Rosebud Power Plant CCR Landfill Closure Plan

Prepared for Colstrip Energy Limited Partnership by Allied Engineering Services, Inc.

October 17, 2016

Contents

INTRODUCTION	1
REGULATORY SETTING	1
BACKGROUND	2
ESTIMATED VOLUMES AND AREAS	2
SCHEDULE	3
FINAL COVER SYSTEM	4
FINAL CLOSURE	5
REGULATORY ACKNOWLEDGEMENT AND CLARIFICATION	6
CERTIFICATION	13
REFERENCES	14

Appendices

- Appendix A: Plan Set Rosebud Power Plant, Fly Ash Landfill Post Closure Design Dated September 15, 2016
- Appendix B: Soil Hydraulic Conductivity Testing Results

INTRODUCTION

This report outlines the plan for closure of the CCR landfill at the Rosebud Power Plant *in Rosebud County, Montana* owned by Colstrip Energy Limited Partnership (CELP) in order to fulfill the requirements of the CCR rule as published in the Federal Register on April 17, 2015 and July 2, 2015 and its effective date of October 17, 2015. The applicable rule section is 40 CFR Parts 257 and 261. This report fulfills the requirements of 40 CFR § 257.102(b). The landfill addressed in this report holds hydrated coal ash, which is solid and practically impermeable to water, similar to concrete.

The project site is located approximately seven miles north of the town of Colstrip, Montana in the southwest quarter of Section 29 and the northwest quarter of Section 32, Township 3 North, Range 41 East (Latitude 45.978859°, Longitude -106.663772° (WGS 84)). A vicinity map is included on Sheet CO-1 of the plan set included in Appendix A. The landfill serves an on-site Power Plant owned by Colstrip Energy Limited Partnership. The Power Plant and the landfill are operated by Rosebud Operating Services, Inc. The power plant's landfill has been permitted under Montana law at all times since commercial operations commenced in 1990.

The landfill area covered by this report is an active landfill located on the subject property. There is also a closed landfill, last used in October, 2005, that has since been reclaimed in general accordance with applicable permits and regulations in effect at closure in accordance with 40CFR § 257.50(d). This closed landfill is not subject to regulation by the above referenced rules and is not the subject of this report. The active landfill includes Phase I and Phase II of a contiguous landfill permitted in 1997 and placed in service in October, 2005. This active landfill is subject to regulation by the above referenced CCR rules.

The information contained herein is based on an investigation and analysis of the property's topographical and subsurface conditions, a review of existing permits, regulatory requirements, maps and literature for the project area as related to the landfilling operations of combusted coal residuals (CCR), more familiarly referred to as bottom ash and fly ash. The purpose of this report is to provide a design plan that will fulfill the closure requirements of the CCR rule, and provide recommendations and design and permitting assistance for closure of the active CCR landfill.

The CCR unit is a landfill that will remain in place once the power plant ceases operations and the remaining CCR is landfilled and hydrated per plant operating procedures. Currently the plant is planned to operate until July 1, 2024 and the CCR landfill area is more than adequate for those operations. The landfill design and operation includes the run-on and run-off provisions as part of the CCR rule (CFR § 257.81). Operating procedures also include construction and reclamation of the final cover system as the CCR is placed and advances upwards in elevation. Reclamation of side-slopes as landfilling progresses provides erosion control measures that will minimize sediment transport as well as ensure that reclamation/closure techniques are tested and perfected prior to final closure.

Final closure will essentially include the construction of the final cap cover and upper side-slopes that have not been reclaimed, construction of perimeter drainage-ways in accordance with the run-on/run-off provisions of the rule, and plugging and abandonment of the piping that runs underneath the landfill.

REGULATORY SETTING

CCR Landfill Closure Plan	Project: 15-125
Rosebud Power Plant	October 17, 2016

As of April 17, 2015, new rules for coal combustion residuals (CCR) were published in the Federal Register Volume 80, Number 74, dated Friday April 17, 2015. The applicable sections include 40 CFR Parts 257 and 261. These rules spell out the conditions for existing operating CCR landfills such as the active landfill at the Rosebud Power Plant. The rules provide over all closure planning, location restrictions, structural stability assessment requirements, groundwater monitoring requirements, surface water protection, design and operating criteria, along with inspection requirements. Part of the requirements includes the preparation of an Annual Engineers Inspection Report. The first report was completed and posted to the CELP website in accordance with the CCR rule.

The power plant is currently operating under several permits that include protection criteria for air, surface water and groundwater quality. Permits include:

- Montana Ground Water Pollution Control System (MGWPCS) Permit No. MTX000052
- Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity. Permit No. MTR000058
- Air Quality Permit Nos. #2035-06 and OP2035-3

The applicable requirements of the current CCR rule cover active CCR landfills and exclude closed landfills.

BACKGROUND

Rosebud Power Plant is a waste coal burning facility using a fluidized bed boiler and limestone to control sulfur emissions. During the burning process of the coal and limestone, bottom and fly ash or combusted coal residuals (CCR) are produced. The CCR which contain high levels of pozzalonic compounds (calcium oxide and anhydrous calcium sulfate) are either sold for commercial/industrial purposes or landfilled on-site near the power plant. The active landfill, consisting of two phases, is located northwest of the power plant.

In 1996, Chandler Geotechnical, Inc. (a predecessor to Allied Engineering Services, Inc.) was hired as a sub-consultant to JSM, Inc. to provide engineering analysis and design of the current active landfill. Over the course of operations at the plant, fly ash was sold during some years; thus the amount of fly ash placed in the Phase 1 area was less than anticipated with the original design and has not yet reached its maximum storage capacity. These changes resulted in the need for minor modifications of the original design of the landfill area. Phase 2 modifications began in September of 2015 with simultaneous redesign and construction. Construction has been ongoing for Phase 2 of the active landfill in general conformance with the original 1996 design with modifications undertaken during construction under the direction of Allied Engineering Services, Inc.

ESTIMATED VOLUMES AND AREAS

The active landfill must store at least the expected produced volume of 636,000 CY of CCR for the rest of the anticipated operating life of the power plant. This volume assumes that no fly ash will be sold and is therefore a conservative value. The design provides an additional 214,000 CY of CCR capacity available if needed. This design volume is less than the originally designed and permitted ash quantity. The original design had a final storage volume of approximately 2,200,000 CY and the revised design will have a total storage volume of approximately 1,300,000 CY, which includes approximately 440,000 CY in Phase 1 plus 850,000 CY in Phase 2. The estimated closure year is 2024.

Closure will include providing final cover and reclaiming the landfill with stockpiled sub-soil, excavated subsoil from cut areas of the proposed perimeter drainage ways, and stockpiled topsoil. The total area requiring final cover for Phases 1 and 2 CCR areas is anticipated to be 15.7 acres. In order to meet the 18-inch minimum of sub-soil required per CCR rules, containment berms will be constructed out of sub-soil and the final cap will be constructed on the top of the final CCR surface. Combined these sub-soil coverings will need approximately 165,990 CY. Stockpiled volumes of sub-soil have been surveyed and calculated at approximately 107,150 cubic yards with an anticipated excess cut from the Drainage Ways 1 and 2 of 116,529 CY. Use of the minimum allowed CCR Rule reclamation section therefore would provide excess subsoil. In summary, the final soil cover section will vary but will always be at least 18" of subsoil plus 6" of topsoil. Some places will have considerably more soil cover to achieve the required finished slopes and the desired earthwork balance.

The total estimated volume of available topsoil stockpiled on site is approximately 11,090 cubic yards. Based on the final cover area and the topsoil requirement of 6-inches minimum, an estimated 10,060 CY is needed to cover the whole area. This close balance of topsoil will require careful attention to the separating, stockpiling and use of topsoil, which can be supplemented by additional depth of stripping over newly disturbed areas and maximum salvage amount of quality available topsoil from all earthwork activities.

SCHEDULE

The planned closure of the CCR unit is in accordance with the CCR rule. The active operating procedures take into account the post closure configuration. As the elevation of the landfilled CCR increases, the cover/final reclamation cover is established on the side-slopes. The final cap cover and perimeter drainage ways will be completed during final closure following the cessation of operations of the power plant. The existing piping system under the landfill will be plugged and abandoned upon final closure.

The major milestones associated with the final closure of the CCR landfill include:

- 1. Regulatory timeframes associated with the CCR rule as well as several other permits that include protection criteria for air, surface water and groundwater quality. Permits include:
 - The CCR rule includes statutory implementation timeframes as follows:
 - Recordkeeping, Notification, and Internet Requirements Begin 10/19/15 (40 CFR Parts §257.105-107). Required recordkeeping, required notifications, and establishment of a public website has been initiated and maintained.
 - Air Criteria Due 10/19/15 (40 CFR Part §257.80). Preparation of the fugitive dust control plan has been completed.
 - Weekly Inspections Begin By 10/19/15 (40 CFR Part §257.84). Weekly inspections will continue until final closure.
 - Annual Engineer's Inspection Reports Initial Report Due 1/19/16 (40 CFR Part §257.84). First Annual Engineers Inspection Report of the CCR Unit has been completed. Annual inspections and report will continue until final closure.
 - Run-on Run-off Controls Due 10/17/16. Prepare initial run-on and run-off control system plans. Plans must be revised every 5 years (10/17/21).
 - Closure and Post-Closure Due 10/17/16 (40 CFR Part §257.102) Prepare written closure and post-closure plans (10/17/16). Amendments can be made at any time with notification requirements.

- Groundwater Monitoring and Corrective Action Due 10/17/17 (40 CFR Part §257.102) -Install the groundwater monitoring system, develop the groundwater sampling and analysis program, initiate the detection monitoring program, and begin evaluating the groundwater monitoring data for statistically significant increase over background levels. The requirements under this section apply from the effective date through the post closure care period (7/1/54).
- Location Restrictions Due 10/17/18 (40 CFR Part §257.64) Completed. Location restrictions were addressed in the 1st Annual Engineers Inspection Report (January, 2016).
- Montana Ground Water Pollution Control System (MGWPCS) Permit No. MTX000052. This operational permit is in the renewal process (expires 9/30/16) and anticipated to be renewed in 2017 (due to DEQ backlog). Subsequent renewals are anticipated every 5 years until facility closure or corrective action (if applicable).
- Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity. Permit No. MTR000058. This permit is valid until 12/31/20 and will be renewed every four years until the final stabilization of reclamation is attained (11/1/27). The Stormwater Pollution Prevention Plan (SWPPP) is scheduled to be evaluated at least every three years. Post closure care requirements of the CCR Rule will continue following termination of this authorization.
- Air Quality Permit Nos. #2035-06 and OP2035-3. These operational permits for plant emissions includes the treatment of all unpaved portions of the haul roads, access roads, parking lots, or general plant area with water and/or chemical dust suppressant as necessary to maintain compliance with the reasonable precautions limitation (ARM 17.8.749). Termination of these permits are anticipated within one-year of plant closure. The Fugitive Dust requirements (available on the CELP website) in the CCR Rule will be followed.
- 2. Concurrent operational CCR placement, final cover establishment and reclamation This ongoing task includes the reclamation of the landfill slopes as CCR is placed in areas that will produce side-slopes, predominately in the south and west sides of the landfill in earlier stages of landfill operations and all side slopes later in the operational life.
- 3. Plant closure and final landfill grading/construction/reclamation of final cover system.
- 4. Construction of perimeter drainage ways
- 5. Abandonment of piping under the landfill.
- 6. Post closure care.

Power generation is anticipated to cease in July of 2024. Final closure operations will continue as weather allows with final reclamation and seeding by the fall of 2024.

