-5

LAND USE DESCRIPTION	%	Α	Total	%	В	Total	%	С	Total	%	D	Total
Cultivated Land:												
Without conservation treatment		72			81			88			91	
With conservation treatment		62			71			78			81	
Pasture or Range Land:												
Poor Condition		68			79			86			89	
Fair Condition		54			70			80			85	
Good Condition		39			61			74			80	
Meadow:												
Good Condition		30			58			71			78	
Woods or Forest Land:												
Thin Stand, Poor Cover, No Mulch		45			66			77			83	
Fair Condition		25			55			70			77	
Open Spaces (lawns, parks, etc.)												
Good Condition with grass cover on		39			61			74		35	80	2800
75% or more of the area												
Fair Condition with grass cover on		49			69			79			84	
50%-75% of the area												
Commercial or Business Areas:												
(85% Impervious)		89			92			94			95	
Industrial Areas:												
(72% Impervious)		81			88			91			93	
Residential Areas:												
Avg. Lot <u>Avg. % Imp.</u>												
1/8 acre 65		77			85			90			92	
1/4 acre 38		61			75			83			87	
1/3 acre 30		57			72			81			86	
1/2 acre 25		54			70			80			85	
1 acre 20		51			68			79			84	
Paved Parking, Roofs, Driveways, Etc.												
		98			98			98		65	98	6370
Streets and Roads:												
Paved with curbs & storm sewers		98			98			98			98	
Gravel		76			85			89			91	
Dirt		72			82			87			69	
TOTAL	0		0	0		0	0		0	100		9170

Curve Number Worksheet

7/25/2019 CRA

92

- =

WEIGHTED CURVE NUMBER =

TOTAL A + TOTAL B + TOTAL C + TOTAL D

100

DEVELOPED CONDITIONS	7/25/2019
DIVINITY CAMPUS (ROCHESTER, NY)	CRA

DA-1

SHEET FLOW (Applicable to Tc only)					
	Segment ID	A-B			
1. Surface Description (table 3-1)		Grass			
2. Mannings Roughness Coefficient, n (table 3-1)		0.24			
3. Flow Length, L (total L<300')	ft	95			
4. Two-year 24-hour rainfall, P ₂	in	2.15			
5. Land Slope, s	ft/ft	0.03			
$6 T = 0.007 (nL)^{0.8}$	Compute T _t hr	0.237			0.237
0. $I_t - \frac{P_2^{0.5} s^{0.4}}{P_2^{0.5} s^{0.4}}$					
-					
SHALLOW CONCENTRATED FLOW					
	Segment ID	B-C	C-D		
7. Surface Description (paved or unpaved)		Paved	Unpaved		
8. Flow Length, L	ft	110	302		
9. Watercourse Slope, s	ft/ft	0.015	0.079		
10. Average Velocity, V (figure 3-1)	ft/s	3.5	1.9		
11 T = $\frac{L}{L}$	Compute T _t hr	0.009	0.044		0.053
3600 V	-				
CHANNEL FLOW		[
	Segment ID				
12. Cross Sectional Flow Area, a	ft ²				
13. Wetted Perimeter, p _w	ft				
14. Hydraulic Radius, $r = a/p_w$	ft				
15. Channel Slope, s	ft/ft				
16. Manning's Roughness Coefficient, n					
17. V= $(1.49 r^{2/3} s^{1/2})/n$	ft/s				
18. Flow Length, L	ft				
10 T – L	Compute T _t hr				0.000
19. $I_t = 3600 V$	-			· ·	
20. Watershed or subarea T_c or T_t (add in steps 6, 11, and	ıd 19)			hr	0.290
				min	17.38

0.005

DEVELOPED CONDITIONS	7/25/2019
DIVINITY CAMPUS (ROCHESTER, NY)	CRA

DA-2

SHEET FLOW (Applicable to Tc only)				
	Segment ID	A-B	B-C	
1. Surface Description (table 3-1)		Grass	Woods	
2. Mannings Roughness Coefficient, n (table 3-1)		0.24	0.4	
3. Flow Length, L (total L<300')	ft	40	60	
4. Two-year 24-hour rainfall, P ₂	in	2.15	2.15	
5. Land Slope, s	ft/ft	0.05	0.42	
6 T = $0.007 (nL)^{0.8}$	Compute T _t hr	0.097	0.086	0.182
0. $I_t = \frac{P_2^{0.5} s^{0.4}}{P_2^{0.5} s^{0.4}}$	_			
SHALLOW CONCENTRATED FLOW				
	Segment ID	C-D		
7. Surface Description (paved or unpaved)		UnPaved		
8. Flow Length, L	ft	50		
9 Watercourse Slope s	ft/ft	0.34		

