SCHEMATIC WATER ANALYSIS

DIVINITY CAMPUS

CITY OF ROCHESTER, MONROE COUNTY STATE OF NEW YORK

PREPARED FOR:

ROC GOODMAN, LLC 550 LATONA ROAD, BLDG. E, SUITE 501 ROCHESTER, NEW YORK 14626 (585)225-0140

PREPARED BY:

217 Lake Avenue Rochester NY 14608

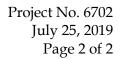
PROJECT NO. CE#6702 MAY, 2019 *REVISED: JULY 25th, 2019*

July 25, 2019

DIVINITY CAMPUS CITY OF ROCHESTER, MONROE COUNTY STATE OF NEW YORK

SCHEMATIC WATER ANALYSIS

OVERVIEW


The proposed development of a portion of the Divinity Campus will include a water main extension along South Goodman Street, which will connect to a private water main to service the proposed apartments. The following summary will provide an overview of existing conditions, proposed improvements, and applicable standards to which the system will be designed, and constructed.

EXISTING WATER SERVICE

The property as it exists today, consists of a single water connection, via the 8" water main located on Highland Avenue. This connection services buildings on site which includes Strong Hall, Trever Eaton Hall, the Montgomery House, the Presidents House, Saunders House and Andrews House. A pump house exists today on the south property line, adjacent to the point of connection on Highland Avenue, which was designed to provide required domestic and fire flows for the above mentioned buildings. The pump house includes a split of domestic and fire protection services (into 4" & 8" respectively), backflow prevention devices, meters, a domestic pump and a fire pump.

PROPOSED DEVELOPMENT WATER SERVICE

The proposed development will be serviced by a new connection point on South Goodman Street, in which a City of Rochester Water Bureau public water main will be extended. From the right-of-way line, a private 8" combined water service will enter Building 100 and a proposed Pump Room located in the basement pump/mechanical, where the service will split into a 4" domestic and a 6" fire protection service. The pump room will include backflow prevention devices, meters, a domestic pump for the 4" service and a fire pump for the 6" service. The pump room will be used to service Building 100 & Building 200.

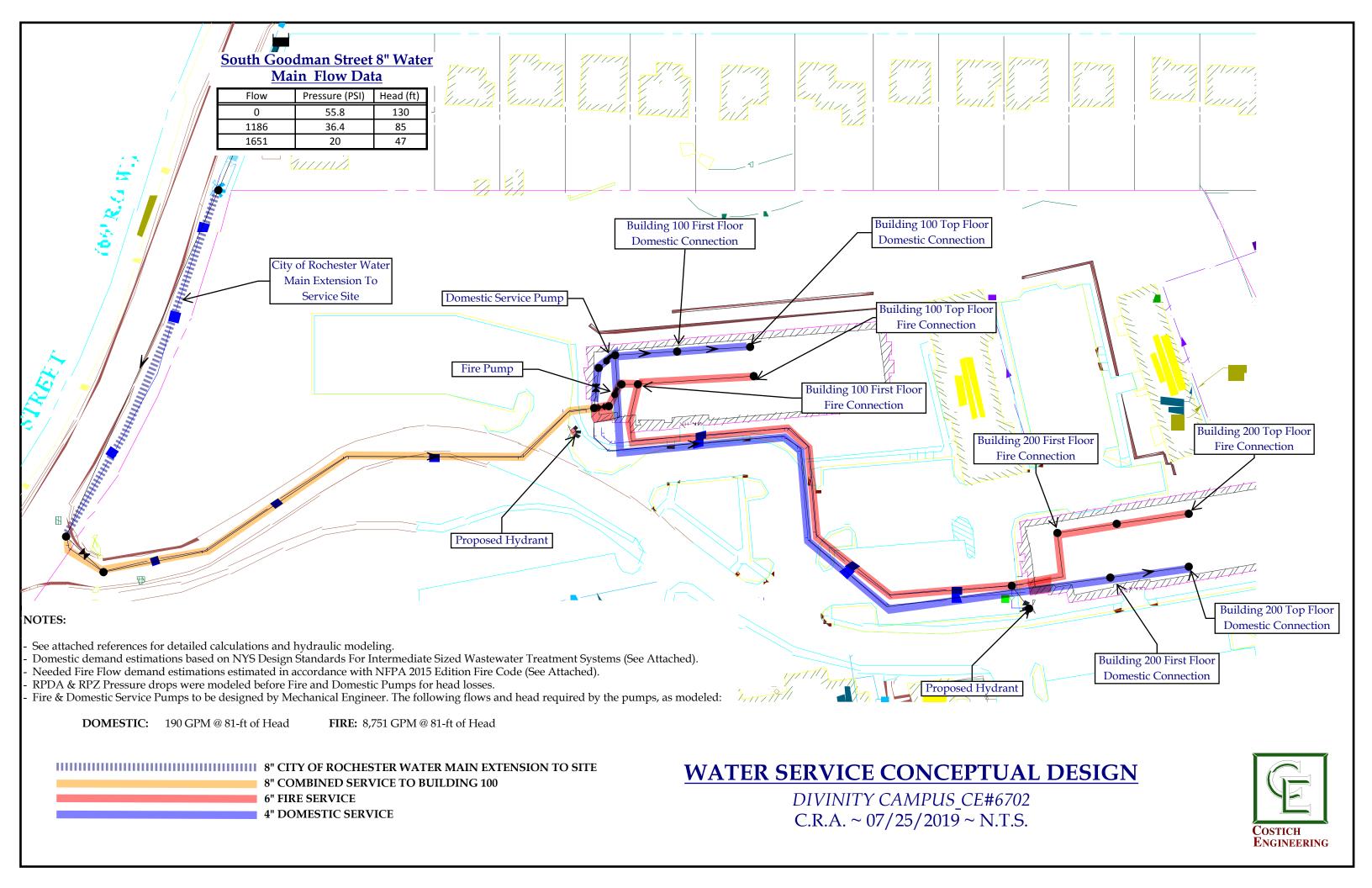
The intention of the new water connection point on South Goodman Street, was to not increase water demands on the existing system. As part of the proposed development, Saunders and Andrews House will be disconnected from the existing service, and will be serviced through the new connection point on South Goodman Street. A modification will also be made to the 6" fire main which services the existing hydrant on the North side of Strong Hall.

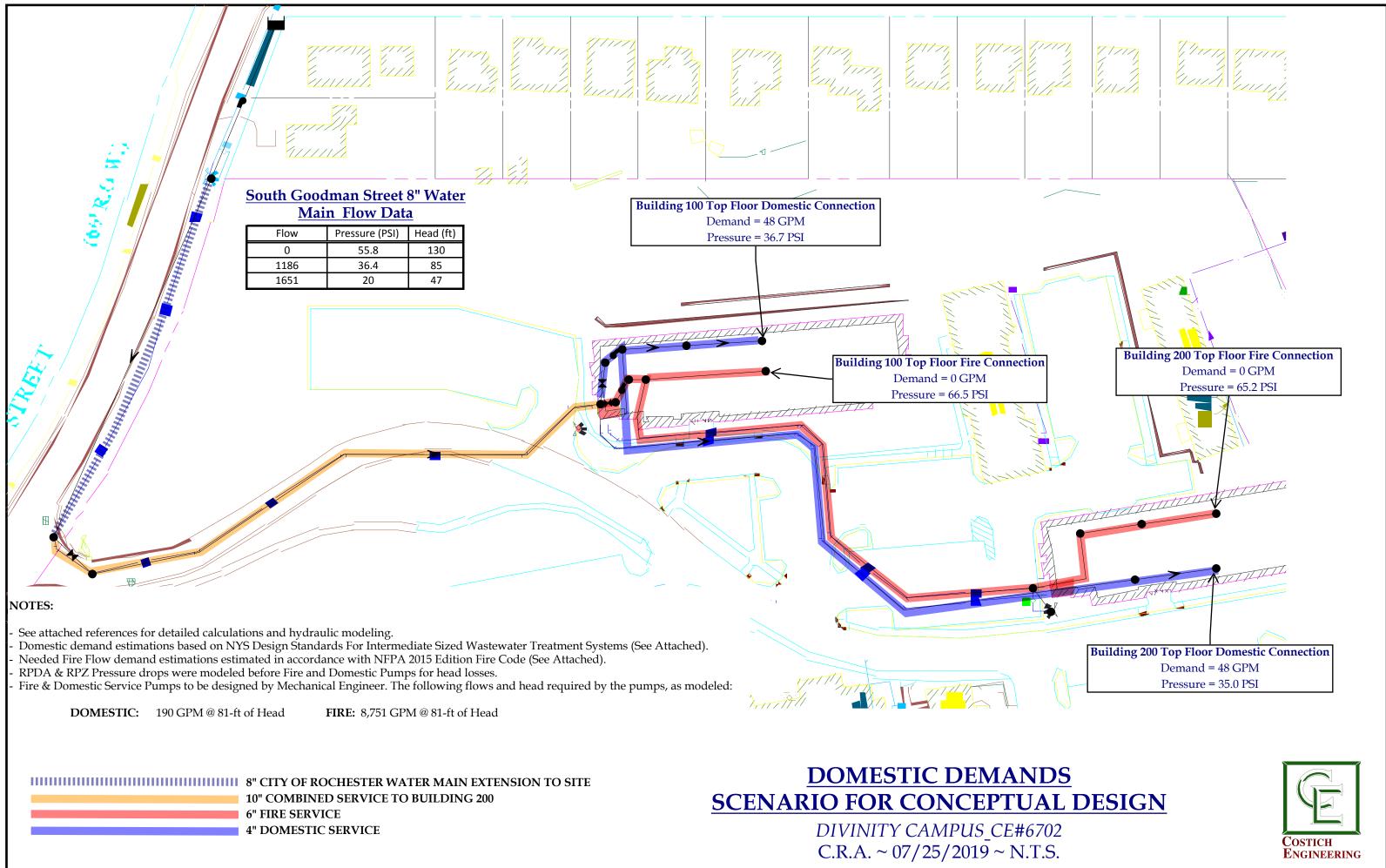
Pumps are being proposed due to the head required, the unique topography of the site and in order to meet the required pressures at the buildings for domestic and fire scenarios. The pump room will closely reflect the design of the existing pump house on Highland Avenue which includes backflow devices, domestic pump, fire pump, and two individual domestic and fire protection services.