FINAL COVER SYSTEM

The final cover system is comprised of an 18-inch minimum compacted infiltration layer that meets the hydraulic conductivity requirements of the CCR Rule, and a minimum 6-inch thick topsoil layer that is capable of supporting vegetation. The landfill side-slope cover will be constructed as the placement of fly ash progresses. The side-slope cover will also provide operational containment of storm water (run-off control) and will be constructed as berms around the perimeter of the active landfill unit. Reclamation of the side-slopes including topsoil placement and seeding will be completed as the side-

CCR Landfill Closure Plan	
Rosebud Power Plant	

slope cover progresses with the landfilling of fly ash. Reclamation will typically be completed in late fall or early spring of each year. The progressive reclamation activities will provide the opportunity to evaluate reclamation success during the operational phase of the landfill that will allow modification of techniques and design (if necessary). This process will ensure a reclamation approach that will result in a stable well vegetated cover system on the side-slopes of the landfill by the date of final closure.

Immediately following cessation of placement of fly ash (anticipated date of 7/1/2024), Construction of the landfill cap will be initiated that will include final grading resulting in a concave surface with the infiltration layer, topsoil layer and reclamation seeding as described above. The cap is designed in order to facilitate a well vegetated surface with minimum grades (approximately 1%) that will encourage evapotranspiration and limit storm water run-off. In order to accommodate high intensity storm or melt events, the cap design will slope gently to the north and will be graded to a rock armored storm water channel that will convey flow to a rock armored plunge pool and ultimately the constructed drainage ways.

FINAL CLOSURE

As outlined in the first Annual Engineers Inspection Report, there is currently a piping system that conveys storm water under the landfill. To avoid reliance on the buried pipelines and any risks that they might otherwise present during the post closure period, perimeter drainage ways will be constructed in order to convey run-on and run-off water around the landfill. The final configuration will be a trapezoidal channel with a 12 foot bottom width and 3V:1H side slopes. These channels are designed to be vegetated swales but will include subsurface rock grade-control structures that will reduce the potential for head-cutting of the drainage ways in steeper reaches. The drainage ways will be reclaimed with a 6 inch topsoil cover as described previously. Following construction of the perimeter surface drainage system, the piping system will be plugged and abandoned. Abandonment will consist of filling the pipe with low permeability fill on the upstream end and free draining sand or gravel fill on the downstream end. The use different materials are to limit water from entering the piping system and if any does it will be able to exit the piping system without building any pressure. The length of the pipe to be filled is based on the potential of subsidence of the material above the piping system, which is estimated to occur up to 10' above the top of pipe. Assuming 3H:1V side slopes for the existing pipe, ends of the pipe would need to be filled at least 30 feet from the end to limit the possibility of future subsidence.

Final closure of the active landfill may happen at any time before or after the estimated closure date (July 1, 2024). Generally, the closure plan will remain the same and will include construction of the final cover, construction of perimeter drainage ways, and abandonment of the existing piping system. An amendment of the closure plan and run-on and run-off control plans may be necessary in order to update specific design parameters of the landfill system. These updates may include, but are not necessarily limited to:

- The re-design of the perimeter drainage system that would essentially lower the elevation of the northern portion of the drainage way.
- The update of final volumes of stored CCR and distribution of the final cover system.
- The update of drainage basin configurations and calculations associated with the run-on and run-off control plan.

REGULATORY ACKNOWLEDGEMENT AND CLARIFICATION

The following include the relevant CCR Rule citations (*italics*) followed by the response (**bold**):

257.102 (b) Written closure plan—(1) Content of the plan.

The owner or operator of a CCR unit must prepare a written closure plan that describes the steps necessary to close the CCR unit at any point during the active life of the CCR unit consistent with recognized and generally accepted good engineering practices. The written closure plan must include, at a minimum, the information specified in paragraphs (b)(1)(i) through (vi) of this section.

(i) A narrative description of how the CCR unit will be closed in accordance with this section.

The CCR unit is a landfill that will remain in place once the power plant ceases operations and the remaining CCR is landfilled and hydrated per plant operating procedures. Currently the plant is planned to operate until July 1, 2024. The landfill design and operation includes the run-on and run-off provisions as part of the CCR rule. Operating procedures also include construction and reclamation of the final cover system as the CCR is placed and advances upwards in elevation. Reclamation of side-slopes as landfilling progresses provides erosion control measures that will minimize sediment transport as well as ensure that reclamation/closure techniques are tested and perfected prior to final closure. Final closure will essentially include the construction of the final cap cover (and upper side-slopes that have not been reclaimed), construction of perimeter drainage-ways (in accordance with the run-on/run-off provisions of the rule), and abandonment of the piping system that runs underneath the landfill.

(ii) If closure of the CCR unit will be accomplished through removal of CCR from the CCR unit, a description of the procedures to remove the CCR and decontaminate the CCR unit in accordance with paragraph (c) of this section. N/A

(iii) If closure of the CCR unit will be accomplished by leaving CCR in place, a description of the final cover system, designed in accordance with paragraph (d) of this section, and the methods and procedures to be used to install the final cover. The closure plan must also discuss how the final cover system will achieve the performance standards specified in paragraph (d) of this section.

As discussed earlier in this report, the side slopes are constructed as berms to contain the hydrated ash; thereby installing the cover on the side-slopes during operation. The top cover will consist of an 18-inch minimum compacted infiltration layer that meets the hydraulic conductivity requirements of the CCR Rule, and a topsoil layer that is capable of supporting vegetation.

(iv) An estimate of the maximum inventory of CCR ever on-site over the active life of the CCR unit.

Landfill	Volumes	Table
----------	---------	-------

Description	Volume
Phase 1 Landfill Ash Storage	440,000 CY
Phase 2 Landfill Ash Storage	850,000 CY
Closed Landfill Ash Storage	836,000 CY
Stockpile 1 – Top Soil	6,000 CY
Stockpile 2 – Sub Soil	82,460 CY
Stockpile 3 – Top Soil	5,090 CY
Stockpile 4 – Sub Soil	29,300CY
*Soil volumes are approximate and estimated from topographic data taken on 9/14/15, 9/29/15, 10/13/15, and 1/27/16. Sub soil stockpiles will be stripped of top 6 inches in	

order to salvage additional top soil.

(v) An estimate of the largest area of the CCR unit ever requiring a final cover as required by paragraph (d) of this section at any time during the CCR unit's active life.

The largest footprint the CCR could reach is 14.6 acres with a surface area (due to slope) of 15.7 acres.

(vi) A schedule for completing all activities necessary to satisfy the closure criteria in this section, including an estimate of the year in which all closure activities for the CCR unit will be completed. The schedule should provide sufficient information to describe the sequential steps that will be taken to close the CCR unit, including identification of major milestones such as coordinating with and obtaining necessary approvals and permits from other agencies, the dewatering and stabilization phases of CCR surface impoundment closure, or installation of the final cover system, and the estimated timeframes to complete each step or phase of CCR unit closure. When preparing the written closure plan, if the owner or operator of a CCR unit estimates that the time required to complete closure will exceed the timeframes specified in paragraph (f)(1) of this section, the written closure plan must include the site-specific information, factors and considerations that would support any time extension sought under paragraph (f)(2) of this section.

See schedule section of this report.

(2) Timeframes for preparing the initial written closure plan—

(i) Existing CCR landfills and existing CCR surface impoundments. No later than October 17, 2016, the owner or operator of the CCR unit must prepare an initial written closure plan consistent with the requirements specified in paragraph (b)(1) of this section.

(ii) New CCR landfills and new CCR surface impoundments, and any lateral expansion of a CCR unit. No later than the date of the initial receipt of CCR in the CCR unit, the owner or operator must prepare an initial written closure plan consistent with the requirements specified in paragraph (b)(1) of this section.

(ii) The owner or operator has completed the written closure plan when the plan, including the certification required by paragraph (b)(4) of this section, has been placed in the facility's operating record as required by § 257.105(i)(4).

Acknowledged.

(3) Amendment of a written closure plan.

(i) The owner or operator may amend the initial or any subsequent written closure plan developed pursuant to paragraph (b)(1) of this section at any time.

CCR Landfill Closure Plan	Project: 15-125
Rosebud Power Plant	October 17, 2016

(ii) The owner or operator must amend the written closure plan whenever:

(A) There is a change in the operation of the CCR unit that would substantially affect the written closure plan in effect; or

(B) Before or after closure activities have commenced, unanticipated events necessitate a revision of the written closure plan.

(iii) The owner or operator must amend the closure plan at least 60 days prior to a planned change in the operation of the facility or CCR unit, or no later than 60 days after an unanticipated event requires the need to revise an existing written closure plan. If a written closure plan is revised after closure activities have commenced for a CCR unit, the owner or operator must amend the current closure plan no later than 30 days following the triggering event.

(4) The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer that the initial and any amendment of requirements of this section. **Acknowledged.**

(c) Closure by removal of CCR. An owner or operator may elect to close a CCR unit by removing and decontaminating all areas affected by releases from the CCR unit. CCR removal and decontamination of the CCR unit are complete when constituent concentrations throughout the CCR unit and any areas affected by releases from the CCR unit have been removed and groundwater monitoring concentrations do not exceed the groundwater protection standard established pursuant to § 257.95(h) for constituents listed in appendix IV to this part.

N/A

(d) Closure performance standard when leaving CCR in place—(1) The owner or operator of a CCR unit must ensure that, at a minimum, the CCR unit is closed in a manner that will:

(i) Control, minimize or eliminate, to the maximum extent feasible, postclosure infiltration of liquids into the waste and releases of CCR, leachate, or contaminated run-off to the ground or surface waters or to the atmosphere;

Based on the operational logistics that include the pozzolanic properties of fly ash, the hydration of ash renders the material at this facility relatively inert. The final vegetated cap, side slopes and perimeter drainage ways are designed to minimize the possibility of release to the subsurface and vegetation establishment on the cap and side-slopes will provide storage and evapotranspiration of most precipitation events. The perimeter channels provide run-on run-off control for the 25-year, 24-hour design event and has been modeled for adequacy up to the 500-year, 24-hour event.

(ii) Preclude the probability of future impoundment of water, sediment, or slurry;

The current operation, design and post closure design does not include future impoundments. The post closure design includes abandoning piping that currently conveys flow under the landfill. Permanent perimeter drainage-ways will convey surface water flow around the landfill upon closure in order to prohibit any ponding associated with pipe failure under the landfill.

(iii) Include measures that provide for major slope stability to prevent the sloughing or movement of the final cover system during the closure and post-closure care period;

Landfill slopes are designed at 3H:1V and interrupted with a bench in order to minimize slope steepness and length. The landfill top will be subtly graded to direct flow toward the north where the perimeter drainage is higher in elevation. All areas will be seeded and protected with various erosion control methods as outlined on the design plans. Abandonment of piping under the landfill and the construction of perimeter drainage ways will mitigate the potential of ponding and subsequent slope failure possibility associated with oversaturated soils.

(iv) Minimize the need for further maintenance of the CCR unit; and

(v) Be completed in the shortest amount of time consistent with recognized and generally accepted good engineering practices.

Reclamation activities are part of the current landfill operations. There has been successful vegetation establishment on the reclaimed slopes that has limited erosional occurrences. Reclamation including vegetation establishment and hydrologic controls have been successful and will continue through operational and closure phases of the CCR unit. Vegetation establishment and hydrologic controls that take into account typical climatic conditions along with soils and geology are the primary reclamation techniques that will limit the need for post closure maintenance. Effective vegetation establishment is anticipated within one to three growing seasons.

(3) Final cover system. If a CCR unit is closed by leaving CCR in place, the owner or operator must install a final cover system that is designed to minimize infiltration and erosion, and at a minimum, meets the requirements of paragraph (d)(3)(i) of this section, or the requirements of the alternative final cover system specified in paragraph (d)(3)(ii) of this section.

The cover system has been analyzed in order to meet the criteria set forth in this section. Native soils have been tested and have the hydraulic conductivity requirements as outlined in the CCR rule. Samples were collected from a stripped area adjacent the landfill. These samples were composited as Sample B-1. Samples were also collected from the sub-soil stockpiles and composited into one sample – Sample SP-1. These samples were delivered to Pioneer Technical Services where permeability testing was conducted following ASTM Standard ASTM D5804. Results indicate that the landfill base (sample B-1) has a permeability of 2.1X10⁻⁰⁷ cm/sec. The subsoil sample (sample SP-1) has a permeability of 4.2X10⁻⁰⁸. Hydraulic conductivity results indicate that the final cover system and landfill base exceeds the criteria set forth by the CCR Rule.