<i>.</i>	waterco	uise slope, s		0.34		1
10	. Averag	e Velocity, V (f	gure 3-1)ft/s	2.7		
11	Т. =	L	Compute T _t hr	0.005		
	• • t	3600 V				

CHANNEL FLOW Segment ID 12. Cross Sectional Flow Area, aft² 13. Wetted Perimeter, p_wft 14. Hydraulic Radius, $r = a/p_w$ft 15. Channel Slope, sft/ft 16. Manning's Roughness Coefficient, n 17. $V=(1.49 r^{2/3} s^{1/2})/n$ft/s 18. Flow Length, Lft L 3600 V Compute T_thr 0.000 19. $T_t =$ 20. Watershed or subarea T_c or T_t (add in steps 6, 11, and 19)hr 0.188 11.26 min

min

9.27

DEVELOPED CONDITIONS	7/25/2019
DIVINITY CAMPUS (ROCHESTER, NY)	CRA

DA-3

SHEET FLOW (Applicable to Tc only)					
	Segment ID	A-B	B-C		
1. Surface Description (table 3-1)	·····	Grass	Woods		
2. Mannings Roughness Coefficient, n (table 3-1)		0.24	0.4		
3. Flow Length, L (total L<300')	ft	60	40		
4. Two-year 24-hour rainfall, P ₂	in	2.15	2.15		
5. Land Slope, s	ft/ft	0.14	0.36		
$0.007 (nL)^{0.8}$	Compute T _t hr	0.089	0.066		0.155
6. $T_t = \frac{P_2^{0.5} s^{0.4}}{P_2^{0.5} s^{0.4}}$			II	L	
SHALLOW CONCENTRATED FLOW					
	Segment ID				
7. Surface Description (paved or unpaved)	·····				
8. Flow Length, L	ft				
9. Watercourse Slope, s	ft/ft				
10. Average Velocity, V (figure 3-1)	ft/s				
11 T = L	Compute T _t hr				0.000
$11. T_t = 3600 V$	-				
CHANNEL FLOW					
	Segment ID				
12. Cross Sectional Flow Area, a	ft ²				
13. Wetted Perimeter, p _w	ft				
14. Hydraulic Radius, $r = a/p_w$	ft				
15. Channel Slope, s	ft/ft				
16. Manning's Roughness Coefficient, n					
17. V= $(1.49 r^{2/3} s^{1/2})/n$	ft/s				
18. Flow Length, L	ft				
	Compute T _t hr				0.000
19. $I_t = 3600 V$			II	L	
20. Watershed or subarea T_c or T_t (add in steps 6, 11, and	nd 19)			hr	0.155

2-Year 24 Hour Rainfall Event = 2.15 (Updated 2019)

Roughness coefficients (Manning's n) for sheet flow Table 3-1

Surface description	\mathbf{n} ψ
Smooth surfaces (concrete, asphait,	
gravel, or bare soil)	0.014
Failow (no residue)	0.05
Cultivated soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses 2	0.24
Bermudagrass	0.41
Range (natural)	0.13
Woods:#	
Light underbrush	0.40
Dense underbrush	0.80
(1996)	

4. The n values are a composite of information compiled by Enginan

1 The reasons at a comparison of the reasons of the reaso

Figure 15-4 Velocity versus slope for shallow concentrated flow

PROJECT NAME: Divinity School Campus (Rochester New York) CALCULATED BY: C.R.A

<u>SITE DATA:</u>	New Development	Redevelopment		ent X			
		Impervio	us Cover	Porous Cover	Total Area		
	Existing Conditions	2.2	3	3.08	5.31	ac	5.31
	Developed Conditions	3.1	.8	2.13	5.31	ac	5.31
				Total Site Area:	5.31	ac	
				New Impervious Cover	0.95	ac	
	Site Soils:	% HSG A	0	0.55			
		% HSG B	0	0.4			
		% HSG C	0	0.3			
		% HSG D	100	0.2			
	S = Hydraulic Soil Grou	p Specific Red	uction Factor	0.20			

		For N For R	ew Development: edevelopment:	$wQv = \frac{P x}{m}$	=	12 (Ext	<u>IC)</u> (0.2	$5) + \frac{P x R v x A (New IC)}{12}$		
Where:	P =	90% Rainfall Ev	ent Number =		1		in			
	Rv =	0.05 + 0.009(I) =			0.95	5		I = % Impervious Cover =	60	%
	A =	Total Site Area -	=		5.32	1	ac			
	A (Ext. IC) =	Existing Imperv		2.23	3	ac				
	A (New IC) =	A (New IC) = New Impervious Cover =			0.95 ac		ac			
	For New Dev	elopment:	wQv Reqd =	N/A	ac-ft	=	N/A	cf		
	For Redevelopment:		wQv Reqd =	0.0441	+		0.0752			
			wQv Reqd =	0.1193	ac-ft	=	5.199	cf		

Per NYS Stormwater Design Manual (Chapter 9), 25% Reduction of Existing Impervious Cover & 100% Of New Imperivous Cover Must Be Met For Redevelopment. For New Development, 100% Of New Impervious Cover Must Be Met.