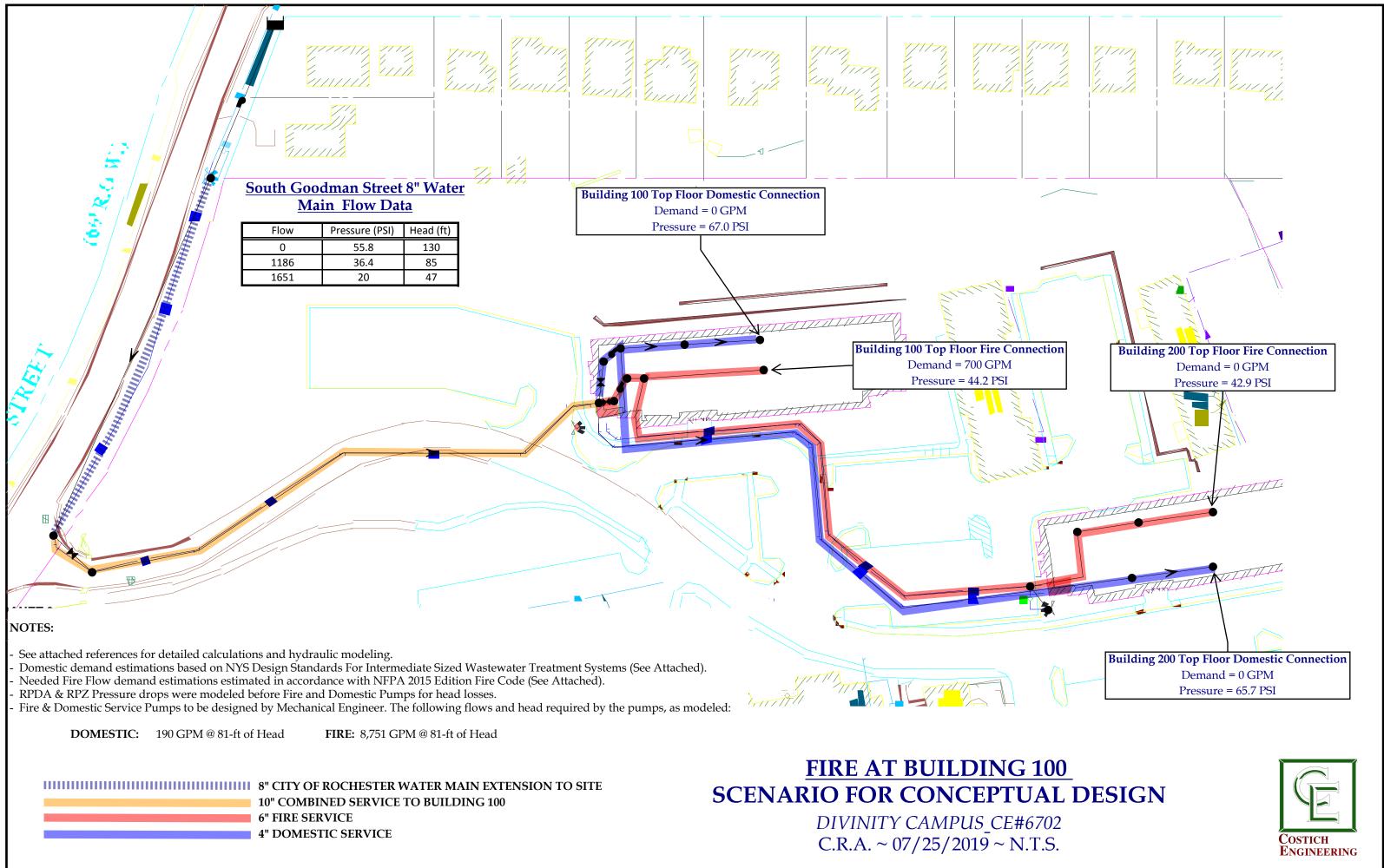
Estimated domestic and Needed Fire Flows (NFF) for the proposed development can be found in the Appendix including detailed calculations and modeling.

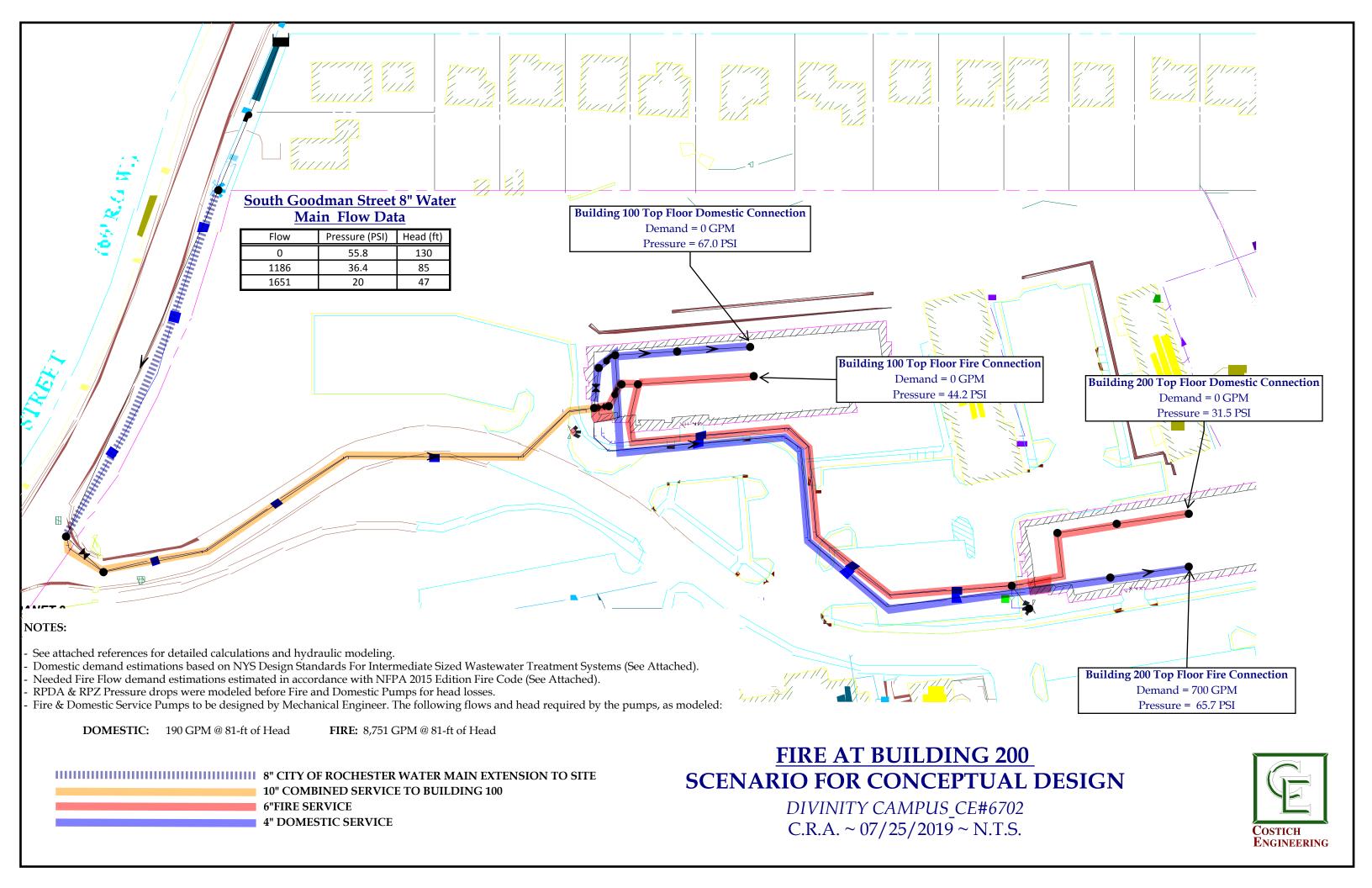
The new water distribution, including domestic and fire protection services, will be included under a Reciprocal Easement Agreement (R.E.A.).