(i) The final cover system must be designed and constructed to meet the criteria in paragraphs (d)(3)(i)(A) through (D) of this section. The design of the final cover system must be included in the written closure plan required by paragraph (b) of this section.

(A) The permeability of the final cover system must be less than or equal to the permeability of any bottom liner system or natural subsoils present, or a permeability no greater than 1×10^{-5} cm/sec, whichever is less.

See above

(B) The infiltration of liquids through the closed CCR unit must be minimized by the use of an infiltration layer that contains a minimum of 18 inches of earthen material.

As mentioned previously the 18-inch infiltration layer to be constructed from the on-site sub soil exceeds the permeability requirements of the CCR Rule. Due to the excess quantity of soil generated by the cutting of drainage ways around the landfill, there is sufficient quantity of these soils on site to use a minimum of 2 feet of the native sub soil on the side slopes as well as additional material on the the landfill cap. As shown above the site has sufficient material to construct a compliant infiltration layer.

(C) The erosion of the final cover system must be minimized by the use of an erosion layer that contains a minimum of six inches of earthen material that is capable of sustaining native plant growth.

As shown above calculations of stockpiled top soil and drainage way construction verify that there is sufficient quantity of material to cover the entire landfill area .

(D) The disruption of the integrity of the final cover system must be minimized through a design that accommodates settling and subsidence.

The subsidence is limited within the CCR unit by operational activities that include the hydration following placement of CCR using a water truck and using harrows to mix water and CCR. This results in a relatively solid medium that will resist any settling or subsidence (a more complete analysis of the CCR stability is available in the 1st Annual Engineers Inspection Report that is included in the operating record and available on the website <u>http://www.celpccr.com</u>). The grading and reclamation design of the landfill incorporates slopes that will support vegetation and are interrupted by a bench designed to reduce slope distance thereby reducing the erosion potential. The final configuration also includes perimeter channels that will limit the possibility of ponding that could result in oversaturation and subsequent subsidence or sloughing of the cover side slopes.

(ii) The owner or operator may select an alternative final cover system design, provided the alternative final cover system is designed and constructed to meet the criteria in paragraphs (f)(3)(ii)(A) through (D) of this section. The design of the final cover system must be included in the written closure plan required by paragraph (b) of this section.

N/A an alternative cover system is not anticipated. Final grading includes the construction of perimeter channels that will generate excess material that can be used in the event of a shortage of cover material that is currently stockpiled on site.

- (A) The design of the final cover system must include an infiltration layer that achieves an equivalent reduction in infiltration as the infiltration layer specified in paragraphs (d)(3)(i)(A) and (B) of this section.
- (B) The design of the final cover system must include an erosion layer that provides equivalent protection from wind or water erosion as the erosion layer specified in paragraph (d)(3)(i)(C) of this section.
- (C) The disruption of the integrity of the final cover system must be minimized through a design that accommodates settling and subsidence.

(iii) The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer that the design of the final cover system meets the requirements of this section. (e) Initiation of closure activities.

Except as provided for in paragraph (e)(4) of this section and § 257.103, the owner or operator of a CCR unit must commence closure of the CCR unit no later than the applicable timeframes specified in either paragraph (e)(1) or (2) of this section.

Acknowledged

(1) The owner or operator must commence closure of the CCR unit no later than 30 days after the date on which the CCR unit either:

(i) Receives the known final receipt of waste, either CCR or any non-CCR waste stream; or

(ii) Removes the known final volume of CCR from the CCR unit for the purpose of beneficial use of CCR. (2)(i) Except as provided by paragraph (e)(2)(ii) of this section, the owner or operator must commence closure of a CCR unit that has not received CCR or any non-CCR waste stream or is no longer removing CCR for the purpose of beneficial use within two years of the last receipt of waste or within two years of the last removal of CCR material for the purpose of beneficial use. **Acknowledged**

CCR Landfill Closure Plan	Project: 15-125
Rosebud Power Plant	October 17, 2016

(ii) Notwithstanding paragraph (e)(2)(i) of this section, the owner or operator of the CCR unit may secure an additional two years to initiate closure of the idle unit provided the owner or operator provides written documentation that the CCR unit will continue to accept wastes or will start removing CCR for the purpose of beneficial use. The documentation must be supported by, at a minimum, the information specified in paragraphs (e)(2)(ii)(A) and (B) of this section. The owner or operator may obtain two-year extensions provided the owner or operator continues to be able to demonstrate that there is reasonable likelihood that the CCR unit will accept wastes in the foreseeable future or will remove CCR from the unit for the purpose of beneficial use. The owner or operator must place each completed demonstration, if more than one time extension is sought, in the facility's operating record as required by§ 257.105(i)(5) prior to the end of any two-year period.

Acknowledged.

(A) Information documenting that the CCR unit has remaining storage or disposal capacity or that the CCR unit can have CCR removed for the purpose of beneficial use; and

(B) Information demonstrating that that there is a reasonable likelihood that the CCR unit will resume receiving CCR or non-CCR waste streams in the foreseeable future or that CCR can be removed for the purpose of beneficial use. The narrative must include a best estimate as to when the CCR unit will resume receiving CCR or non-CCR waste streams. The situations listed in paragraphs (e)(2)(ii)(B)(1) through (4) of this section are examples of situations that would support a determination that the CCR unit will resume receiving CCR or non-CCR waste streams in the foreseeable future.

(1) Normal plant operations include periods during which the CCR unit does not receive CCR or non-CCR waste two or more CCR units whereby at any point in time one CCR unit is receiving CCR while CCR is being removed from a second CCR unit after its dewatering.

(2) The CCR unit is dedicated to a coal-fired boiler unit that is temporarily idled (e.g., CCR is not being generated) and there is a reasonable likelihood that the coal-fired boiler will resume operations in the future.

(3) The CCR unit is dedicated to an operating coal-fired boiler (i.e., CCR is being generated); however, no CCR are being placed in the CCR unit because the CCR are being entirely diverted to beneficial uses, but there is a reasonable likelihood that the CCR unit will again be used in the foreseeable future.

(4) The CCR unit currently receives only non-CCR waste streams and those non-CCR waste streams are not generated for an extended period of time, but there is a reasonable likelihood that the CCR unit will again receive non-CCR waste streams in the future.

(iii) In order to obtain additional time extension(s) to initiate closure of a CCR unit beyond the two years provided by paragraph (e)(2)(i) of this section, the owner or operator of the CCR unit must include with the demonstration required by paragraph (e)(2)(ii) of this section the following statement signed by the owner or operator or an authorized representative:

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this demonstration and all attached documents, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

(3) For purposes of this subpart, closure of the CCR unit has commenced if the owner or operator has ceased placing waste and completes any of the following actions or activities:

(i) Taken any steps necessary to implement the written closure plan required by paragraph (b) of this section;

(ii) Submitted a completed application for any required state or agency permit or permit modification; or (iii) Taken any steps necessary to comply with any state or other agency standards that are a prerequisite, or are otherwise applicable, to initiating or completing the closure of a CCR unit. (4) The timeframes specified in paragraphs (e)(1) and (2) of this section do not apply to any of the following owners or operators:

(i) An owner or operator of an inactive CCR surface impoundment closing the CCR unit as required by § 257.100(b);

(ii) An owner or operator of an existing unlined CCR surface impoundment closing the CCR unit as required by § 257.101(a);

(iii) An owner or operator of an existing CCR surface impoundment closing the CCR unit as required by § 257.101(b);

(iv) An owner or operator of a new CCR surface impoundment closing the CCR unit as required by § 257.101(c); or

(v) An owner or operator of an existing CCR landfill closing the CCR unit as required by § 257.101(d). (f) Completion of closure activities.

(1) Except as provided for in paragraph (f)(2) of this section, the owner or operator must complete closure of the CCR unit:

(i) For existing and new CCR landfills and any lateral expansion of a CCR landfill, within six months of commencing closure activities.

Acknowledged.

(ii) For existing and new CCR surface impoundments and any lateral expansion of a CCR surface impoundment, within five years of commencing closure activities. Not applicable – No surface impoundments are planned on site

§ 257.103 Alternative closure requirements.

Not applicable - Since the final cover system meets the criteria of the CCR Rule, an alternative cover system is not necessary or required.

CERTIFICATION

This report was prepared by Allied Engineering Services, Inc., under the direction of Douglas S. Chandler, PhD, PE, with assistance from Andrew Graham, PE, and Ronald Orton, Environmental Scientist, and QC review by Brock Athman, PE.

ALLIED ENGINEERING SERVICES, INC

Douglas S. Chandler, PhD, PE

Andrew S. Graham, PE

Ron Orton

QC Approval: Brock D. Athman, PE

Λ a

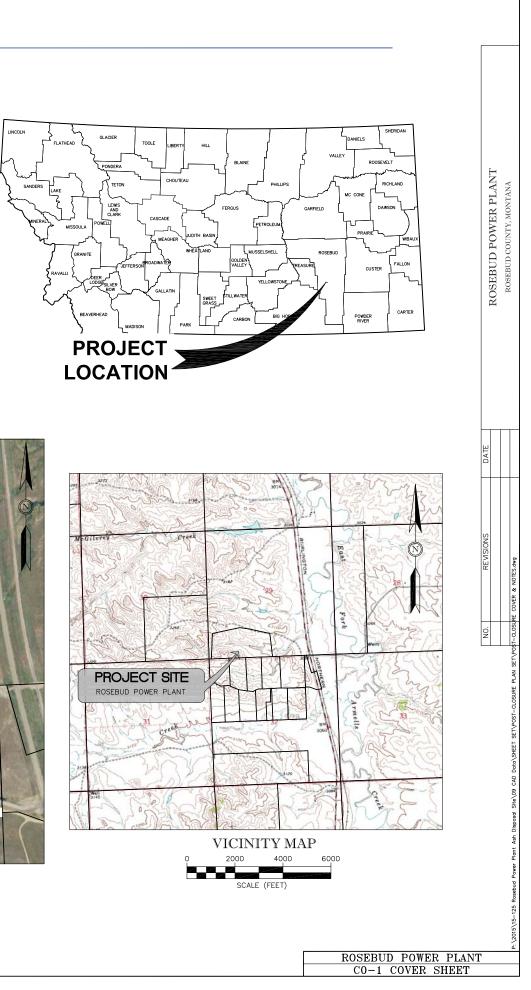
REFERENCES

- 1. Environmental Protection Agency, 2015. "Federal Register", Vol. 80, No. 74, Part 257.
- 2. Hydrologic Analysis and Design, Third Edition. McCuen, Richard. 2005
- 3. Montana Bureau of Mines and Geology, 2007. Geologic Map of the Lame Deer 30' x 60' quadrangle, eastern Montana. Vuke, S.M., Heffern, E.L., Bergantino, R.N., and Colton, R.B. Accessed via the USGS National Geologic Map Database Map View. Accessed 12/23/15 http://ngmdb.usgs.gov/maps/mapview/
- 4. Montana Bureau of Mines and Geology, Groundwater Information Center, Well log data website, http://mbmggwic.mtech.edu/sqlserver/v11/menus/menuData.asp. Accessed 1/6/15
- 5. Natural Resource Conservation Service, Web Soil Survey. http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm Accessed 12/23/15.
- 6. Rosebud Power Plant Ash Disposal Site Engineering Design and Construction Specifications by Chandler Geotechnical. Chandler, D.S. dated July 16, 1996.

