Multiscale Multiphysics Model of CRUD Transport and Deposition in
Pressurized Water Reactors: Formulation and Preliminary Results Examining
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Fouling caused by Corrosion products (CRUD) in
PWR affect the operational performance of the
Reactor (CRUD-induced power shifts, CRUD-
induced localized corrosion, etc.,)

Goal: To develop a model in COMSOL™ that
simulates the deposition of suspended particles
inside a pipe representing a reactor environment
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 Bulk transport of particles due to turbulence
and convective transport in the coolant

* Fluid flow solved with k-w turbulence model
taken for the Stokes’ drag force calculations
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Multiscale Multiphysics Model Formulation
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Critical velocity: minimum (radial) velocity for a

particle to overcome barrier to deposit on the wall Critical ~ velocity as a * Deposition rate
TV ——— function of Stern potential  Deposition velocity
Density 660 kg/m?
Temperature 598.15 K . .
Inlet velocity (average) 13.5m/s Sequentlal multiscale model
Outlet pressure 15.5 MPa * Couples the thermodynamic details to the
Length and radius of pipe geometry 10 m, 0.3685 m kinetic data

Nickel ferrite particles * Enables study of the influence of

Particle diameter 1um Stern potential on deposition probability

Preliminary Results: Sensitivity Analysis

* Simulations were performed to understand the effect of the Stern potential on deposition

* Fine-scale simulations show a linear trend between critical velocity and the Stern potential, in
agreement with the values estimated through DLVO alone (by extrapolating the potential barrier from
DLVO to be kinetic energy required to deposit)

* Macroscale simulations provide the velocity
distribution of deposited particles

Deposition velocity distribution: 1000 nm particles
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* Formulated a Multiscale Model for the deposition
of CRUD In primary coolant circuit.

» Quantitative and qualitative verification for fine-
scale model: obtained values and trends match with
DLVO theory predictions

* Preliminary Investigations confirmed deposition
IS highly sensitive to Stern potential of particle,
which Is pH-dependent

* |nvestigate the effect of particle size on the
deposition (drag forces, surface charge)
* Incorporate possible re-entrainment of particles
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