CONCLUSION


By providing a separate water distribution system within the site, the existing building water services will continue to operate as designed without being altered and the site will be provided with an additional source of public water. The existing buildings have a different nature of use, in comparison to the proposed apartment buildings, and a separate distribution system will separate the two land uses.


APPENDIX


- CONCEPTUAL DESIGN SUMMARY EXHIBIT
 - DOMESTIC & FIRE SCENARIO EXHIBITS
 - SOUTH GOODMAN STREET FLOW DATA
- DOMESTIC DEMAND CALCULATIONS & REFERNCES


• NEEDED FIRE FLOW (NFF) CALCULATIONS & REFERNCES

- HYDRAULIC MODELING AND REPORTS
- BACKFLOW PREVENTION DEVICE CUT SHEETS

Domestic Scenario

Page 1	7/25/201	9 11:25:43 AM
* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *

Input File: Goodman Service Only - Domestic 8in.net

Link - Node Table:

Link	Start	End	Length	Diameter
ID	Node	Node	ft	in
1	5	1	265	8
15	@BLDG200-FF_DC	M@BLDG200-TF_DOM	1	4
9	@BLDG100-FF_DC	M@BLDG100-TF_DOM	1	4
20	17	HYD03	40	б
21	17	20	100	б
29	MECH_DOM-PUMP_	_DS@BLDG100-FFDOM	5	4
7	20	@BLDG200-FF_FP	5	б
10	@BLDG200-FF_FF	@BLDG200-TF_FP	1	б
13	MECH_FP-PUMP_D	S@BLDG100-FF_FP	5	б
19	@BLDG100-FF_FF	@BLDG100-TF_FP	1	б
8	@BLDG100-FF_FF	2 17	400	б
17	MECH_DOM-PUMP_	_DS@BLDG200-FFDOM	400	4
2	2	MechRoomUp	1000	12
11	3	5	#N/A	#N/A Pump
12	MECH_RPZ_DS	MECH_DOM-PUMP_DS	#N/A	#N/A Pump
14	MECH_RPDA_DS	MECH_FP-PUMP_DS	#N/A	#N/A Pump
3	1	2	#N/A	8 Valve
5	MechRoomUp	MECH_RPZ_DS	#N/A	4 Valve
б	MechRoomUp	MECH_RPDA_DS	#N/A	6 Valve

Energy Usage:

Pump	Usage Avg Factor Effic		Avg. Kw	Peak Kw	Cost /day
11 12 14	100.00 75.0 100.00 75.0 100.00 75.0	0 220.21	3.13 1.27 0.00	3.13 1.27 0.00	0.00 0.00 0.00
				d Charge: Cost:	0.00

Page 2 Node Results:

Node	Demand		Pressure	Quality
ID	GPM	ft	psi	
@BLDG100-FF_DOM	0.00	734.71	53.17	0.00
@BLDG100-TF_DOM	48.00	734.71	36.70	0.00
5	0.00	698.57	56.14	0.00
1	0.00	698.48	53.51	0.00
2	0.00	698.48	53.51	0.00
@BLDG200-FF_DOM	0.00	733.67	56.19	0.00
@BLDG200-TF_DOM	48.00	733.67	34.95	0.00
MechRoomUp	0.00	698.43	41.35	0.00
MECH_RPZ_DS	0.00	682.15	34.30	0.00
MECH_RPDA_DS	0.00	675.43	31.38	0.00
MECH_DOM-PUMP_DS	0.00	734.72	57.08	0.00
MECH_FP-PUMP_DS	0.00	803.43	86.85	0.00
17	0.00	803.43	83.81	0.00
20	0.00	803.43	86.41	0.00
HYD03	0.00	803.43	84.68	0.00
@BLDG200-FF_FP	0.00	803.43	82.08	0.00
<pre>@BLDG200-TF_FP</pre>	0.00	803.43	65.1 <mark>8</mark>	0.00
@BLDG100-FF_FP	0.00	803.43	82.95	0.00
<pre>@BLDG100-TF_FP</pre>	0.00	803.43	66.48	0.00
3	-96.00	569.00	0.00	0.00 Reservoir

Link Results:

Link ID	Flow GPM	VelocityUn: fps	it Headloss ft/Kft	Status
1	96.00	0.61	0.32	Open
15	48.00	1.23	2.62	Open
9	48.00	1.23	2.62	Open
20	0.00	0.00	0.00	Open
21	0.00	0.00	0.00	Open
29	48.00	1.23	2.62	Open
7	0.00	0.00	0.00	Open
10	0.00	0.00	0.00	Open
13	0.00	0.00	0.00	Open
19	0.00	0.00	0.00	Open
8	0.00	0.00	0.00	Open
17	48.00	1.23	2.63	Open
2	96.00	0.27	0.05	Open
11	96.00	0.00	-129.57	Open Pump
12	96.00	0.00	-52.57	Open Pump
14	0.00	0.00	-128.00	Open Pump
3	96.00	0.61	0.00	Active Valve
5	96.00	2.45	16.28	Open Valve
6	0.00	0.00	23.00	Open Valve

FIRE AT BUILDING 100

Page 1	7/25/20)19 11:26:14 AM
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *

Input File: Gooodman Service - Fire BLDG 100.net

Link - Node Table:

Link	Start	End	Length	Diameter
ID	Node	Node	ft	in
1	5	1	265	8
15	@BLDG200-FF_DC	M@BLDG200-TF_DOM	1	4
9	@BLDG100-FF_DC	M@BLDG100-TF_DOM	1	4
20	17	HYD03	40	б
21	17	20	100	б
29	MECH_DOM-PUMP_	_DS@BLDG100-FFDOM	5	4
7	20	@BLDG200-FF_FP	5	б
10	@BLDG200-FF_FF	@BLDG200-TF_FP	1	б
13	MECH_FP-PUMP_D	DS@BLDG100-FF_FP	5	6
19	@BLDG100-FF_FF	<pre>@BLDG100-TF_FP</pre>	1	6
8	@BLDG100-FF_FF	P 17	400	6
17	MECH_DOM-PUMP_	_DS@BLDG200-FFDOM	400	4
2	2	MechRoomUp	1000	12
11	3	5	#N/A	#N/A Pump
12	MECH_RPZ_DS	MECH_DOM-PUMP_DS	#N/A	#N/A Pump
14	MECH_RPDA_DS	MECH_FP-PUMP_DS	#N/A	#N/A Pump
3	1	2	#N/A	8 Valve
5	MechRoomUp	MECH_RPZ_DS	#N/A	4 Valve
б	MechRoomUp	MECH_RPDA_DS	#N/A	6 Valve

Energy Usage:

Pump	Usage Factor	Avg. Effic.	Kw-hr /Mgal	Avg. Kw	Peak Kw	Cost /day
11 12 14	100.00 100.00 100.00	75.00 75.00 75.00 75.00	473.50 439.83 391.31	19.89 0.00 16.44	19.89 0.00 16.44	0.00 0.00 0.00
				Demand Total (Charge: Cost:	0.00

Page 2 Node Results:

Node ID		Head ft	Pressure psi	Quality
@BLDG100-FF_DOM	0.00	804.50	83.41	0.00
@BLDG100-TF_DOM	0.00	804.50	66.95	0.00
5	0.00	682.04	48.98	0.00
1	0.00	678.63	44.90	0.00
2	0.00	678.63	44.90	0.00
@BLDG200-FF_DOM	0.00	804.50	86.88	0.00
<pre>@BLDG200-TF_DOM</pre>	0.00	804.50	65.65	0.00
MechRoomUp	0.00	676.50	31.85	0.00
MECH_RPZ_DS	0.00	699.50	41.82	0.00
MECH_RPDA_DS	0.00	658.84	24.19	0.00
MECH_DOM-PUMP_DS	0.00	804.50	87.31	0.00
MECH_FP-PUMP_DS	0.00	752.25	64.67	0.00
17	0.00	751.99	61.53	0.00
20	0.00	751.99	64.13	0.00
HYD03	0.00	751.99	62.39	0.00
@BLDG200-FF_FP	0.00	751.99	59.79	0.00
@BLDG200-TF_FP	0.00	751.99	42.89	0.00
<pre>@BLDG100-FF_FP</pre>	0.00	751.99	60.66	0.00
<pre>@BLDG100-TF_FP</pre>	700.00	751.94	<mark>44.17</mark>	0.00
3	-700.00	569.00	0.00	0.00 Reservoir

Link Results:

Link I ID	Flow Velocity GPM fps	Unit Headloss ft/Kft	Status
1 700	0.00 4.47	12.86	Open
15 (0.00 0.00	0.00	Open
9 (0.00 0.00	0.00	Open
20 (0.00 0.00	0.00	Open
21 (0.00 0.00	0.00	Open
29 (0.00 0.00	0.00	Open
7 (0.00 0.00	0.00	Open
10 (0.00 0.00	0.00	Open
13 700	0.00 7.94	52.20	Open
19 700	0.00 7.94	52.19	Open
8 (0.00 0.00	0.00	Open
17 (0.00 0.00	0.00	Open
2 700	0.00 1.99	2.13	Open
11 700	0.00 0.00	-113.04	Open Pump
12 (0.00 0.00	-105.00	Open Pump
14 700	0.00 0.00	-93.42	Open Pump
3 700	0.00 4.47	0.00 Ac	tive Valve
5 (0.00 0.00	23.00	Open Valve
6 700	0.00 7.94	17.67	Open Valve