P:\2015\15-125 Rosebud Power Plant Ash Disposal Site\05 Design\Closure Plan\20160926 Draft CL plan.docx

Appendix A: Plan Set - Rosebud Power Plant, Fly Ash Landfill Post Closure Design – Dated September 15, 2016 (31 sheets)

ROSEBUD POWER PLANT


FLY ASH LANDFILL POST-CLOSURE DESIGN

PROJECT LOCATION: 6.5 MILES NORTH OF COLSTRIP, MT ON HIGHWAY 39

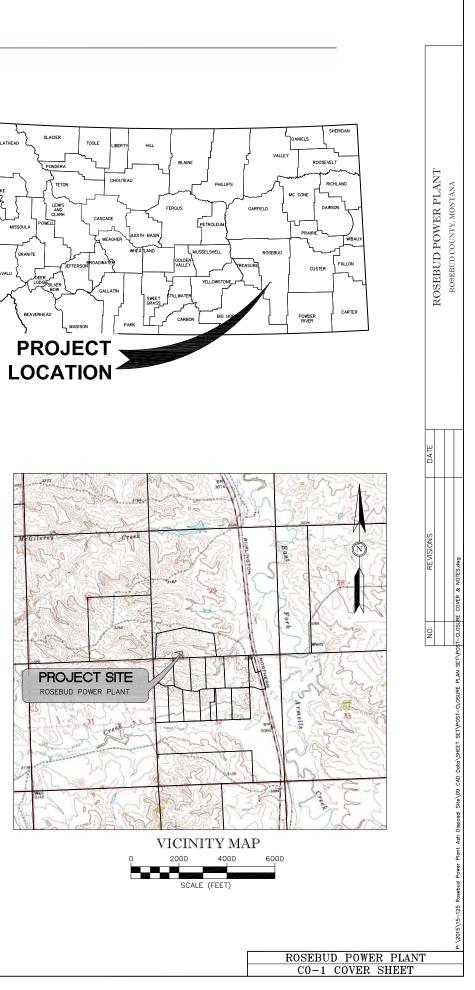
LEGAL DESCRIPTION: NW ¹/₄, SECTION 32, TOWNSHIP 3N, RANGE 41E, P.M.M., ROSEBUD COUNTY, MT

OWNER: COLSTRIP ENERGY LIMITED PARTNERSHIP (CELP) **CLIENT:** ROSEBUD OPERATING SERVICES, INC. 1087 W. RIVER STREET, SUITE 200 BOISE, ID 83702

1087 W. RIVER STREET, SUITE 200 BOISE, ID 83702

SEPTEMBER 15, 2016

SET NO.


PRINCIPAL-IN-CHARGE:	DOUG CHANDLER, PE, Ph.D
PROJECT ENGINEER:	ANDREW S. GRAHAM, PE
QC REVIEW:	BROCK D. ATHMAN, PE

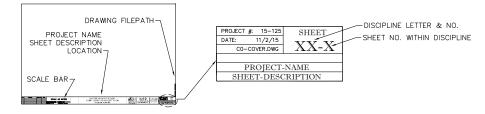
PROJECT SURVEYOR:

KYLE THOMPSON, PLS GREG FINCK, PLS

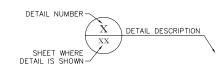
32 DISCOVERY DRIVE BOZEMAN, MT 59718 PHONE (406) 582-0221 FAX (406) 582-5770 www.alliedengineering.com

Civil Engineering Geotechnical Engineering Land Surveying

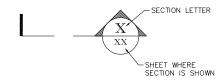
SHEET INDEX


SHEET NO.	
GENERA	L SHEETS
C0-1	COVER SHEET
C0-2	SHEET INDEX, LEGEND, & GENERAL NOTES
C0-3	EXISTING CONDITIONS (AS-BUILT)
C0-4	EXISTING CONDITIONS
DRAINA	GE SHEETS
C1-1	DESIGN PLAN - DRAINAGE WAY 1 & 2
C1-2	DESIGN PLAN - EXISTING LANDFILL
C1-3	PROFILE VIEW - EXISTING LANDFILL PROFILE 1
C1-4	PROFILE VIEW - EXISTING LANDFILL PROFILE 2
C1-5	PROFILE VIEW - EXISTING LANDFILL PROFILE 3
C1-6	PLAN & PROFILE - DRAINAGE WAY 1
C1-7	PLAN & PROFILE - DRAINAGE WAY 1
C1-8	PLAN & PROFILE - DRAINAGE WAY 2
C1-9	PLAN & PROFILE - DRAINAGE WAY 3
C1-10	PLAN & PROFILE - DRAINAGE WAY 4
C1-11	PLAN & PROFILE - DRAINAGE WAY 4
C1-12	PLAN & PROFILE - DRAINAGE WAY 5
C1-13	DESIGN PLAN - PHASE 1 & 2 DRAINAGE CAP
C1-14	DESIGN PLAN - EXISTING LANDFILL DRAINAGE CAP

HYDROLOGY	
C2-1	ACTIVE LANDFILL DRAINAGE BASINS
C2-2	POST-CLOSURE DRAINAGE BASINS
DETAILS	
C3-1	DETAILS - SWALE SECTIONS
C3-2	DETAILS - ROCK GRADE CONTROLS
C3-3	DETAILS - ALIGNMENT TABLES
C3-4	DETAILS - LANDFILL TOP
EROSION CONTROL	
C4-1	EROSION CONTROL - DRAINAGE WAY 3
C4-2	EROSION CONTROL - DRAINAGE WAY 3
C4-3	EROSION CONTROL - DRAINAGE WAY 5
C4-4	EROSION CONTROL DETAILS
C4-5	EROSION CONTROL DETAILS
SLOPE FIGURES	
S-1	PHASE 1 LANDFILL SLOPES
S-2	EXISTING CLOSED LANDFILL SLOPES


GENERAL NOTES:

- 1. THESE PLANS PRESENT FIELD AND DESIGN CHANGES TO THE ORIGINAL PLAN SET, ROSEBUD FLYASH DISPOSAL DATED MAY, 1996. THESE ORIGINAL PLANS WERE CREATED BY CHANDLER GEOTECHNICAL, INC. FOR THE DESIGN OF PHASE 1 AND PHASE 2 OF THE FLYASH LANDFILL. ASH PLACEMENT IN PHASE 1 BEGAN IN 2005 AND CONSTRUCTION OF PHASE 2 BEGAN IN AUGUST, 2015. THESE PLANS ARE A CONTINUATION TO THE ROSEBUD POWER PLANT, FLY ASH LANDFILL DESIGN MODIFICATIONS DATED JANUARY 7, 2016.
- THIS PROJECT SHALL BE CONSTRUCTED IN ACCORDANCE WITH ALLIED ENGINEERING'S PLAN SET; ALONG WITH THE MONTANA PUBLIC WORKS STANDARD SPECIFICATIONS (MPWSS), SIXTH EDITION.
- 3. ALL DUroMaxx PIPE IS TO BE INSTALLED PER ALLIED ENGINEERING'S PLANS AND SPECIFICATIONS; ALONG WITH CONTECH'S DuroMaxx STEEL REINFORCED PE TECHNOLOGY INSTALLATION GUIDE.