		$RRv = \frac{PXSX}{2}$	12	
Where:	P =	90% Rainfall Event Number =	1	
	S =	Soil Group Specific Reduction Factor =	0.20	
	Rv =	0.05 + 0.009(I = 100 % impervious cover) =	0.95	
	A IC =	New Impervious Cover =	0.95 ac	

Project No. 6702 Divinity Campus 7/23/2019

Filter Bed Sizing:

$$Af = \frac{WQv (df}{[k x (hf+df)(tf)]}$$

Where:

Af = the required surface area (sf)	=	8,665	SF	[All wQv]
	=	1,092	SF	[RRv Only]
wQv Reqd = water quality volume [cf]	=	5,199	CF	
RRv Min = runoff reduction volume [cf]	=	655	CF	
df = depth of soil medium [ft]	=	2.5	ft	
k = hydraulic conductivity [ft/day]	=	0.5	ft/Day	
Sand = 3.5				
Peat = 2				
Leaf Compost = 8.7	From NYS	5 Stormwa	ter Desigr	n Manual (Jan, 2015)
Bio Soil = 0.5				
hf = average height of ponding water	[ft]	=	0.5	ft
tf = design time to filter the treatement	nt [hrs]	=	1	days

STORMWATER MANAGEMENT **FACILITY STORAGE PER GRADING**

Developed -with conecpetual grading

Type II 24-hr 100 Year Rainfall=5.21" Printed 7/24/2019

Prepared by {enter your company name here} HydroCAD® 10.00-20 s/n 08278 © 2017 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1P: (new Pond)

Elevation	Surface	Storage	Elevation (feet)	Surface	Storage
547.50	250		550 10	3 55/	5 107
547.55	325	14	550 15	3 612	5 287
547 60	401	33	550.20	3 669	5 469
547.65	476	54	550 25	3 727	5 653
547 70	552	80	550.30	3 784	5 841
547 75	628	110	550.35	3 842	6 032
547.80	703	143	550.00	3 800	6 225
547.85	700	140	550.45	3 957	6 4 2 2
547.00	854	221	550.50	4 014	6 621
547.00	930	265	550 55	4 072	6 823
548.00	1 005	314	550.60	4 129	7 028
548.05	1,000	366	550.65	4,123	7,020
548 10	1,000	420	550.00	4 244	7,200
548 15	1 188	478	550 75	4 302	7,447
548 20	1,100	530	550.80	4 359	7,001
548 25	1 309	603	550.85	4,000	8 097
548 30	1,303	670	550.00	4 474	8 3 1 9
548 35	1 431	740	550.95	4 532	8 544
548 40	1,407	813	551.00	4,502	8 772
548 45	1,452	889	551.00	4,550	9,003
548 50	1,000	000	551 10	4,047	0,000
548 55	1,014	1 051	551 15	4 762	9,237
548 60	1,074	1 1 3 6	551.10	4,702	9 713
548 65	1,706	1 224	551 25	4,020	9,715
548 70	1,750	1 315	551.30	4 935	10 201
548 75	1,007	1 4 1 0	551 35	4,000	10,201
548.80	1,910	1,410	551.00	5,050	10,443
548 85	2 039	1,007	551 45	5 107	10,700
548 90	2,000	1 711	551 50	5 165	11 211
548 95	2,100	1 818	551 55	5 222	11.470
549.00	2,101	1 927	551.60	5 280	11 733
549.05	2 283	2 040	551.65	5 337	11 998
549 10	2 344	2,040	551 70	5,395	12 267
549 15	2,044	2 274	551 75	5 452	12,538
549 20	2 465	2,396	551.80	5 510	12,800
549 25	2,526	2,000	551.85	5 567	13 089
549 30	2 587	2 649	551.00	5 625	13 369
549.35	2,648	2,040	551.95	5 682	13 651
549 40	2,010	2 913	552.00	5 740	13 937
549 45	2,700	3 050	002.00	0,140	10,001
549 50	2 831	3 190			T
549 55	2,801	3 333			
549 60	2,952	3 480			
549 65	3 013	3 629			
549.70	3.074	3,781			0.220 op ft of Storogo
549,75	3.135	3.936		=	0.520 ac-it of Storage
549.80	3.196	4.094			
549.85	3.256	4.256			
549.90	3.317	4.420			
549.95	3.378	4.587			
550.00	3.439	4.758			
550.05	3,497	4,931			
	,				