FIRE AT BUILDING 200

Page 1	7/25/2019	9 11:26:31 AM
* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *

Input File: Gooodman Service - Fire BLDG 200.net

Link - Node Table:

Link	Start	End	Length	Diameter
ID	Node	Node	ft	in
1	5	1	265	8
15	@BLDG200-FF_DC	M@BLDG200-TF_DOM	1	4
9	@BLDG100-FF_DC	M@BLDG100-TF_DOM	1	4
20	17	HYD03	40	б
21	17	20	100	б
29	MECH_DOM-PUMP_	_DS@BLDG100-FFDOM	5	4
7	20	@BLDG200-FF_FP	5	б
10	@BLDG200-FF_FF	@BLDG200-TF_FP	1	б
13	MECH_FP-PUMP_D	S@BLDG100-FF_FP	5	б
19	@BLDG100-FF_FF	@BLDG100-TF_FP	1	б
8	@BLDG100-FF_FF	P 17	400	б
17	MECH_DOM-PUMP_	_DS@BLDG200-FFDOM	400	4
2	2	MechRoomUp	1000	12
11	3	5	#N/A	#N/A Pump
12	MECH_RPZ_DS	MECH_DOM-PUMP_DS	#N/A	#N/A Pump
14	MECH_RPDA_DS	MECH_FP-PUMP_DS	#N/A	#N/A Pump
3	1	2	#N/A	8 Valve
5	MechRoomUp	MECH_RPZ_DS	#N/A	4 Valve
б	MechRoomUp	MECH_RPDA_DS	#N/A	6 Valve

Energy Usage:

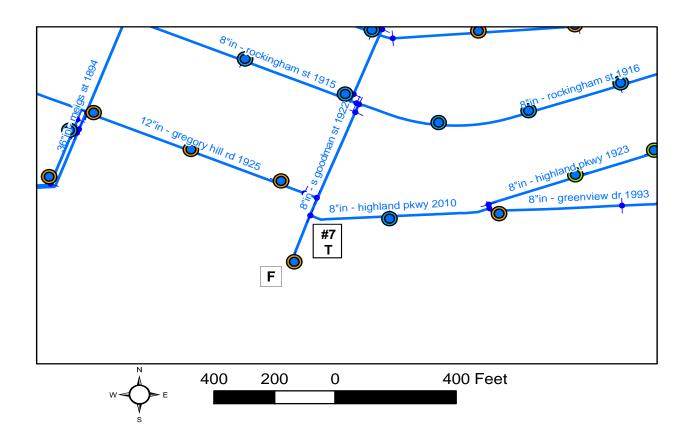
Pump	Usage Factor E	Avg. ffic.	Kw-hr /Mgal	Avg. Kw	Peak Kw	Cost /day
11 12 14	100.00	75.00 75.00 75.00 75.00	473.50 439.83 391.31	19.89 0.00 16.44	19.89 0.00 16.44	0.00 0.00 0.00
				Demand Total (Charge: Cost:	0.00

Page 2 Node Results:

Node ID			Pressure psi	Quality
@BLDG100-FF_DOM	0.00	804.50	83.41	0.00
<pre>@BLDG100-TF_DOM</pre>	0.00	804.50	66.95	0.00
5	0.00	682.04	48.98	0.00
1	0.00	678.63	44.90	0.00
2	0.00	678.63	44.90	0.00
@BLDG200-FF_DOM	0.00	804.50	86.88	0.00
@BLDG200-TF_DOM	0.00	804.50	65.65	0.00
MechRoomUp	0.00	676.50	31.85	0.00
MECH_RPZ_DS	0.00	699.50	41.82	0.00
MECH_RPDA_DS	0.00	658.84	24.19	0.00
MECH_DOM-PUMP_DS	0.00	804.50	87.31	0.00
MECH_FP-PUMP_DS	0.00	752.25	64.67	0.00
17	0.00	731.11	52.48	0.00
20	0.00	725.89	52.82	0.00
HYD03	0.00	731.11	53.34	0.00
@BLDG200-FF_FP	0.00	725.63	48.37	0.00
@BLDG200-TF_FP	700.00	725.58	31.45	0.00
@BLDG100-FF_FP	0.00	751.99	60.66	0.00
<pre>@BLDG100-TF_FP</pre>	0.00	751.99	44.19	0.00
3	-700.00	569.00	0.00	0.00 Reservoir

Link Results:

Link ID	Flow Velc GPM	-	Headloss ft/Kft	Status
1 7	700.00	4.47	12.86	Open
15	0.00	0.00	0.00	Open
9	0.00	0.00	0.00	Open
20	0.00	0.00	0.00	Open
21 7	700.00	7.94	52.20	Open
29	0.00	0.00	0.00	Open
7 7	700.00	7.94	52.20	Open
10 7	700.00	7.94	52.19	Open
13 7	700.00	7.94	52.21	Open
19	0.00	0.00	0.00	Open
8 7	700.00	7.94	52.20	Open
17	0.00	0.00	0.00	Open
2 7	700.00	1.99	2.13	Open
11 7	700.00	0.00 -2	113.04	Open Pump
12	0.00	0.00 -2	105.00	Open Pump
14 7	700.00	0.00	-93.42	Open Pump
3 7	700.00	4.47	0.00 A	ctive Valve
5	0.00	0.00	23.00	Open Valve
6 7	700.00	7.94	17.67	Open Valve



ROCHESTER WATER BUREAU

Hydrant Flow Test

19-19

le la		10 10			
Location	S Goodman St		Test Purpose	RWW Engi	neering
Observer(s)	Liang, Winne, W	/heatle	Material	CIP	
Date	5/8/2019		Time	12:15 PM	
Main Size, inches	8		System	DOM	
Installed	1922		Lined	No	
Test Data and Results:					
Static Pressure	55.8	psi	Test Flow	1,186	gpm
Residual Pressure	36.4	psi	Flow at 20 psi	1,651	gpm
Pressure Drop	19.4	psi	Nozzle Diameter	4.501	inches
Pitot Pressure	12.85	psi	Nozzle Coefficient	0.55	
Corrected for Gauge Height above o	orifice.				
Water Used During Test :	13,045	Gallons	Mt Read BPS Flow MGD	9.80	Hose Monster

HYDRAULIC LOADING & DEMAND CALCS

PROPOSED BUILDINGS:

Apartment Building 100:	Number of Floors:	4	Floors
	Number of Units:	52	Units
Apartment Building 100:	Number of Floors:	4	Floors
	Total No. of Units:	52	Units
Saunders House:	Number of Floors:	2	Floors
16,348 S.F.	Total No. of Units:	16	Units
Andrews House	Number of Floors:	2	Floors
8,500 S.F.	Total No. of Units:	12	Units

WATER DEMAND:

1.) Per NYS Design Standards For Intermediate Sized Wastewater Treatment Systems (2014): • Table B-3 Typical Per Unit Hydraulic Loading Rate

 For Apartment Building: 	110	GPD/Bedroom
---	-----	-------------

Bldg. 100 Water Demand = 52 Units $\left[\frac{110 \ GPD}{Unit}\right] \left[\frac{1 \ Day}{8 \ Hr}\right] \left[\frac{1 \ Hr}{60 \ Min}\right] x 4$ (Peak Fact	tor) =	48 GPM
Bldg. 200 Water Demand = 52 Units $\left[\frac{110 \ GPD}{Unit}\right] \left[\frac{1 \ Day}{8 \ Hr}\right] \left[\frac{1 \ Hr}{60 \ Min}\right] x 4 (Peak Fact$	<i>tor</i>) =	48 GPM
Saunders House = 16 Units $\left[\frac{110 GPD}{Unit}\right] \left[\frac{1 Day}{8 Hr}\right] \left[\frac{1 Hr}{60 Min}\right] x 4 (Peak Factor) =$	15 GPM	
Andrews House = 12 Units $\left[\frac{110 GPD}{Unit}\right] \left[\frac{1 Day}{8 Hr}\right] \left[\frac{1 Hr}{60 Min}\right] x 4 (Peak Factor) =$	11 GPM	

	JOB 6702 Divinity Campus		
	SHEET NO	OF	
	CALCULATED BY: CRA	DATE 07/09/2019	
	CHECKED BY:	DATE	
	SCALE		
WATER DEMAND & SANITARY SEWER LOAI	DING CALCS		
Number of Units Proposed:			
Apartment Building 100 & 200: 52 units/b	oldg = 104 units		
Per NYS Design Standards For Intermediate Sized Systems (2014): - Table B-3 Typical Per Unit Hydraulic Loa - For Apartment Building = 110 GPD/Bedr	iding Rate		
Building 100 & 200:			
110 GPD/Bedroom x 104 Units = 11,440	GPD		
FROM PREVIOUS SUBMISSION/SITE DESIGN Number of Units Proposed: Apartment Building 100 = 200 units Apartment Building 200 = 40 units Per NYS Design Standards For Intermediate Sized Systems (2014): Table B-3 Typical Per Unit Hydraulic Loa For Apartment Building = 110 GPD/Bedu	Wastewater Treatment Iding Rate		
Building 100:			
110 GPD/Bedroom x 200 Units = 22,000	GPD		
Building 200:			
110 GPD/Bedroom x 40 Units = 4,400 G	PD		
TOTAL WATER DEMAND = 26,400 GPD		COSTICH ENGINEERING	

NEW YORK STATE

DESIGN STANDARDS FOR

INTERMEDIATE SIZED

WASTEWATER TREATMENT SYSTEMS

MARCH 5, 2014

New York State Department of Environmental Conservation Division of Water 625 Broadway Albany, New York 12233-3505

Andrew M. Cuomo, Governor

Joe Martens, Commissioner

etc.) and exclude extraneous data. There should be a reasonable explanation for the operational variations and any extraneous data excluded.