AESI STANDARD BORDER FORMAT

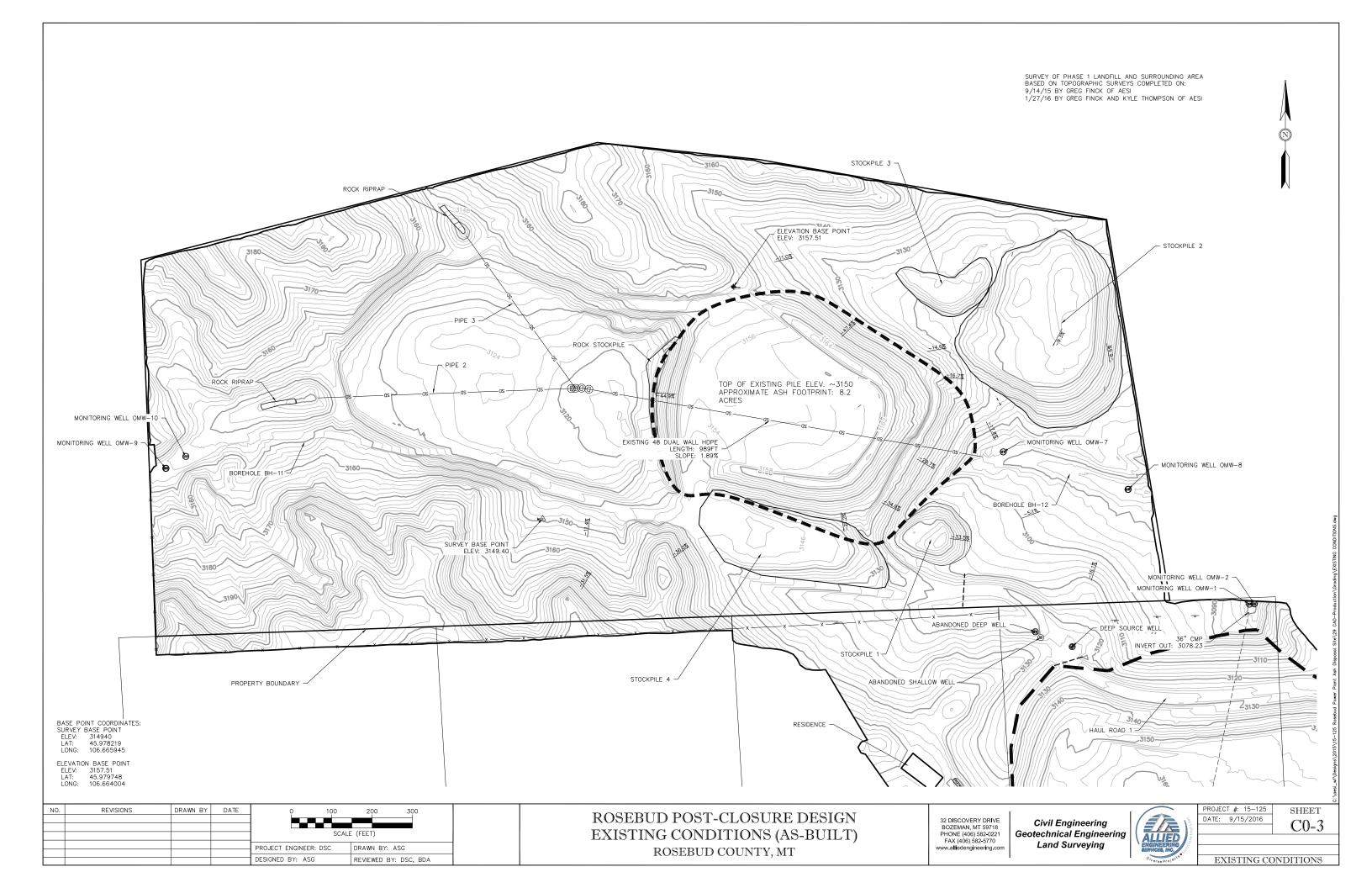
PLAN SHEET DETAIL CALLOUTS

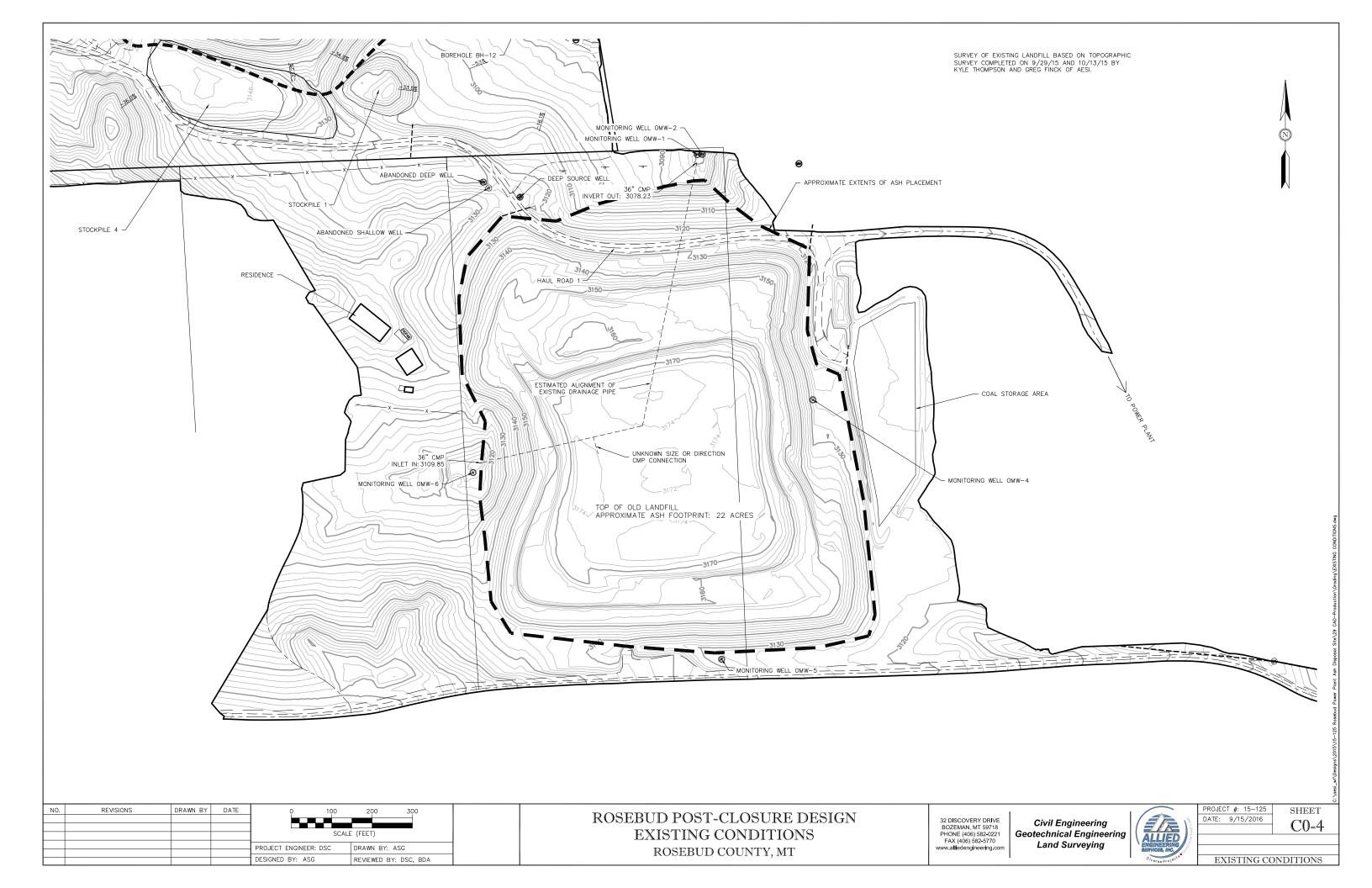
PLAN SHEET SECTION CALLOUTS

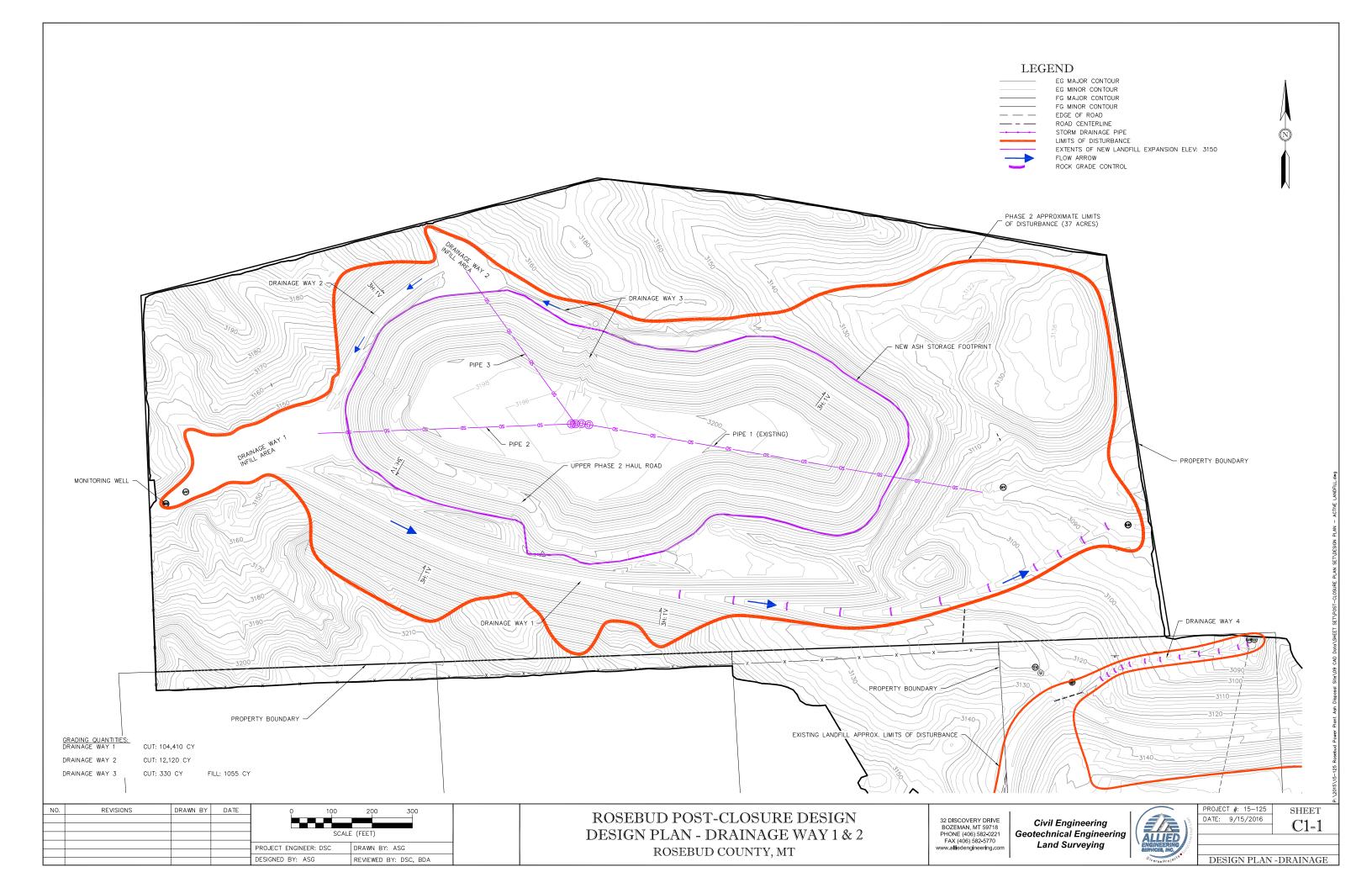
4770	MAJOR CONTOUR - FG
	MINOR CONTOUR - FG
	MAJOR CONTOUR - EG
	MINOR CONTOUR - EG
٠	FOUND MONUMENT AS NOTED
0	SET MONUMENT
\triangle	CONTROL POINT
x x	FENCE - EXISTING
OHP	OVERHEAD POWER - EXISTING
G G	UTILITY GAS - EXISTING
TEL	UTILITY PHONE - EXISTING
— E — E —	UTILITY ELECTRIC - EXISTING
G	UTILITY POWER POLE - EXISTING
\$	LIGHT POLE - EXISTING
E	ELECTRICAL PEDESTAL - EXISTING
EM	ELECTRICAL METER - EXISTING
E	TELEPHONE PEDESTAL - EXISTING
GM	GAS METER - EXISTING
\boxtimes	GAS VALVE - EXISTING
0-	GUY ANCHOR - EXISTING
	EASEMENT LINE
	BOUNDARY/ LOT LINE
	ROAD CENTERLINE
	ROAD - CURB
	CONCRETE SIDEWALK
	STREET SIGN

LEGEND

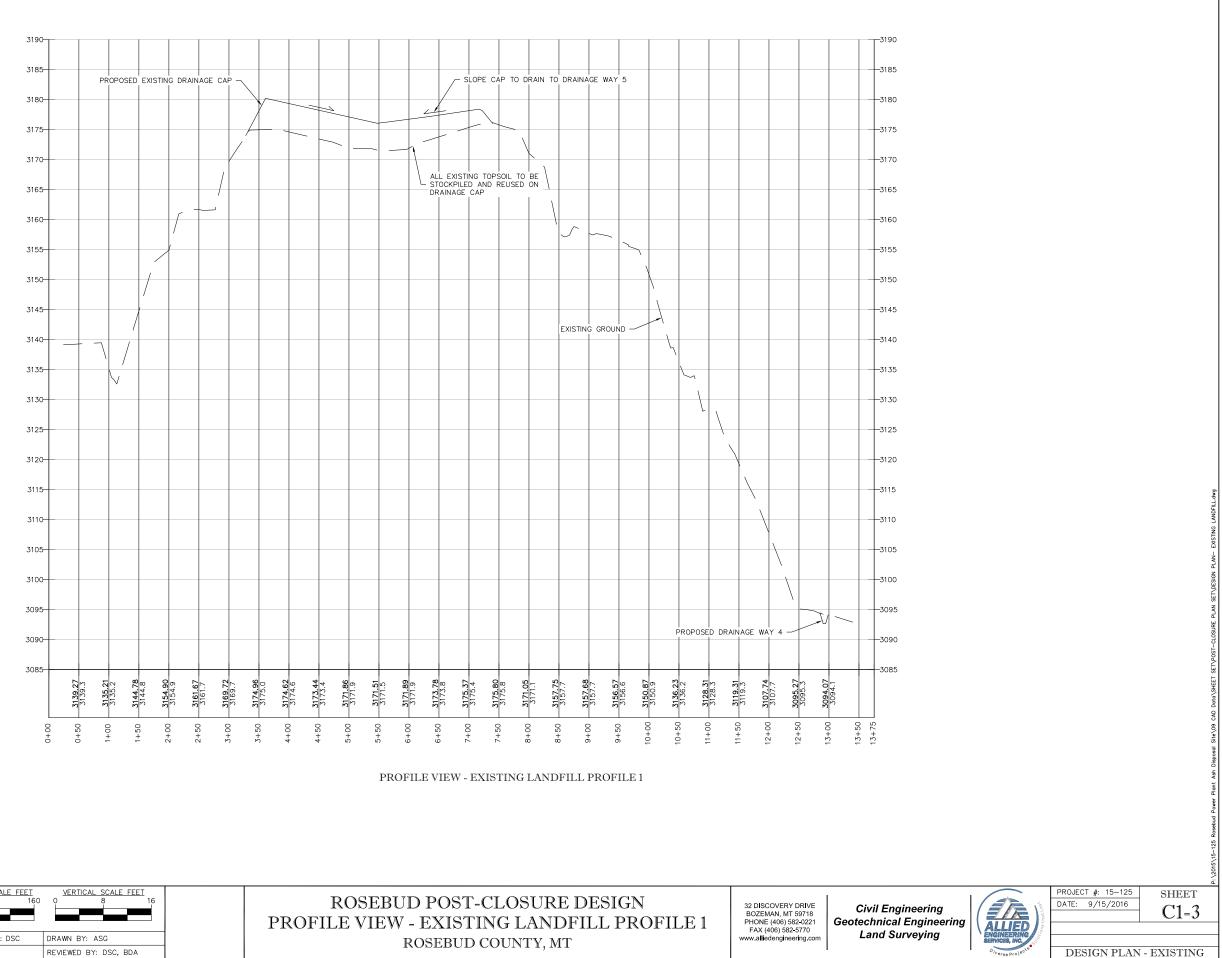
s	SEWER MAIN
S	SEWER MAIN - EXISTING
—ss—ss—ss—ss—	SEWER SERVICE
S	SANITARY SEWER MANHOLE
0	SEWER CLEANOUT
w	WATER MAIN
W	WATER MAIN - EXISTING
	WATER SERVICE
Ä	FIRE HYDRANT
0	BLOW-OFF HYDRANT
×	WATER VALVE
ø	WELL
69	MONITORING WELL
SD	STORM MAIN
=========	CULVERT - EXISTING
	DITCH-CENTERLINE - EXISTING
D	STORM MAIN JOINT, BEND, OR STRUCTURE