Page 1

APPENDIX IV

NYSSESC GUIDANCE FOR EROSION & SEDIMENT CONTROL PRACTICE INSTALLATION

Department of Environmental Conservation

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES

From

CONSTRUCTION ACTIVITY

Permit No. GP-0-15-002

Issued Pursuant to Article 17, Titles 7, 8 and Article 70 of the Environmental Conservation Law

Effective Date: January 29, 2015

44444

Expiration Date: January 28, 2020

Modification Date:

July 14, 2015 – Correction of typographical error in definition of "New Development", Appendix A

November 23, 2016 – Updated to require the use of the New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016. The use of this standard will be required as of February 1, 2017.

John J. Ferguson Chief Permit Administrator

//./s/.//w Date Authorized Signature

Address: NYS DEC Division of Environmental Permits 625 Broadway, 4th Floor Albany, N.Y. 12233-1750

STANDARD AND SPECIFICATIONS FOR COMPOST FILTER SOCK

Definition & Scope

A **temporary** sediment control practice composed of a degradable geotextile mesh tube filled with compost filter media to filter sediment and other pollutants associated with construction activity to prevent their migration offsite.

Condition Where Practice Applies

Compost filter socks can be used in many construction site applications where erosion will occur in the form of sheet erosion and there is no concentration of water flowing to the sock. In areas with steep slopes and/or rocky terrain, soil conditions must be such that good continuous contact between the sock and the soil is maintained throughout its length. For use on impervious surfaces such as road pavement or parking areas, proper anchorage must be provided to prevent shifting of the sock or separation of the contact between the sock and the pavement. Compost filter socks are utilized both at the site perimeter as well as within the construction areas. These socks may be filled after placement by blowing compost into the tube pneumatically, or filled at a staging location and moved into its designed location.

<u>Design Criteria</u>

- 1. Compost filter socks will be placed on the contour with both terminal ends of the sock extended 8 feet upslope at a 45 degree angle to prevent bypass flow.
- 2. Diameters designed for use shall be 12" 32" except

that 8" diameter socks may be used for residential lots to control areas less than 0.25 acres.

- 3. The flat dimension of the sock shall be at least 1.5 times the nominal diameter.
- 4. The Maximum Slope Length (in feet) above a compost filter sock shall not exceed the following limits:

Dia. (in.)	Slope %						
	2	5	10	20	25	33	50
8	225*	200	100	50	20	_	_
12	250	225	125	65	50	40	25
18	275	250	150	70	55	45	30
24	350	275	200	130	100	60	35
32	450	325	275	150	120	75	50

* Length in feet

- 5. The compost infill shall be well decomposed (matured at least 3 months), weed-free, organic matter. It shall be aerobically composted, possess no objectionable odors, and contain less than 1%, by dry weight, of manmade foreign matter. The physical parameters of the compost shall meet the standards listed in Table 5.2 -Compost Standards Table. Note: All biosolids compost produced in New York State (or approved for importation) must meet NYS DEC's 6 NYCRR Part 360 (Solid Waste Management Facilities) requirements. The Part 360 requirements are equal to or more stringent than 40 CFR Part 503 which ensure safe standards for pathogen reduction and heavy metals content. When using compost filter socks adjacent to surface water, the compost should have a low nutrient value.
- 6. The compost filter sock fabric material shall meet the

- 7. Compost filter socks shall be anchored in earth with 2" x 2" wooden stakes driven 12" into the soil on 10 foot centers on the centerline of the sock. On uneven terrain, effective ground contact can be enhanced by the placement of a fillet of filter media on the disturbed area side of the compost sock.
- All specific construction details and material specifications shall appear on the erosion and sediment control constructions drawings when compost filter socks are included in the plan.

Maintenance

- 1. Traffic shall not be permitted to cross filter socks.
- Accumulated sediment shall be removed when it reaches half the above ground height of the sock and disposed of in accordance with the plan.