Method 3: Water Usage Data

A minimum of one year of data collected during similar operational conditions may be required by the Reviewing Engineer. If sufficient measured water usage data is not available, Method 3 should not be used. The average of the daily (24-hour) flow over the duration of the data collection period is an acceptable method for determining the average daily flow rate. The largest daily (24-hour) measured volume during the same period expressed in volume per unit time is an acceptable method for determining the maximum day flow rate. The analysis should account for operational variations (e.g. peak seasonal, weekends, special events, delivery period, etc.) and exclude extraneous data. There should be a reasonable explanation for operational variations and any extraneous data excluded.

For each of these methods, the peak hourly flow rate (largest hourly volume expressed in volume per unit time) should also be identified. When variation in the wastewater flow rate is expected to be substantial, it is necessary to examine the significant delivery period of the wastewater and base the system design upon this information to prevent an excessive rate of flow through wastewater collection and treatment systems. Flow equalization prior to treatment units should be considered to avoid hydraulic overloading of treatment units during peak loading periods (peak hourly flow and maximum daily flow).

Table B-3 Typical Per-Unit Hydraulic Loading Rates

Residential

Type of Use	Unit	Gallons per Day
Apartment	Per Bedroom	110/130/15016
Mobile Home Park	"Single-Wide" Home	220
	"Double-Wide" Home	330
Single Family	Per Bedroom	110 / 130/ 15017
Residence		

¹⁶ 110 gpd for post 1994 plumbing code fixtures; 130 gpd for pre 1994 fixtures; and 150 gpd for pre 1980 fixtures. Homes over 1,000 gpd, community systems, or lodging establishments with high flow fixtures must account for any higher peak flow periods.

¹⁷ For individual household systems under 1,000 gpd, use design flows in the NYSDOH's *Wastewater Treatment Standards Residential Onsite Systems - Appendix 75- A*.

	JOB67	702 Divini	ty School	
	SHEET NO	1	OF	2
	CALCULATED BY:	C.R.A.	DATE	05/17/2019
	CHECKED BY:		DATE	
	SCALE		N.T.S	
Fire Flows in Accordance with ISO/NFP.	A Fire Code (2015 l	E dition)		
Apartment Building 100 & 200:				
Fire Flow Area = 15,000 SF x 4 Stories = 60,000 SF				
NFPA 2015 Edition Fire Code Table 18.4.5.2.1: Minimum Fir	e Flow for Area of	60,000 SF	= 2,750 GPN	Л
NFPA 2015 Edition Section 18.4.5.3 Buildings Other Than O Section 18.4.5.3.3: "Required fire flow shall be redu approved automatic sprinkler System, which utiliz resulting fire flow shall not be less than 600 GPM	es a quick response			
Required Fire Flow for Apartment Building per ISC	D/NFPA = 2,750 G	PM * 0.25 =	= 688 GPM	
Will Use 700 GPM for required fire flow.				

1	
- 1	ONC
	-206

Table 18.4.5.2.1	Minimum	Required Fir	e Flow and	Flow Duration	for Buildings
------------------	---------	---------------------	------------	----------------------	---------------

	Fire Fl	ow Area ft ² (× 0.0929	for m²)			
I(443), I(332), II(222)*	H(111), III(211)*	IV(2HH), V(111)*	II(000), III(200)*	V(000)*	Fire Flow gpm† (× 3.785 for L/min)	Flow Duration (hours)
0-22,700	0-12,700	0-8200	0-5900	0-3600	1500	
22,701-30,200	12,701-17,000	8201-10,900	5901-7900	36011800	1750	
30,201-38,700	17,001-21,800	10,901-12,900	7901-9800	4801-6200	2000	
38,701-48,300	21,801-24,200	12,901-17,400	9801-12,600	6201-7700	2250	2
48,301-59,000	24,201-33,200	17,401-21,300	12,601-15,400	7701-9400	2500	
59,001-70,900	33,201-39,700	21,301-25,500	15,401-18,400	9401-11,300	2750	
70,901-83,700	39,701-47,100	25,501-30,100	18,401-21,800	11,301-13,400	3000	
83,701-97,700	47,101-54,900	30,101-35,200	21,801-25,900	13,401-15,600	3250	0
97,701-112,700	54,901-63,400	35,201-40,600	25,901-29,300	15,601-18,000	3500	3
112,701-128,700	63,401-72,400	40,601-46,400	29,301-33,500	18,001-20,600	3750	
128,701-145,900	72,401-82,100	46,401-52,500	33,501-37,900	20,601-23,300	-1000	
145,901-164,200	82,101-92,400	52,501-59,100	37,901-42,700	23,301-26,300	4250	*
164,201–183,400	92,401-103,100	59,101-66,000	42,701-47,700	26,301-29,300	-1500	
183,401-203,700	103,101-114,600	66,001-73,300	47,701-53,000	29,301-32,600	4750	
203,701-225,200	114,601-126,700	73,301-81,100	53,001-58,600	32,601-36,000	5000	
225,201-247,700	126,701-139,400	81,101-89,200	58,601-65,400	36,001-39,600	5250	
247,701-271,200	139,401-152,600	89,201-97,700	65,401-70,600	39,601-43,400	5500	
271,201-295,900	152,601-166,500	97,701-106,500	70,601-77,000	43,401-47,400	5750	
Greater than 295,900	Greater than 166,500	106,501-115,800	77,001-83,700	47,401-51,500	6000	4
		115,801-125,500	83,701-90,600	51,501-55,700	62 <mark>5</mark> 0	
		125,501-135,500	90,601-97,900	55,701-60,200	6500	
		135,501-145,800	97,901-106,800	60,201-64,800	6750	
		145,801-156,700	106,801-113,200	64,801-69,600	7000	
		156,701-167,900	113,201-121,300	69,601-74,600	7250	4
		167,901-179,400	121,301-129,600	74,601-79,800	7500	
		179,401-191,400	129,601-138,300	79,801-85,100	7750	
		Greater than 191,400	Greater than 138,300	Greater than 85,100	8000	

.

*Types of construction are based on NFPA 220. †Measured at 20 psi (139.9 kPa).

18.4.5.1.5° The reductions in 18.4.5.1.2, 18.4.5.1.3, and 18.4.5.1.4 shall not reduce the required fire flow to less than 500 gpm (1900 L/min).

18.4.5.2 One- and Two-Family Dwellings Exceeding 5000 ft² (464.5 m²).

18.4.5.2.1 Fire flow and flow duration for dwellings having a fire flow area in excess of 5000 ft² (464.5 m²) shall not be less than that specified in Table 18.4.5.2.1.

18.4.5.2.2 Required fire flow shall be reduced by 75 percent and the duration reduced to 1 hour where the one- and two-family dwelling is provided with an approved automatic sprinkler system.

18.4.5.2.3 A reduction in the required fire flow shall be permitted where a one- and two-family dwelling is separated from all lot lines in accordance with Table 18.4.5.1.4.

18.4.5.2.4 Required fire flow for one- and two-family dwellings protected by an approved automatic sprinkler system shall not exceed 2000 gpm (7571 L/min) for 1 hour.

18.4.5.2.5* The reductions in 18.4.5.2.2, and 18.4.5.2.3 shall not reduce the required fire flow to less than 500 gpm (1900 L/min) for 1 hour.

18.4.5.3 Buildings Other Than One- and Two-Family Dwellings.

18.4.5.3.1 The minimum fire flow and flow duration for buildings other than one- and two-family dwellings shall be as specified in Table 18.4.5.2.1.

18.4.5.3.2 Required fire flow shall be reduced by 75 percent when the building is protected throughout by an approved automatic sprinkler system. The resulting fire flow shall not be less than 1000 gpm (3785 L/min).

18.4.5.3.3 Required fire flow shall be reduced by 75 percent when the building is protected throughout by an approved automatic sprinkler system, which utilizes quick response sprinklers throughout. The resulting fire flow shall not be less than 600 gpm (2270 L/min).