NO.	REVISIONS	DRAWN BY	DATE			ROSEBUD POST-CLOSURE DESIGN SHEET INDEX, LEGEND, & GENERAL NOTES	32 DISCOVERY DRIVE BOZEMAN, MT 59718 PHONE (406) 582-0221 FAX (406) 582-5770
				PROJECT ENGINEER: DSC	DRAWN BY: ASG	ROSEBUD COUNTY, MT	www.alledengineering.com
				DESIGNED BY: ASG, BDA	REVIEWED BY: DSC, BDA		I


CIVIL ABBREVIATIONS:


	L'INDIRE / INTIONS.
AESI	ALLIED ENGINEERING SERVICES, INC.
AC	ACRE
AVE	AVENUE
BLDG	BUILDING
BM	BENCHMARK
BOG	BACK OF GRATE (GUTTER)
CI	CAST IRON
CL	CENTERLINE
CMP	CORRUGATED METAL PIPE
CO	CLEAN OUT
COB	CITY OF BOZEMAN
CONC	CONCRETE
CY	CUBIC YARD
DI	DUCTILE IRON
DIA	DIAMETER
DWG	DRAWING
E	EAST
EA	EACH
EG	EXISTING GRADE
ELEV	ELEVATION
EOG	EDGE OF GRAVEL
EOP	EDGE OF PAVEMENT
EX	EXISTING
FETS	FLARED END TERMINAL SECTION
FG	FINISHED GRADE
FHYD	FIRE HYDRANT
FL	FLANGE
FL	FLOWLINE
FM	SEWER FORCE MAIN
FT	FEET
GPM	GALLONS PER MINUTE
GV	GATE VALVE
HDPE	HIGH DENSITY POLYETHYLENE
HORZ	HORIZONTAL
HP	HIGH POINT
HWY	HIGHWAY
IE	INVERT ELEVATION
IN	INCH
INV	INVERT
LF	LINEAR FEET
LP	LOW POINT
LT	LEFT
MAX MH MJ MP MPWSS MSU	MAXIMUM MANHOLE MINIMUM MECHANICAL JOINT MID POINT MONTANA PUBLIC WORKS STANDARD SPECIFICATIONS MONTANA STATE UNIVERSITY
Ν	NORTH
PC PE PI PL PSI PT PVC	POINT OF CURVATURE PLAIN END POLYETHYLENE POINT OF INTERSECTION PROPERTY LINE POUNDS PER SQUARE INCH POINT OF TANGENCY POLYVINYL CHLORIDE
R	RADIUS
RP	RADIUS POINT
RCP	REINFORCED CONCRETE PIPE
ROW	RIGHT-OF-WAY
RT	RIGHT
S SCH SECT SG SS ST STA STD SY	SOUTH SCHEDULE STORM DRAIN SECTION SUBGRADE SANITARY SEWER MAIN SANITARY SEWER SERVICE STREET STATION STANDARD SQUARE YARD
TBM	TEMPORARY BENCH MARK
TBC	TOP BACK OF CURB
TDH	TOTAL DYNAMIC HEAD
TYP	TYPICAL
UG	UNDERGROUND
VC	VITRIFIED CLAY
VERT	VERTICAL
W	WATER MAIN
W	WEST
W/	WITH
W/O	WITHOUT
WS	WATER SERVICE

PROJECT #: 15-125	SHEET							
DATE: 9/15/2016	000							
	C0-2							
INDEX, LEGEND, & NOTE								



NO.	REVISIONS	DRAWN BY	DATE	Q 10	00	200	300	
					SCALE	(FEET)		
			-		SCALE	(FEET)		
				PROJECT ENGINEER: DSC		DRAWN BY: A	ASG	
				DESIGNED BY: ASG		REVIEWED BY	: DSC, BDA	

ROSEBUD COUNTY, MT

DESIGN PLAN - EXISTING

NO.	REVISIONS	DRAWN BY	DATE	HORIZONTAL SCALE FEET 0 80 160	VERTICAL SCALE FEET 0 8 16	
				PROJECT ENGINEER: DSC	DRAWN BY: ASG	
				DESIGNED BY: ASG	REVIEWED BY: DSC, BDA	

ROSEBUD COUNTY, MT

			3170-														1							ALL EXI BE STO	ISTING TO	DPSOIL	то				
			3165-														/							REUSED	ON DRA	INAGE (
			3160-																								$\frac{1}{1}$				
			3155-	+													- EXISTI	ig grou	ND												
			3150-												-/	/												$\left \right\rangle$			
			3145-	-											-/-																
			3140-												/																
			3135-												/																
														/																	
			3130-		\square		0.	.5% SLOPE		INAGE W.	AY 4																				1
			3125-							RAINAGE	WAY 4 I	INLET FI	ILL																		
			3120-	-							\square		/	/														_			
			3115-	-						\geq	2		~								PIPE INLE	.т									
			3110-	-		EXIS	STING S	TOCKWATE	R DAM -													. 1									
			3105-				9	. 6.	80		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m.	×	80	, o		510 P	<u>م</u>	2 °	1 00 0	3 3			- 4	r	+ °				~ 4 @	
					3127.56 3127.6	3125.75 3125.8	3124.16 3124.2	3122.89 3122.9	3119.68 3119.7	3116.01 3116.0	3115.27 3115.3	3116.73 3116.7	3113.97 3114.0	3124.08 3124.1	3137.9 3137.9 3153.10	3153.2	3162.5 3174.87	3174.9 3174.25 3174.25	3174	3173.3	3172.3 3171.53	3171.5	3171.8	3172.7 3172.7 3173.94	3173.9 3174.43	<u>3</u> 174.4 3169.7	3169.7 3169.7 3153.46	3153.5 3153.5	<u>5140.80</u> 3140.8 3131.28	3131.3 3129.94 3129.9	3121.12
				0+00	1+00	1+50	2+00	2+50	3+00	3+50	4+00	4+50	5+00	5+50	- 00 - 00 - 00	6+50	00 			8+50	00+8			00+01	11+50	, C	12+00	12+50	13+50	14+00	14+50
																		PROI	ILE	VIEW	- PROI	TLE	2								
NO.	REVISIONS	DRAWN BY DATE		ZONTAL SI 80	CALE FEE	I 160 0	<u>vertic</u>	AL SCALE 8	FEET 16												.OS1								32 DISCC BOZEMA	OVERY DRIVI	=
NO.	REVISIONS	DRAWN BY DATE		ZONTAL SO 80 T ENGINEE			VERTIC	8		_			P	ROF			EW -	- EX	IST	CIN(NI)FII		GN PRO1	FIL	E 2		BOZEMA PHONE (+ FAX (40	DVERY DRIVIN, MT 59718 406) 582-022 96) 582-5770 angineering.c	8 21