- Socks shall be inspected weekly and after each runoff event. Damaged socks shall be repaired in the manner required by the manufacturer or replaced within 24 hours of inspection notification.
- Biodegradable filter socks shall be replaced after 6 months: photodegradable filter socks after 1 year. Polypropylene socks shall be replaced according to the manufacturer's recommendations.
- 5. Upon stabilization of the area contributory to the sock, stakes shall be removed. The sock may be left in place and vegetated or removed in accordance with the stabilization plan. For removal the mesh can be cut and the compost spread as an additional mulch to act as a soil supplement.

Material Type	3 mil HDPE	5 mil HDPE	5 mil HDPE	Multi-Filament Polypropylene (MFPP)	Heavy Duty Multi- Filament Polypropylene (HDMFPP)
Material Character- istics	Photodegrada- ble	Photodegrada- ble	Biodegradable	Photodegrada- ble	Photodegradable
Sock Diameters	12" 18"	12" 18" 24" 32"	12" 18" 24" 32"	12" 18" 24" 32"	12" 18" 24" 32"
Mesh Opening	3/8"	3/8"	3/8"	3/8*	1/8"
Tensile Strength		26 psi	26 psi	44 psi	202 psi
Ultraviolet Stability % Original Strength (ASTM G-155)	23% at 1000 hr.	23% at 1000 hr.		100% at 1000 hr.	100% at 1000 hr.
Minimum Functional Longevity	6 months	9 months	6 months	l year	2 years

Table 5.1 - Compost Sock Fabric Minimum Specifications Table

Table 5.2 - Compost Standards Table

Organic matter content	25% - 100% (dry weight)
Organic portion	Fibrous and elongated
pН	6.0 - 8.0
Moisture content	30% - 60%
Partícle size	100% passing a 1" screen and 10 - 50% passing a 3/8" screen
Soluble salt concentration	5.0 dS/m (mmhos/cm) maximum

Figure 5.2 Compost Filter Sock

STANDARD AND SPECIFICATIONS FOR SILT FENCE

Definition & Scope

A **temporary** barrier of geotextile fabric installed on the contours across a slope used to intercept sediment laden runoff from small drainage areas of disturbed soil by temporarily ponding the sediment laden runoff allowing settling to occur. The maximum period of use is limited by the ultraviolet stability of the fabric (approximately one year).

Conditions Where Practice Applies

A silt fence may be used subject to the following conditions:

- 1. Maximum allowable slope length and fence length will not exceed the limits shown in the Design Criteria for the specific type of silt fence used ; and
- 2. Maximum ponding depth of 1.5 feet behind the fence: and
- 3. Erosion would occur in the form of sheet erosion; and
- 4. There is no concentration of water flowing to the barrier; and
- 5. Soil conditions allow for proper keying of fabric, or other anchorage, to prevent blowouts.

Design Criteria

- 1. Design computations are not required for installations of 1 month or less. Longer installation periods should be designed for expected runoff.
- 2. All silt fences shall be placed as close to the disturbed area as possible, but at least 10 feet from the toe of a slope steeper than 3H: IV, to allow for maintenance and

roll down. The area beyond the fence must be undisturbed or stabilized.

 The type of silt fence specified for each location on the plan shall not exceed the maximum slope length and maximum fence length requirements shown in the following table:

		Slope Length/Fence Length (ft.)			
Slope	Steepness	Standard	Reinforced	Super	
<2%	< 50: i	300/1500	N/A	N/A	
2-10%	50:1 to 10:1	125/1000	250/2000	300/2500	
10-20%	10:1 to 5:1	100/750	150/1000	200/1000	
20-33%	5:1 to 3:1	60/500	80/750	100/1000	
33-50%	3:1 to 2:1	40/250	70/350	100/500	
>50%	> 2:1	20/125	30/175	50/250	

Standard Silt Fence (SF) is fabric rolls stapled to wooden stakes driven 16 inches in the ground. **Reinforced Silt Fence (RSF)** is fabric placed against welded wire fabric with anchored steel posts driven 16 inches in the ground. **Super Silt Fence (SSF)** is fabric placed against chain

Super Silt Fence (SSF) is fabric placed against chain link fence as support backing with posts driven 3 feet in the ground.

4. Silt fence shall be removed as soon as the disturbed area has achieved final stabilization.

The silt fence shall be installed in accordance with the appropriate details. Where ends of filter cloth come together, they shall be overlapped, folded and stapled to prevent sediment bypass. Butt joints are not acceptable. A detail of the silt fence shall be shown on the plan. See Figure 5.30 on page 5.56 for Reinforced Silt Fence as an example of details to be provided.

Criteria for Silt Fence Materials

1. Silt Fence Fabric: The fabric shall meet the following specifications unless otherwise approved by the appropriate erosion and sediment control plan approval authority. Such approval shall not constitute statewide acceptance.

