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Motivation

Fouling caused by Corrosion products (CRUD) in 
PWR affect the operational performance of the 
Reactor (CRUD-induced power shifts, CRUD-
induced localized corrosion, etc.,)
Goal: To develop a model in COMSOLTM that 
simulates the deposition of suspended particles 
inside a pipe representing a reactor environment

Transport and Deposition of CRUD

Thermodynamics
Will particles deposit on 
the wall?
• Colloidal forces

• Dipole interactions: 
van der Waal’s
(VDW) force

• Electric double-layer 
(EDL) interactions

• Highly sensitive to 
surface properties such 
as Stern potential

Multiscale Multiphysics Model Formulation
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Time scales of events
•Kolmogorov length and time scales for 
turbulence
•Range of EDL forces
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Future Work
• Investigate the effect of particle size on the 

deposition (drag forces, surface charge)
• Incorporate possible re-entrainment of particles 

from the walls
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Kinetics
At what rate do particles approach the wall?
• Bulk transport of particles due to turbulence 

and convective transport in the coolant
• Fluid flow solved with k-ω turbulence model 

taken for the Stokes’ drag force calculations
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Critical velocity: minimum (radial) velocity for a 
particle to overcome barrier to deposit on the wall

COMSOL 
Modules

• Computational Fluid Dynamics
• Particle Tracing Module

• Deposition rate
• Deposition velocity

• Critical velocity as a 
function of Stern potential

Sequential multiscale model
• Couples the thermodynamic details to the 

kinetic data
• Enables study of the influence of 

Stern potential on deposition probability

188 particles deposited 
out of 121000

The coolant pH which would determine the Stern potential and affect the deposition significantly.

• Simulations were performed to understand the effect of the Stern potential on deposition
• Fine-scale simulations show a linear trend between critical velocity and the Stern potential, in 

agreement with the values estimated through DLVO alone (by extrapolating the potential barrier from 
DLVO to be kinetic energy required to deposit)

Coupled results shows that deposition 
is sensitive to the Stern potential

• Macroscale simulations provide the velocity 
distribution of deposited particles

• Formulated a Multiscale Model for the deposition 

of CRUD in primary coolant circuit.

• Quantitative and qualitative verification for fine-

scale model: obtained values and trends match with 

DLVO theory predictions

• Preliminary investigations confirmed deposition 

is highly sensitive to Stern potential of particle, 

which is pH-dependent
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Coolant (Water) Parameters

Density 660 kg/m3

Viscosity 1.01 x10-4 Pa.s

Temperature 598.15 K

Inlet velocity (average) 13.5 m/s

Outlet pressure 15.5 MPa

Length and radius of pipe geometry 10 m, 0.3685 m

Nickel ferrite particles

Particle diameter 1 μm

• Include magnetic 
forces in model

𝜼 ≡  (
𝝑𝟑

𝜺
)𝟏/𝟒

𝝉𝜼 ≡  (
𝝑

𝜺
)𝟏/𝟐

𝜗 Viscosity

𝜀 Dissipation rate

V
t: 

To
ta

l i
n

te
ra

ct
io

n
 p

o
te

n
ti

al

Ho : Separation distance

Vmax
*: Effective Energy barrier

Vmax : Energy Barrier
Vsec : Secondary minimum

L ≡ 1/k(inverse Debye length) ~ 5-10 nm
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