3185-

3180-

3175

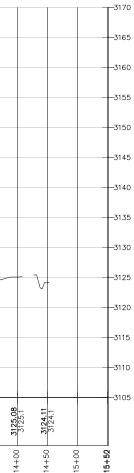
- SLOPE DRAINAGE CAP TO DRAINAGE WAY 5

4

T

PRUJECT #: 15-125	SHEET
DATE: 9/15/2016	C1 4
	CI-4
DESIGN PLAN	- EXISTING

0 FOT # 15 105

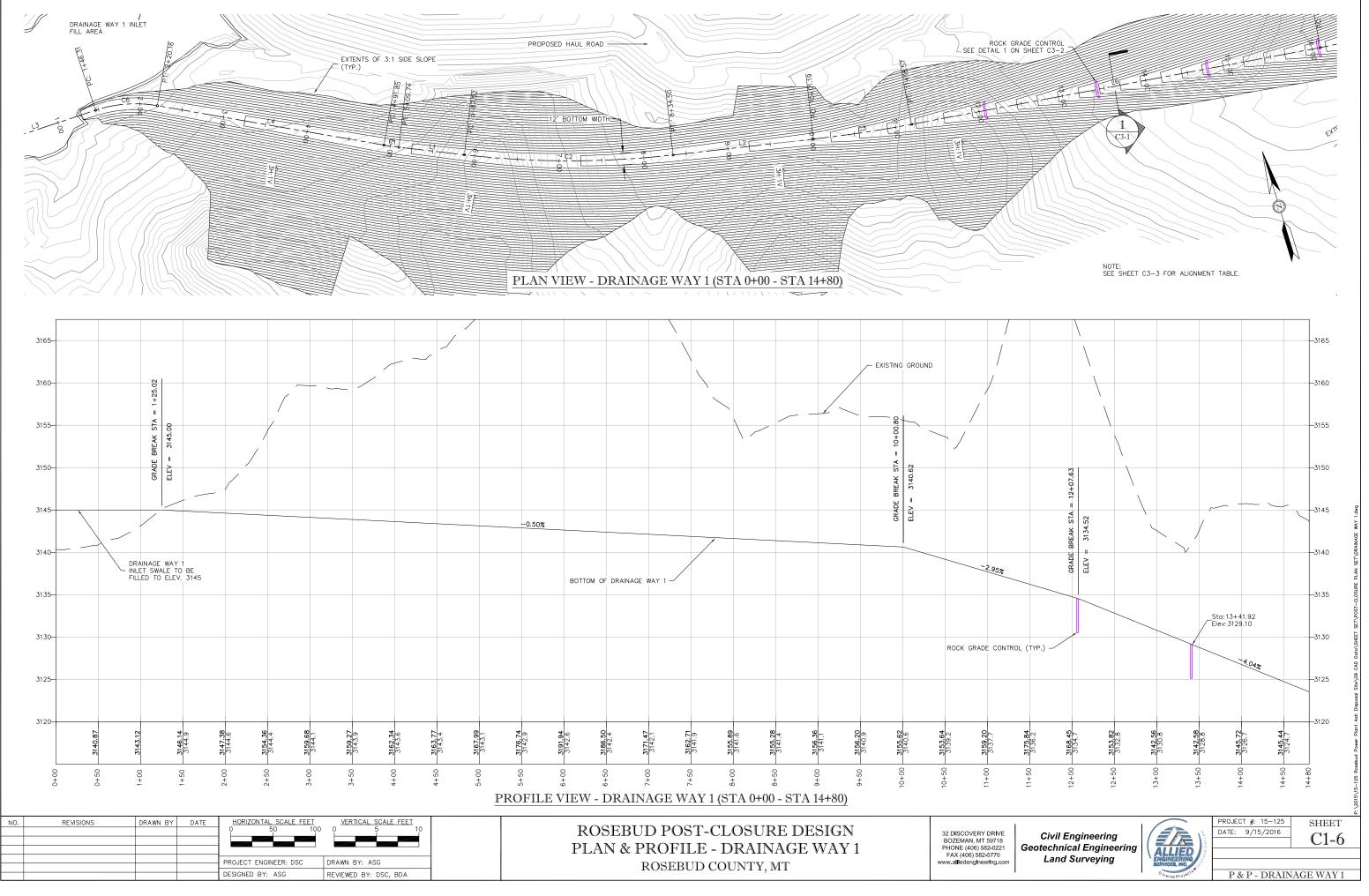


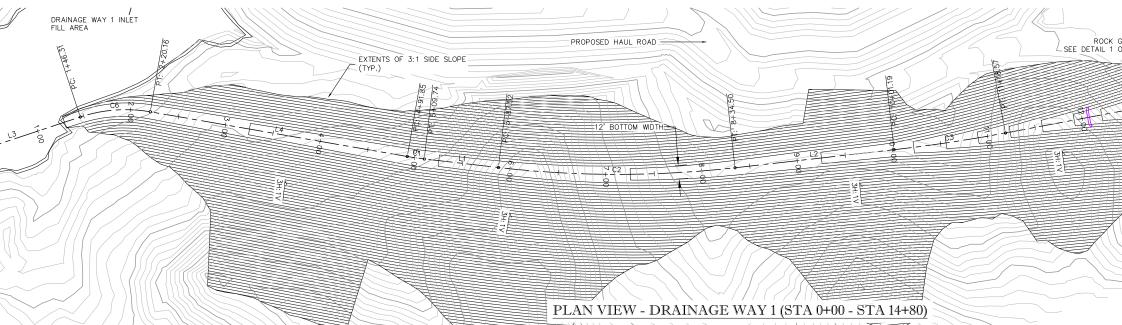
PROFILE VIEW - PROFILE 3

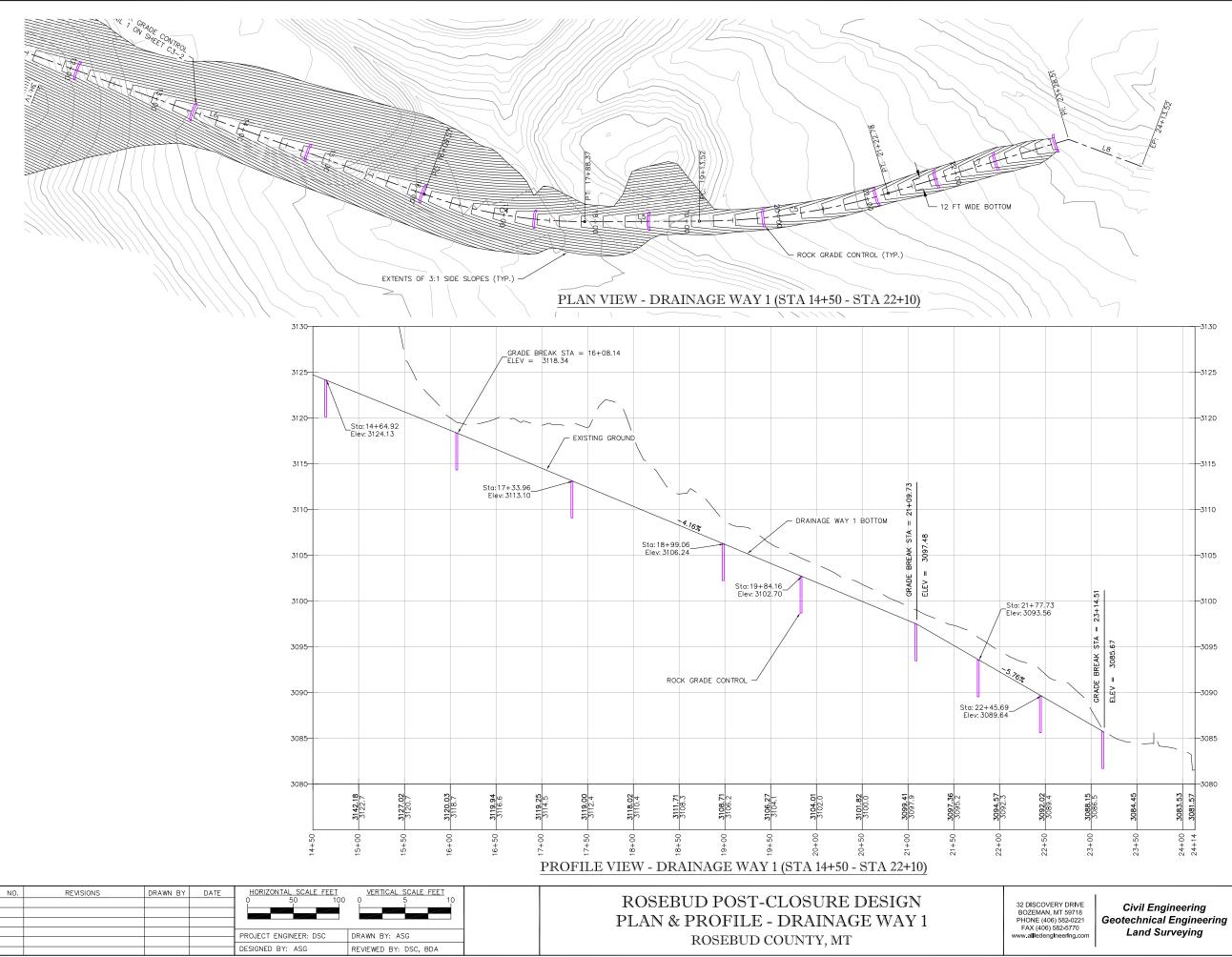
NO.	REVISIONS	DRAWN BY	DATE	HORIZONTAL SCALE FEET VERTICAL SCALE FEET	
				PROJECT ENGINEER: DSC DRAWN BY: ASG	
				DESIGNED BY: ASG REVIEWED BY: DSC, BDA	

ROSEBUD POST-CLOSURE DESIGN PROFILE VIEW - EXISTING LANDFILL PROFILE 3 ROSEBUD COUNTY, MT

32 DISCOVERY DRIVE BOZEMAN, MT 59718 PHONE (406) 582-0221 FAX (406) 582-5770 www.alliedengineering.com

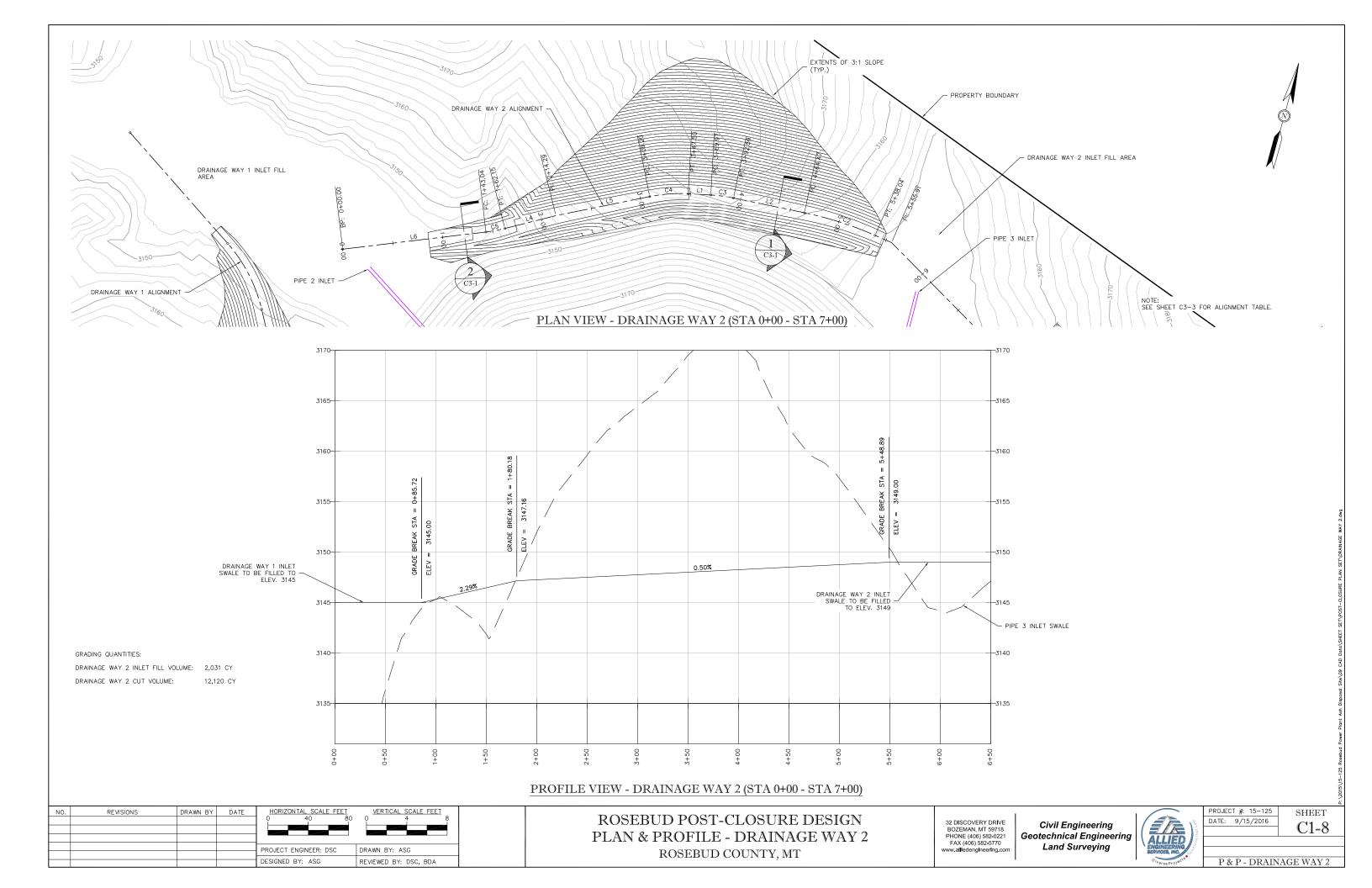


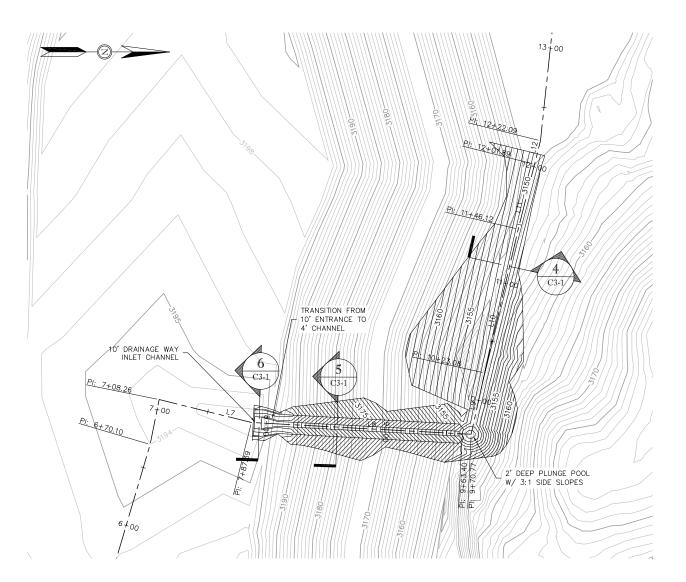

Civil Engineering Geotechnical Engineering Land Surveying



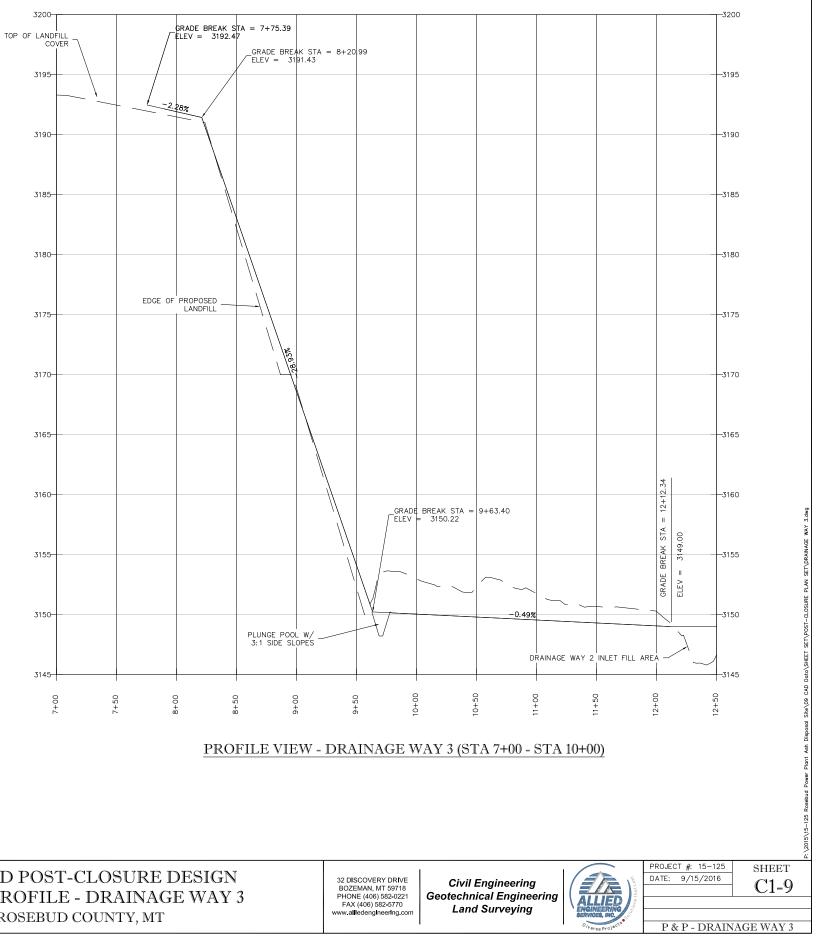
PROJECT #: 15-125	SHEET
DATE: 9/15/2016	
	C1-3