Fabric Properties	Minimum Acceptable Value	Test Method
Grab Tensile Strength (lbs)	110	ASTM D 4632
Elongation at Failure (%)	20	ASTM D 4632
Mullen Burst Strength (PSI)	300	ASTM D 3786
Puncture Strength (lbs)	60	ASTM D 4833
Minimum Trapezoidal Tear Strength (lbs)	50	ASTM D 4533
Flow Through Rate (gal/ min/sf)	25	ASTM D 4491
Equivalent Opening Size	40-80	US Std Sieve ASTM D 4751
Minimum UV Residual (%)	70	ASTM D 4355

Super Silt Fence

- Fence Posts (for fabricated units): The length shall be a minimum of 36 inches long. Wood posts will be of sound quality hardwood with a minimum cross sectional area of 3.5 square inches. Steel posts will be standard T and U section weighing not less than 1.00 pound per linear foot. Posts for super silt fence shall be standard chain link fence posts.
- 3. Wire Fence for reinforced silt fence: Wire fencing shall be a minimum 14 gage with a maximum 6 in, mesh opening, or as approved.
- 4. Prefabricated silt fence is acceptable as long as all material specifications are met.

Reinforced Silt Fence

Figure 5.30 Reinforced Silt Fence

STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION

Definition & Scope

A temporary barrier with low permeability, installed around inlets in the form of a fence, berm or excavation around an opening, detaining water and thereby reducing the sediment content of sediment laden water by settling thus preventing heavily sediment laden water from entering a storm drain system.

Conditions Where Practice Applies

This practice shall be used where the drainage area to an inlet is disturbed, it is not possible to temporarily divert the storm drain outfall into a trapping device, and watertight blocking of inlets is not advisable. It is not to be used in place of sediment trapping devices. This practice shall be used with an upstream buffer strip if placed at a storm drain inlet on a paved surface. It may be used in conjunction with storm drain diversion to help prevent siltation of pipes installed with low slope angle.

Types of Storm Drain Inlet Practices

There are five (5) specific types of storm drain inlet protection practices that vary according to their function, location, drainage area, and availability of materials:

- I. Excavated Drop Inlet Protection
- II. Fabric Drop Inlet Protection
- III. Stone & Block Drop Inlet Protection
- IV. Paved Surface Inlet Protection
- V. Manufactured Insert Inlet Protection

<u>Design Criteria</u>

Drainage Area – The drainage area for storm drain infets shall not exceed one acre. Erosion control/temporary stabilization measures must be implemented on the disturbed drainage area tributary to the infet. The crest elevations of these practices shall provide storage and minimize bypass flow.

Type I – Excavated Drop Inlet Protection

This practice is generally used during initial overlot grading after the storm drain trunk line is installed.

Limit the drainage area to the inlet device to 1 acre. Excavated side slopes shall be no steeper than 2:1. The minimum depth shall be 1 foot and the maximum depth 2 feet as measured from the crest of the inlet structure. Shape the excavated basin to fit conditions with the longest dimension oriented toward the longest inflow area to provide maximum trap efficiency. The capacity of the excavated basin should be established to contain 900 cubic feet per acre of disturbed area. Weep holes, protected by fabric and stone, should be provided for draining the temporary pool.

Inspect and clean the excavated basin after every storm. Sediment should be removed when 50 percent of the storage volume is achieved. This material should be incorporated into the site in a stabilized manner.

Type II – Fabric Drop Inlet Protection

This practice is generally used during final elevation grading phases after the storm drain system is completed.

Limit the drainage area to 1 acre per inlet device. Land area slope immediately surrounding this device should not exceed 1 percent. The maximum height of the fabric above the inlet crest shall not exceed 1.5 feet unless reinforced.

The top of the barrier should be maintained to allow overflow to drop into the drop inlet and not bypass the inlet to unprotected lower areas. Support stakes for fabric shall be a minimum of 3 feet long, spaced a maximum 3 feet apart. They should be driven close to the inlet so any overflow drops into the inlet and not on the unprotected soil. Improved performance and sediment storage volume can be obtained by excavating the area.

Inspect the fabric barrier after each rain event and make repairs as needed. Remove sediment from the pool area as necessary with care not to undercut or damage the filter fabric. Upon stabilization of the drainage area, remove all materials and unstable sediment and dispose of properly. Bring the adjacent area of the drop inlet to grade, smooth and compact and stabilize in the appropriate manner to the site.

Type III – Stone and Block Drop Inlet Protection

This practice is generally used during the initial and intermediate overlot grading of a construction site.