18.4.5.3.4* Required fire flow for buildings protected by an approved automatic sprinkler system shall not exceed 2000 gpm (7571 L/min) for 2 hours.

18.4.5.3.5 Required fire flow for open parking structures that are not protected throughout by an approved automatic sprinkler system shall be reduced by 75 percent where all of the following conditions are met:

(1) The structure complies with the building code.

- (2) The structure is of Type I or Type II construction.
- (3) The structure is provided with a Class I standpipe system in accordance with NFPA 14. Class I standpipe systems of the manual dry type shall be permitted.
- (4) The resulting fire flow is not less than 1000 gpm (3785 L/min).

18.4.5.4* Required Fire Flow and Automatic Sprinkler System Demand. For a building with an approved fire sprinkler system, the fire flow demand and the fire sprinkler system demand shall not be required to be added together. The water supply shall be capable of delivering the larger of the individual demands.

18.5 Fire Hydrants.

18.5.1 Fire Hydrant Locations and Distribution. Fire hydrants shall be provided in accordance with Section 18.5 for all new

buildings, or buildings relocated into the jurisdiction unless otherwise permitted by 18.5.1.1 or 18.5.1.2.

18.5.1.1 Fire hydrants shall not be required where the water distribution system is not capable of providing a fire flow of greater than 500 gpm (1893 L/min) at a residual pressure of 20 psi (139.9 kPa).

18.5.1.2* Fire hydrants shall not be required where modification or extension of the water distribution system is deemed to be impractical by the AHJ.

18.5.1.3 The provisions of 18.5.1.1 and 18.5.1.2 shall not eliminate the fire flow requirements of Section 18.4.

18.5.1.4* The distances specified in Section 18.5 shall be measured along fire department access roads in accordance with 18.2.3.

18.5.1.5 Where fire department access roads are provided with median dividers incapable of being crossed by fire apparatus, or where fire department access roads have traffic counts of more than 30,000 vehicles per day, hydrants shall be placed on both sides of the fire department access road on an alternating basis, and the distances specified by Section 18.5 shall be measured independently of the hydrants on the opposite side of the fire department access road.

18.5.1.6 Fire hydrants shall be located not more than 12 ft (3.7 m) from the fire department access road.

18.5.2 Detached One- and Two-Family Dwellings. Fire hydrants shall be provided for detached one- and two-family dwellings in accordance with both of the following:

- The maximum distance to a fire hydrant from the closest point on the building shall not exceed 600 ft (122 m).
- (2) The maximum distance between fire hydrants shall not exceed 800 ft (244 m).

18.5.3 Buildings Other than Detached One- and Two-Family Dwellings. Fire hydrants shall be provided for buildings other than detached one- and two-family dwellings in accordance with both of the following:

- (1) The maximum distance to a fire hydrant from the closest point on the building shall not exceed 400 ft (76 m).
- (2) The maximum distance between fire hydrants shall not exceed 500 ft (152 m).

18.5.4 Minimum Number of Fire Hydrants for Fire Flow.

18.5.4.1 The minimum number of fire bydrants needed to deliver the required fire flow for new buildings in accordance with Section 18.4 shall be determined in accordance with Section 18.5.4.

18.5.4.2 The aggregate fire flow capacity of all fire hydrants within 1000 ft (305 m) of the building, measured in accordance with 18.5.1.4 and 18.5.1.5, shall be not less than the required fire flow determined in accordance with Section 18.4.

18.5.4.3* The maximum fire flow capacity for which a fire hydrant shall be credited shall be as specified by Table 18.5.4.3. Capacities exceeding the values specified in Table 18.5.4.3 shall be permitted when local fire department operations have the ability to accommodate such values as determined by the fire department.

18.5.4.4 Fire hydrants required by 18.5.2 and 18.5.3 shall be included in the minimum number of fire hydrants for fire flow required by 18.5.4.

Construction Types - Definitions

TYPE I-A--Fire Resistive Non-combustible (Commonly found in high-rise buildings and Group I occupancies).

3 Hr. Exterior Walls*

3 Hr. Structural Frame

2 Hr. Floor/Ceiling Assembly

1 1/2 Hr. Roof Protection

TYPE I-B--Fire Resistive Non-Combustible (Commonly found in mid-rise office & Group R buildings).

2 Hr. Exterior Walls*

2 Hr. Structural Frame

2 Hr. Ceiling/Floor Separation

1 Hr. Ceiling/Roof Assembly

TYPE II-A--Protected Non-Combustible (Commonly found in newer school buildings).

1 Hr. Exterior Walls

1 Hr. Structural Frame

1 Hr. Floor/Ceiling/Roof Protection

TYPE II-B--Unprotected Non-Combustible (Most common type of non-combustible construction used in commercial buildings).

Building constructed of non-combustible materials but these materials have no fire resistance.

TYPE III-A--Protected Combustible (Also known as "ordinary" construction with brick or block walls and a wooden roof or floor assembly which is 1 hour fire protected).

2 Hr. Exterior Walls*

1 Hr. Structural Frame

1 Hr. Floor/Ceiling/Roof Protection

TYPE III-B---Unprotected Combustible (Also known as "ordinary" construction; has brick or block walls with a wooden roof or floor assembly which is not protected against fire. These buildings are frequently found in "warehouse" districts of older cities.)

2 Hr. Exterior Walls*

No fire resistance for structural frame, floors, ceilings, or roofs.

TYPE IV--Heavy Timber (also known as "mill" construction; to qualify all wooden members must have a minimum nominal dimension of 8 inches.)

2 Hr. Exterior Walls*

1 Hr. Structural Frame or Heavy Timber

Heavy Timber Floor/Ceiling/Roof Assemblies

TYPE V-A--Protected Wood Frame (Commonly used in the construction of newer apartment buildings; there is no exposed wood visible.)

1 Hr. Exterior Walls

1 Hr. Structural Frame

1 Hr. Floor/Ceiling/Roof

TYPE V-B--Unprotected Wood Frame (Examples of Type V-N construction are single family homes and garages. They often have exposed wood so there is no fire resistance.)

• Note exceptions in the building code for fire resistance ratings of exterior walls and opening protection.

Job Name 6702 Divinity Campus Job Location City of Rochester Engineer Costich Engineering, DPC	Contractor Approval Contractor's P.O. No
Approval	Representative

Series 957, 957N, 957Z **Reduced Pressure Zone Assemblies**

Sizes: 21/2" - 10" (65 - 250 mm)

Series 957, 957N, 957Z Reduced Pressure Zone Assemblies provide protection to the potable water system from contamination in accordance with national plumbing codes. Series 957, 957N, 957Z are normally used in health hazard applications for protection against backsiphonage or backpressure.

Series 957 is also available with SentryPlus[™] Alert technology to detect catastrophic relief valve discharge that could potentially cause flooding, and issue a multi-channel alert (call, email, text) to selected users so they can take action to avoid potentially costly flooding.

Features

- 21/2", 3" and 4" (65, 80 and 100mm) sizes available with quarter-turn ball valve shutoffs
- Replaceable check disc rubber
- Extremely compact design
- 70% Lighter than traditional designs
- 304 (Schedule 40) stainless steel housing & sleeve
- Groove fittings allow integral pipeline adjustment
- Patented torsion spring checks provide lowest pressure loss
- Unmatched ease of serviceability
- Bottom mounted cast stainless steel relief valve
- Available with grooved butterfly valve shutoffs

NOTICE

Inquire with governing authorities for local installation requirements

*The wetted surface of this product contacted by consumable water contains less than 0.25% of lead by weight.

NOTICE

The information contained herein is not intended to replace the full product installation and safety information available or the experience of a trained product installer. You are required to thoroughly read all installation instructions and product safety information before beginning the installation of this product.

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

Specifications

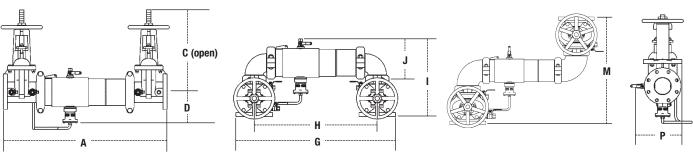
The Reduced Pressure Zone Assembly shall consist of two independent torsion spring check modules, a differential pressure relief valve located between and below the two modules, two drip tight shutoff valves, and required torsion spring check modules and relief valve shall be contained with a sleeve accessible single housing constructed from 304 (Schedule 40) stainless steel pipe with groove end connections. Torsion spring checks shall have replaceable elastomer discs and in operation produce drip tight closure against the reverse flow of liquid caused by backpressure or backsiphonage. Assembly shall be a Watts Regulator Company Series 957, 957N, 957Z.

NOTICE

When installing a drain line on Series 957 backflow preventers, use 957AG air gaps. See ES-AG/EL/TC for additional information.