Limit the drainage area to 1 acre at the drop inlet. The stone barrier should have a minimum height of 1 foot and a maximum height of 2 feet. Do not use mortar. The height should be limited to prevent excess ponding and bypass flow.

Recess the first course of blocks at least 2 inches below the crest opening of the storm drain for lateral support. Subsequent courses can be supported laterally if needed by placing a 2x4 inch wood stud through the block openings perpendicular to the course. The bottom row should have a few blocks oriented so flow can drain through the block to dewater the basin area.

The stone should be placed just below the top of the blocks on slopes of 2:1 or flatter. Place hardware cloth of wire mesh with $\frac{1}{2}$ inch openings over all block openings to hold stone in place.

As an optional design, the concrete blocks may be omitted and the entire structure constructed of stone, ringing the outlet ("doughnut"). The stone should be kept at a 3:1 slope toward the inlet to keep it from being washed into the inlet. A level area 1 foot wide and four inches below the crest will further prevent wash. Stone on the slope toward the inlet should be at least 3 inches in size for stability and 1 inch or smaller away from the inlet to control flow rate. The elevation of the top of the stone crest must be maintained 6 inches lower than the ground elevation down slope from the inlet to ensure that all storm flows pass over the stone into the storm drain and not past the structure. Temporary diking should be used as necessary to prevent bypass flow.

The barrier should be inspected after each rain event and repairs made where needed. Remove sediment as necessary to provide for accurate storage volume for subsequent rains. Upon stabilization of contributing drainage area, remove all materials and any unstable soil and dispose of properly.

Bring the disturbed area to proper grade, smooth, compact and stabilize in a manner appropriate to the site.

Type IV – Paved Surface Inlet Protection

This practice is generally used after pavement construction has been done while final grading and soil stabilization is occurring. These practices should be used with upstream buffer strips in linear construction applications, and with temporary surface stabilization for overlot areas, to reduce the sediment load at the practice. This practice includes sand bags, compost filter socks, geo-tubes filled with ballast, and manufactured surface barriers. Pea gravel can also be used in conjunction with these practices to improve performance. When the inlet is not at a low point, and is offset from the pavement or gutter line, protection should be selected and installed so that flows are not diverted around the inlet.

The drainage area should be limited to 1 acre at the drain inlet. All practices will be placed at the inlet perimeter or beyond to maximize the flow capacity of the inlet. Practices shall be weighted, braced, tied, or otherwise anchored to prevent movement or shifting of location on paved surfaces. Traffic safety shall be integrated with the use of this practice. All practices should be marked with traffic safety cones as appropriate. Structure height shall not cause flooding or by-pass flow that would cause additional crosion.

The structure should be inspected after every storm event. Any sediment should be removed and disposed of on the site. Any broken or damaged components should be replaced. Check all materials for proper anchorage and secure as necessary.

Type V - Manufactured Insert Inlet Protection

The drainage area shall be limited to 1 acre at the drain inlet. All inserts will be installed and anchored in accordance with the manufacturers recommendations and design details. The fabric portion of the structure will equal or exceed the performance standard for the silt fence fabric. The inserts will be installed to preserve a minimum of 50 percent of the open, unobstructed design flow area of the storm drain inlet opening to maintain capacity for storm events.

Figure 5.31 Excavated Drop Inlet Protection

Figure 5.32 Fabric Drop Inlet Protection

Figure 5.33 Stone & Block Drop Inlet Protection

STANDARD AND SPECIFICATIONS FOR CHECK DAM

Definition & Scope

Small barriers or dams constructed of stone, bagged sand or gravel, or other durable materials across a drainageway to reduce erosion in a drainage channel by reducing the velocity of flow in the channel.

Conditions Where Practice Applies

This practice is used as a **temporary** and, in some cases, a **permanent** measure to limit erosion by reducing velocities in open channels that are degrading or subject to erosion or where permanent stabilization is impractical due to short period of usefulness and time constraints of construction.

Design Criteria

Drainage Area: Maximum drainage area above the check dam shall not exceed two (2) acres.

Height: Not greater than 2 feet. Center shall be maintained 9 inches lower than abutments at natural ground elevation.

Side Slopes: Shall be 2:1 or flatter.

Spacing: The check dams shall be spaced as necessary in the channel so that the crest of the downstream dam is at the elevation of the toe of the upstream dam. This spacing is equal to the height of the check dam divided by the channel slope.

Therefore:

$$S = \frac{h}{s}$$

Where:

$$h = height of check dam (ft.)$$

s = channel slope (ft./ft.)

S = spacing interval (ft.)