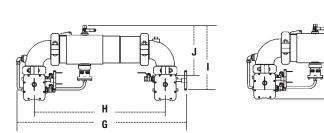
Available Models & Options

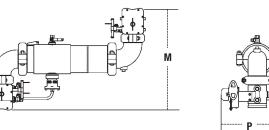
Suffix:


- NRS non-rising stem, resilient seated gate valves
- OSY UL/FM outside stem and yoke resilient seated gate valves
- BFG UL/FM grooved gear operated butterfly valves with tamper switch
- QT 21/2" 4" (65 100mm) quarter-turn ball valves
- *OSY FxG Flanged inlet gate connection and grooved outlet gate connection
- **OSY GxF Grooved inlet gate connection and flanged outlet gate connection
- ***OSY GxG –Grooved inlet gate connection and grooved outlet gate connection

****ALERT with SentryPlus[™] Alert flood detection system

*Available with grooved NRS gate valves – consult factory


Post indicator plate and operating nut available – consult factory *Consult factory for dimensions


**** Not available with the 957N or 957Z

957, 957N, 957Z

SIZ	E (DN)												DIME	ISIONS									WEIGHT				нт		
		ŀ										Р		957	NRS	957	OSY	957N	I NRS	957N	0SY								
in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	lbs.	kgs.	lbs.	kgs.	lbs.	kgs.	lbs.	kgs.
2 ¹ / ₂	65	30¾	781	16¾	416	9 3⁄/8	238	6½	165	29 ¹ / ₁₆	738	21 ½	546	15½	393	8 ¹³ ⁄16	223	211/4	540	9 ³ ⁄16	234	118	54	128	58	126	57	136	62
3	80	31¾	806	181/8	479	101/4	260	6 ¹ / ₁₆	170	301⁄4	768	22 ¹ / ₄	565	171//8	435	9 ³ ⁄16	233	23	584	101/2	267	134	61	148	67	147	67	161	73
4	100	33 ¾	857	223/4	578	12 ³ ⁄16	310	7	178	33	838	231/2	597	18½	470	9 ¹⁵ / ₁₆	252	26¼	667	11 ³ ⁄16	284	164	74	164	74	187	85	187	85
6	150	43 ½	1105	301/8	765	16	406	8 ½	216	44¾	1137	331/2	851	23 ³ ⁄16	589	13 ¹ /16	332	34¼	870	15	381	276	125	298	135	317	144	339	154
8	200	49 ¾	1264	37 ¾	959	19 ¹⁵ /16	506	9 ¹ ¹ / ₁₆	246	54 ¹ /8	1375	401/8	1019	27 ⁷ /16	697	15 ¹¹ /16	399	367/8	937	17 ³ ⁄16	437	441	200	483	219	516	234	558	253
10	250	57¾	1467	45¾	1162	23 ¹³ ⁄16	605	11 ³ ⁄16	285	66	1676	49 ½	1257	321/2	826	17 5⁄16	440	441/2	1124	20	508	723	328	783	355	893	405	950	431

957NBFG, 957ZBFG

SIZ	e (DN)						DIMEN	ISIONS						WE	IGHT
		G H				1		J		M		Р		957N/957Z	
in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	lbs.	kgs.
21/2	65	32 ¹ / ₂	826	23	584	15½	394	91/2	241	19¾	502	11 ¹³ ⁄16	300	67	30
3	80	34	864	24	610	16 5⁄16	414	10 ¹ ⁄16	256	211/4	540	121/8	308	70	32
4	100	35%	905	25 ½	648	173/16	437	10 ¹⁵ ⁄16	279	23 ½	597	125%	321	87	39
6	150	461/2	1181	35¼	895	201/2	521	13½	343	271/4	692	15	382	160	73

Noryl® is a registered trademark of SABIC Innovative Plastics Holding BV.

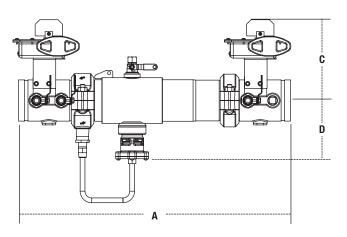
Dimensions – Weight

Materials

Housing & Sleeve: 304 (Schedule 40) Stainless Steel Elastomers: EPDM, Silicone and Buna-N Torsion Spring Checks: Noryl®, Stainless Steel Check Discs: Reversible Silicone or EPDM Test Cocks: Bronze Body Nickel Plated Pins & Fasteners: 300 Series Stainless Steel Springs: Stainless Steel

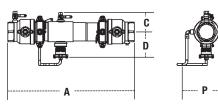
Pressure - Temperature

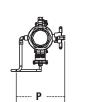
Temperature Range: 33°F – 140°F (0.5°C – 60°C) Maximum Working Pressure: 175psi (12.1 bar)

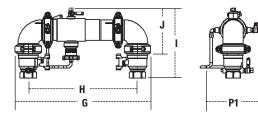

Dimensions – Weight continued

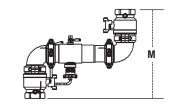
Approvals

- Approved by the Foundation for Cross-Connection Control and Hydraulic Research at The University of Southern California (FCCCHR-USC) (Excluding 'N' Pattern - 10", 'Z' Pattern - 6" and 10")
- AWWA C551-92


For additional approval information please contact the factory or visit our website at Watts.com




P

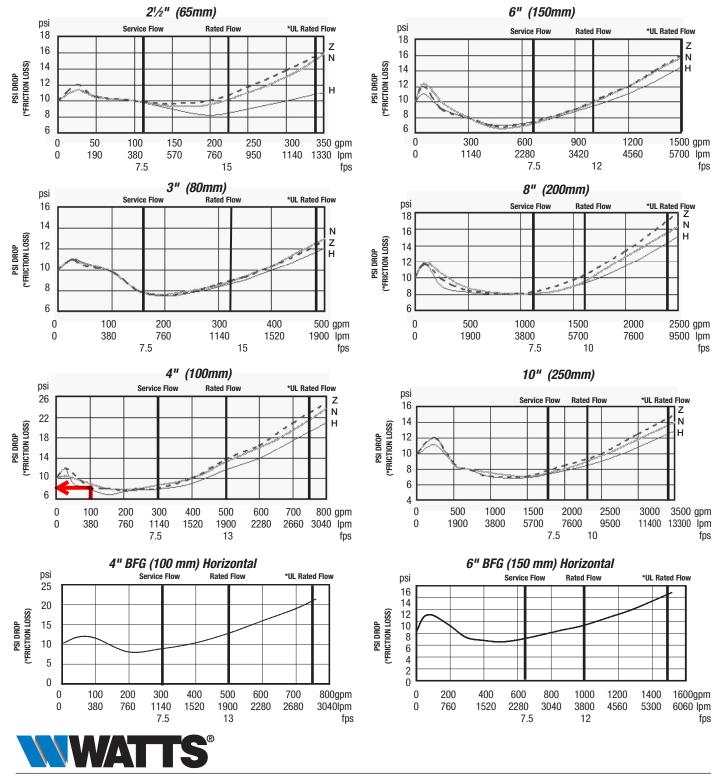

957 BFG

SIZ	E (DN)				DIMEN	SIONS				WE	IGHT
		A		C	;	D)	Р			
in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	lbs.	kgs.
4	100	29	737	7¾	197	6%	162	9 ½	241	66	30
6	150	36 ½	927	9 ¹¹ / ₁₆	246	7 ⁷ /16	189	14¼	362	122	55

957QT

SIZ	SIZE (DN) DIMENSIONS WEIGH															GHT									
		A			С		D	G	ì	ł	ł	I		J		Ν	Л	Р		P1		Q	Т		QTN
in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	in.	тт	lbs.	kgs.	lbs.	kgs.
2 1/2	65	27 ¹ / ₂	698	47/8	124	67/8	175	301/4	768	21 ½	546	16 ¹ /16	407	11¾	289	197/8	505	11 ⁵ ⁄16	287	11 ⁵ ⁄16	287	46	21	57	26
3	80	28	711	4 ⁷ /8	124	6 ⁷ /8	175	301/4	768	22 ¹ / ₄	565	16%16	420	11%	289	207/8	531	11 ⁵ ⁄16	287	11 ⁵ ⁄16	287	56	25	67	30
4	100	28 ³ /4	730	47/8	124	67/8	175	301/4	768	23 ½	597	18 ⁵ /16	465	11%	289	24 ³ /8	619	11 ⁵ ⁄16	287	11 ⁵ ⁄16	287	76	34	87	39

Capacity


Series 957, 957N, 957Z flow curves as tested by Underwriters Laboratory.

Flow characteristics collected using butterfly shutoff valves

——— Horizontal ——— N-	Pattern Z-Pattern
-----------------------	-------------------

Flow capacity chart identifies valve performance based upon rated water velocity up to 25fps

- Service Flow is typically determined by a rated velocity of 7.5fps based upon schedule 40 pipe.
- Rated Flow identifies maximum continuous duty performance determined by AWWA.
- UL Flow Rate is 150% of Rated Flow and is not recommended for continuous duty.
- AWWA Manual M22 [Appendix C] recommends that the maximum water velocity in services be not more than 10fps.

USA: Tel: (978) 689-6066 • Fax: (978) 975-8350 • Watts.com Canada: Tel: (905) 332-4090 • Fax: (905) 332-7068 • Watts.ca Latin America: Tel: (52) 81-1001-8600 • Watts.com

Job Name _	6702 Divinity Campus
	City of Rochester
	Costich Engineering, DPC
Approval	

Series 957RPDA, 957NRPDA, 957ZRPDA

Reduced Pressure Detector Assemblies

Sizes: 21/2" - 10"

Series 957RPDA, 957NRPDA, 957ZRPDA Reduced Pressure Detector Assemblies provide protection to the potable water system from contamination in accordance with national plumbing codes. The 957RPDA, 957NRPDA, 957ZRPDA are normally used in health hazard applications to protect against backsiphonage and backpressure. The Watts 957RPDA, 957NRPDA, 957ZRPDA are used to monitor unauthorized use of water from the fire protection system.

Features

- Extremely compact design
- 70% lighter than traditional designs
- 304 (Schedule 40) stainless steel housing & sleeve
- Groove fittings allow integral pipeline adjustment
- Patented torsion spring check provides lowest pressure loss
- Unmatched ease of serviceability
- Replaceable check disc rubber
- Available with grooved butterfly valve shutoffs
- Bottom mounted cast stainless steel relief valve
- Metered bypass to detect leakage or theft of water from the fire sprinkler system

Contractor
Approval
Contractor's P.O. No.
Representative

Specifications

The Reduced Pressure Detector Assembly shall consist of two independent torsion spring check modules, a differential pressure relief valve located between and below the two modules, two drip tight shutoff valves, and required torsion spring check modules and relief valve shall be contained within a sleeve accessible single housing constructed from 304 (Sch 40) stainless steel pipe with groove end connections. Torsion spring checks shall have reversible elastomer discs and in operation produce drip tight closure against reverse flow caused by backpressure or backsiphonage. The bypass line shall include a meter, small diameter reduced pressure zone assembly and isolation valves. Assembly shall be Watts Series 957RPDA, 957NRPDA, 957ZRPDA.

A WARNING

It is illegal to use this product in any plumbing system providing water for human consumption, such as drinking or dishwashing, in the United States. Before installing standard material product, consult your local water authority, building and plumbing codes.

NOTICE

The information contained herein is not intended to replace the full product installation and safety information available or the experience of a trained product installer. You are required to thoroughly read all installation instructions and product safety information before beginning the installation of this product.

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

Available Models

Suffix:

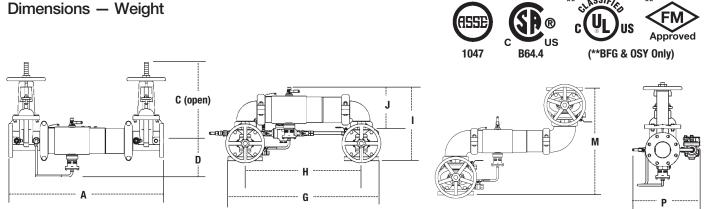
- OSY UL/FM outside stem and yoke, resilient seated gate valves
- BFG UL/FM grooved gear operated butterfly valves with tamper switch
- *OSY FxG Flanged inlet gate connection and grooved outlet gate connection
- *OSY GxF Grooved inlet gate connection and flanged outlet gate connection
- *OSY GxG –Grooved inlet gate connection and grooved outlet gate connection

Available with grooved NRS gate valves - consult factory* Post indicator plate and operating nut available - consult factory* *Consult factory for dimensions

Materials

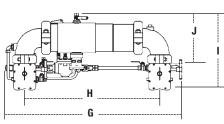
Housing & Sleeve: 304 (Schedule 40) Stainless Steel Elastomers: EPDM, Silicone and Buna 'N' Torsion Spring Checks: Noryl[®], Stainless Steel Check Discs: Reversible Silicone or EPDM Test Cocks: Bronze Body Nickel Plated Pins & Fasteners: 300 Series Stainless Steel Springs: Stainless Steel

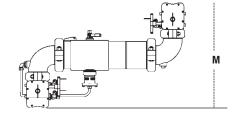
Pressure - Temperature

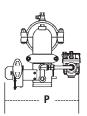

Temperature Range: 33°F – 140°F (0.5°C – 60°C) Maximum Working Pressure: 175psi (12.1 bar)

Approvals

• Approved by the Foundation for Cross-Connection Control and Hydraulic Research at The University of Southern California (FCCCHR-USC)


(Excluding 'N' Pattern - 10"'Z', Pattern - 6" and 10")


• AWWA C511-97



957RPDA, 957NRPDA, 957ZRPDA

SIZE	IZE DIMENSIONS															WEI	WEIGHT					
	/	4	C (0	OSY)	D)	G		Н		I		J		N	1	F)	957F	RPDA	957N	IRPDA
in.	in.	mm	in.	тт	in.	тт	in.	тт	in.	mm	in.	тт	in.	тт	in.	тт	in.	тт	lbs.	kgs.	lbs.	kgs.
2 ¹ / ₂	30¾	781	16%	416	6½	165	29 ¹ /16	738	21½	546	15½	393	8 ¹³ ⁄16	223	211/4	540	13 ³ ⁄16	335	142	64	150	68
3	31¾	806	181/8	479	6 ¹¹ /16	170	30¼	768	221/4	565	171/%	435	9 ³ /16	233	23	584	14½	368	162	73	175	79
4	33¾	857	22 ³ /4	578	7	178	33	838	23 ½	597	18½	470	9 ¹⁵ ⁄16	252	26 ¹ /4	667	15 ³ ⁄16	386	178	81	201	91
6	43½	1105	30 ¹ /8	765	8½	216	44¾	1137	33¼	845	23 ³ ⁄16	589	13 ¹ /16	332	321/4	819	19	483	312	142	353	160
8	49¾	1264	37 ¾	959	9 ¹¹ / ₁₆	246	54½	1375	401/8	1019	27 ⁷ /16	697	15 ¹¹ / ₁₆	399	367//8	937	21 ³ ⁄16	538	497	225	572	
10	57¾	1467	45¾	1162	23 ¹³ ⁄16	605	8 ³ ⁄16	208	66	1676	49 ¹ / ₂	1257	321/2	826	175/16	440	20	508	721	327	781	354

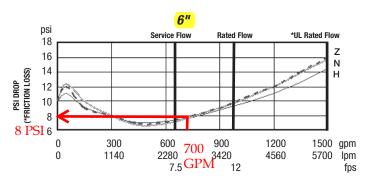
957NRPDABFG, 957ZRPDABFG

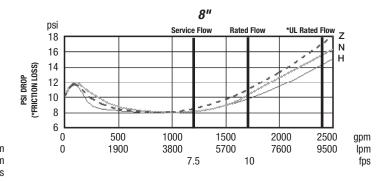
SIZE	DIMENSIONS WEIGHT													
		G		Н				J	N	Λ	F)	957RP	DABFG
in.	in.	тт	in.	тт	in.	тт	in.	тт	in.	mm	in.	тт	lbs.	kgs.
2 ½	32 ½	826	23	584	15½	394	91⁄2	241	19¾	502	15 ¹³ ⁄16	402	81	37
3	34	864	24	610	16 5⁄16	414	10 ¹ ⁄16	256	21¼	540	16½	410	84	38
4	35%	905	25 ½	648	17 ³ ⁄16	437	10 ¹⁵ ⁄16	279	23 ½	597	16%	422	101	46
6	46 ¹ / ₂	1181	35¼	895	20 ¹ / ₂	521	13½	343	271/4	692	19	483	174	79

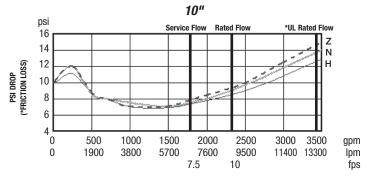
Noryl® is a registered trademark of SABIC Innovative Plastics Holding BV.

Capacity

Series 957RPDA, 957NRPDA, 957ZRPDA flow curves as tested by Underwriters Laboratory.

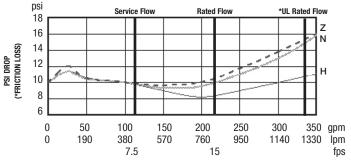

Flow characteristics collected using butterfly shutoff valves

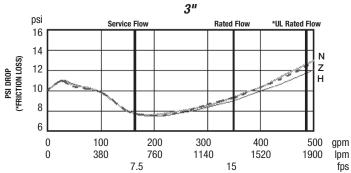

——— Horizontal ——— N-Pattern Z-Pattern

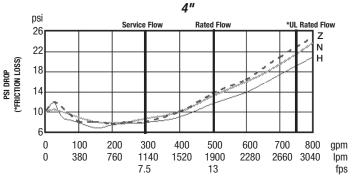

2¹/2"

Flow capacity chart identifies valve performance based upon rated water velocity up to 25fps

- Service Flow is typically determined by a rated velocity of 7.5fps based upon schedule 40 pipe.
- Rated Flow identifies maximum continuous duty performance determined by AWWA.
- UL Flow Rate is 150% of Rated Flow and is not recommended for continuous duty.
- AWWA Manual M22 [Appendix C] recommends that the maximum water velocity in services be not more than 10fps.







NOTICE

Inquire with governing authorities for local installation requirements