Example:

For a channel with and 2 ft. high stone they are spaced as $S = \frac{2 \text{ ft}}{0.04 \frac{\text{ft}}{\text{ft}}} = 50 \text{ ft} \quad \text{a 4\% slope} \text{ check dams,} \text{ follows:}$

For stone check dams: Use a well graded stone matrix 2 to 9 inches in size (NYS – DOT Light Stone Fill meets these requirements).

The overflow of the check dams will be stabilized to resist erosion that might be caused by the check dam. See Figure 3.1 on page 3.3 for details.

Check dams should be anchored in the channel by a cutoff trench 1.5 ft. wide and 0.5 ft. deep and lined with filter fabric to prevent soil migration.

For filter sock or fiber roll check dams: The check dams will be anchored by staking the dam to the earth contact surface. The dam will extend to the top of the bank. The check dam will have a splash apron of NYS DOT #2 crushed stone extending a minimum 3 feet downstream from the dam and 1 foot up the sides of the channel. The compost and materials for a filter sock check dam shall meet the requirements shown in the standard for Compost Filter Sock on page 5.7.

Maintenance

The check dams should be inspected after each runoff event. Correct all damage immediately. If significant erosion has occurred between structures, a liner of stone or other suitable material should be installed in that portion of the channel or additional check dams added.

Remove sediment accumulated behind the dam as needed to allow channel to drain through the stone check dam and prevent large flows from carrying sediment over the dam.

Figure 3.1 Stone Check Dam Detail

STANDARD AND SPECIFICATIONS FOR STABILIZED CONSTRUCTION ENTRANCE

Definition

A stabilized pad of aggregate underlain with geotextile located at any point where traffic will be entering or leaving a construction site to or from a public right-of-way, street, alley, sidewalk, or parking area.

Purpose

The purpose of stabilized construction entrance is to reduce or eliminate the tracking of sediment onto public rights-ofway or streets.

Conditions Where Practice Applies

A stabilized construction entrance shall be used at all points of construction ingress and egress.

Design Criteria

See Figure 5A.35 on page 5A.76 for details.

Aggregate Size: Use a matrix of 1-4 inch stone, or reclaimed or recycled concrete equivalent.

Thickness: Not less than six (6) inches.

Width: 12-foot minimum but not less than the full width of points where ingress or egress occurs. 24-foot minimum if there is only one access to the site.

Length: As required, but not less than 50 feet (except on a single residence lot where a 30 foot minimum would apply).

Geotextile: To be placed over the entire area to be covered with aggregate. Filter cloth will not be required on a single-family residence lot. Piping of surface water under entrance shall be provided as required. If piping is impossible, a mountable berm with 5:1 slopes will be permitted.

Criteria for Geotextile

The geotextile shall be woven or nonwoven fabric consisting only of continuous chain polymeric filaments or yarns of polyester. The fabric shall be inert to commonly encountered chemicals, hydro-carbons, mildew, rot resistant, and conform to the fabric properties as shown:

	Light Duty ¹ Roads	Heavy Duty Haul Roads	y^2
Fabric	Grade	Rough	Test
Properties ³	<u>Subgrade</u>	Graded	Method
Grab Tensile Strength (lbs)	200	220	ASTM D1682
Elongation at Failure (%)	50	60	ASTM D1682
Mullen Brust Strength (lbs)	190	430	ASTM D3786
Puncture Strength (lbs)	40	125	ASTM D751 modified
Equivalent	40-80	40-80	US Std Sieve
Opening Size			CW-02215
Aggregate Dep	pth 6	10	

¹Light Duty Road: Area sites that have been graded to subgrade and where most travel would be single axle vehicles and an occasional multiaxle truck. Acceptable materials are Trevira Spunbond 1115, Mirafi 100X, Typar 3401, or equivalent.

²Heavy Duty Road: Area sites with only rough grading, and where most travel would be multi-axle vehicles. Acceptable materials are Trevira Spunbond 1135, Mirafi 600X, or equivalent.

³Fabrics not meeting these specifications may be used only when design procedure and supporting documentation are supplied to determine aggregate depth and fabric strength.

Maintenance

The entrance shall be maintained in a condition which will prevent tracking of sediment onto public rights-of-way or streets. This may require periodic top dressing with additional aggregate. All sediment spilled, dropped, or washed onto public rights-of-way must be removed immediately.

When necessary, wheels must be cleaned to remove sediment prior to entrance onto public rights-of-way. When washing is required, it shall be done on an area stabilized with aggregate, which drains into an approved sediment-trapping device. All sediment shall be prevented from entering storm drains, ditches, or watercourses.

Figure 5A.35 Stabilized Construction Entrance