DESIGN PLAN - EXISTING

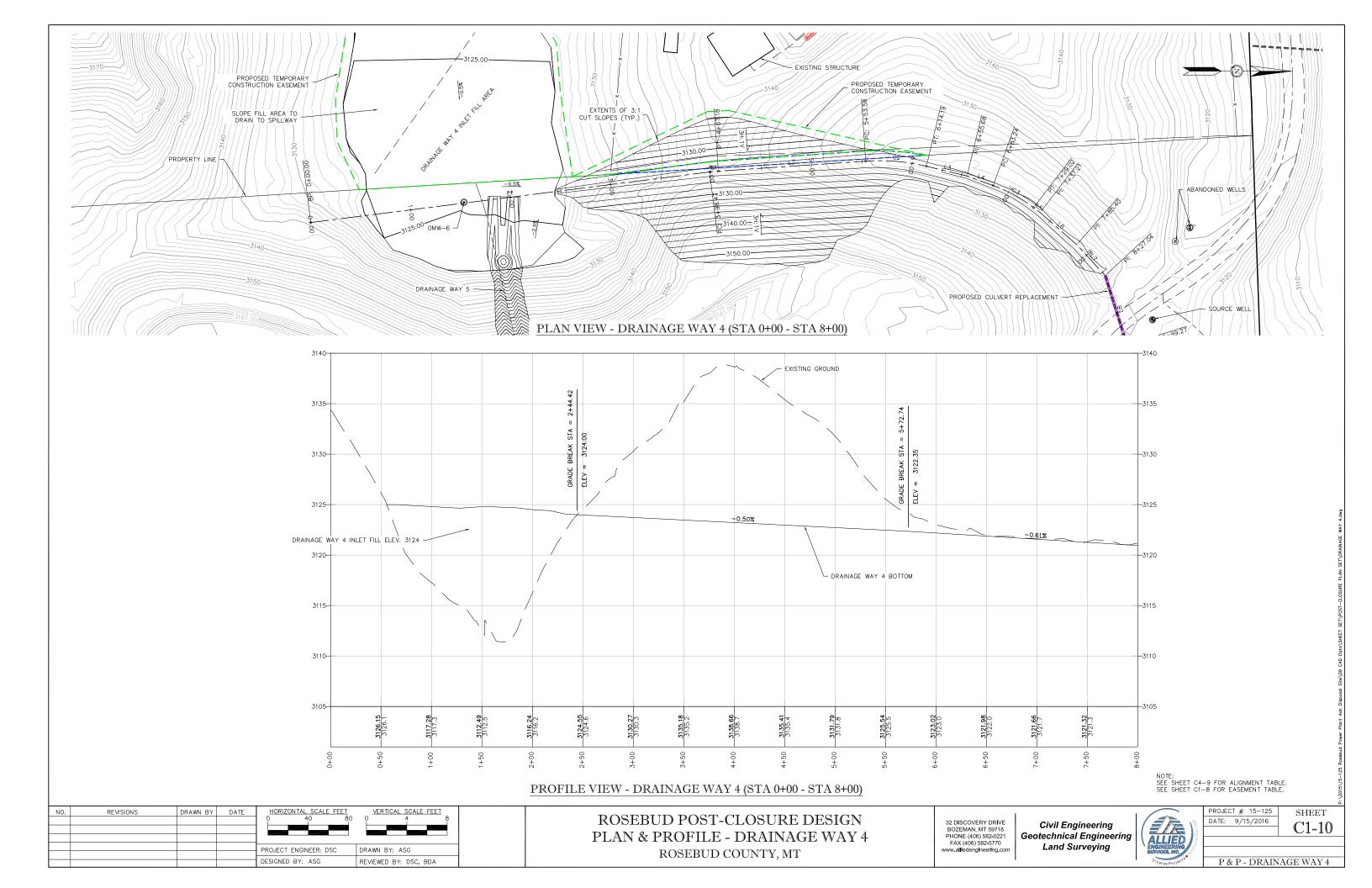


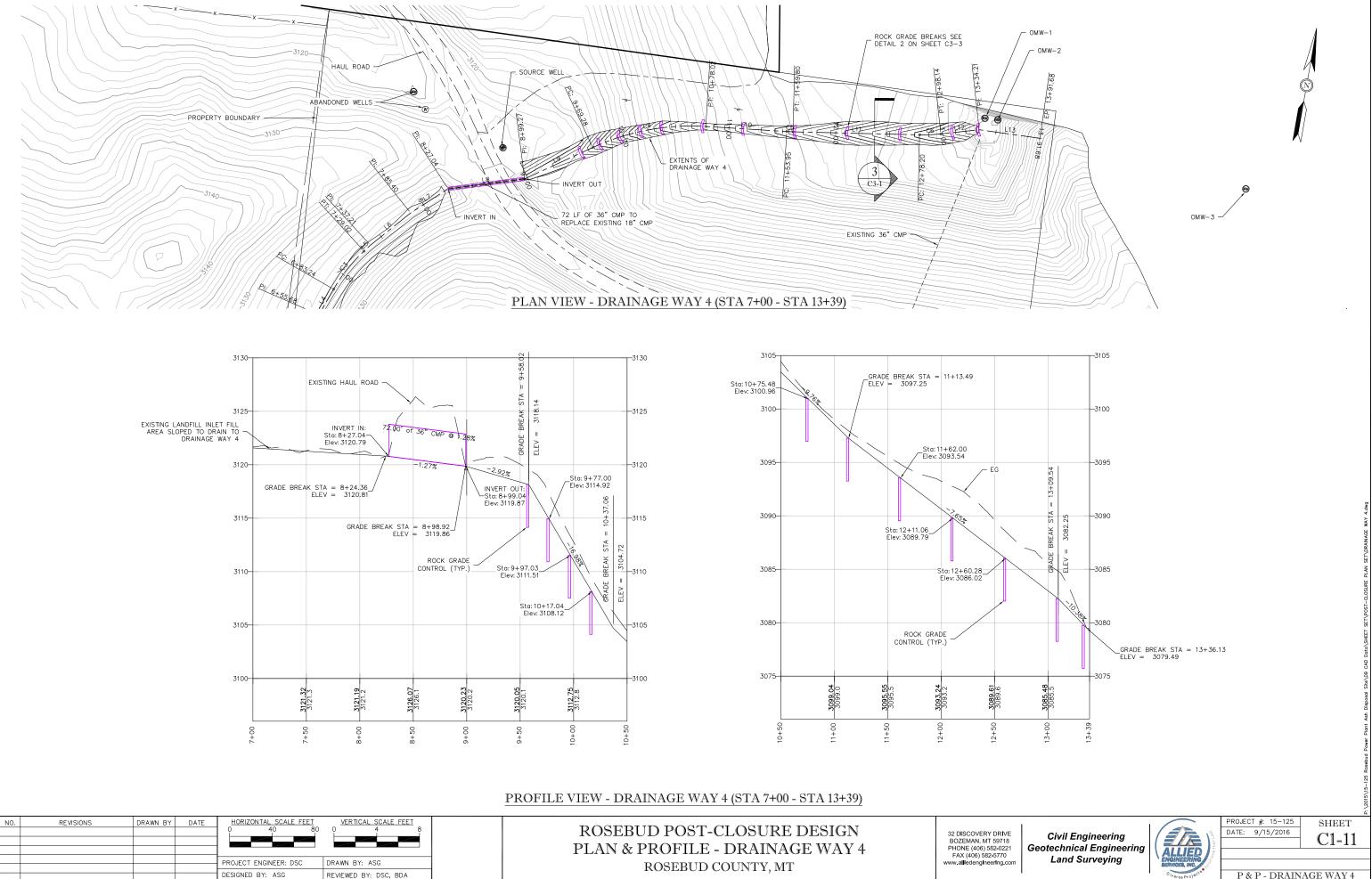


	PROJECT #: 15-125	SHEET
180	DATE: 9/15/2016	C11 7
hatL		CI-/
^{41/o} ns that Last		
5		
	P & P - SPII	LLWAY 1

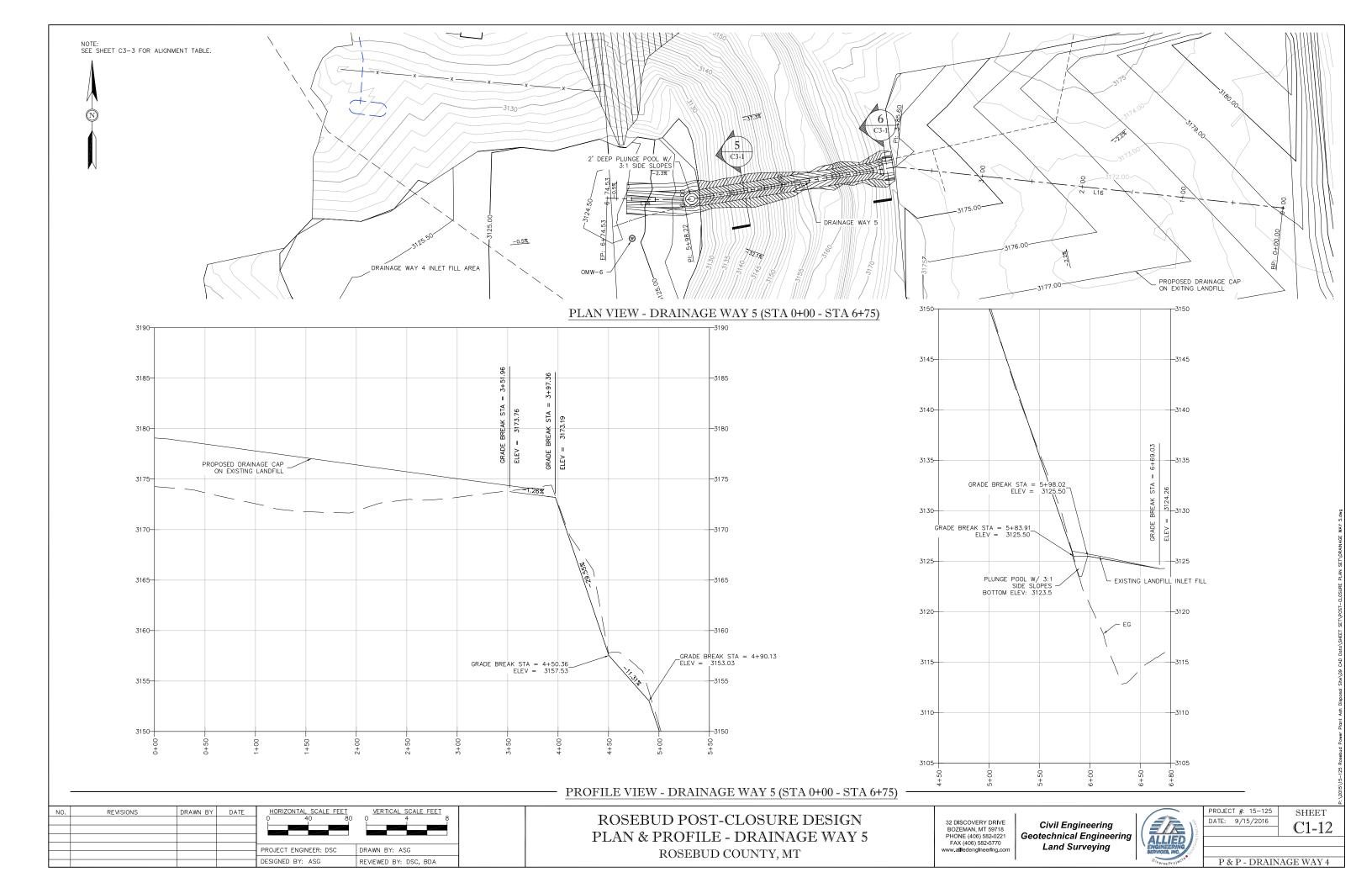


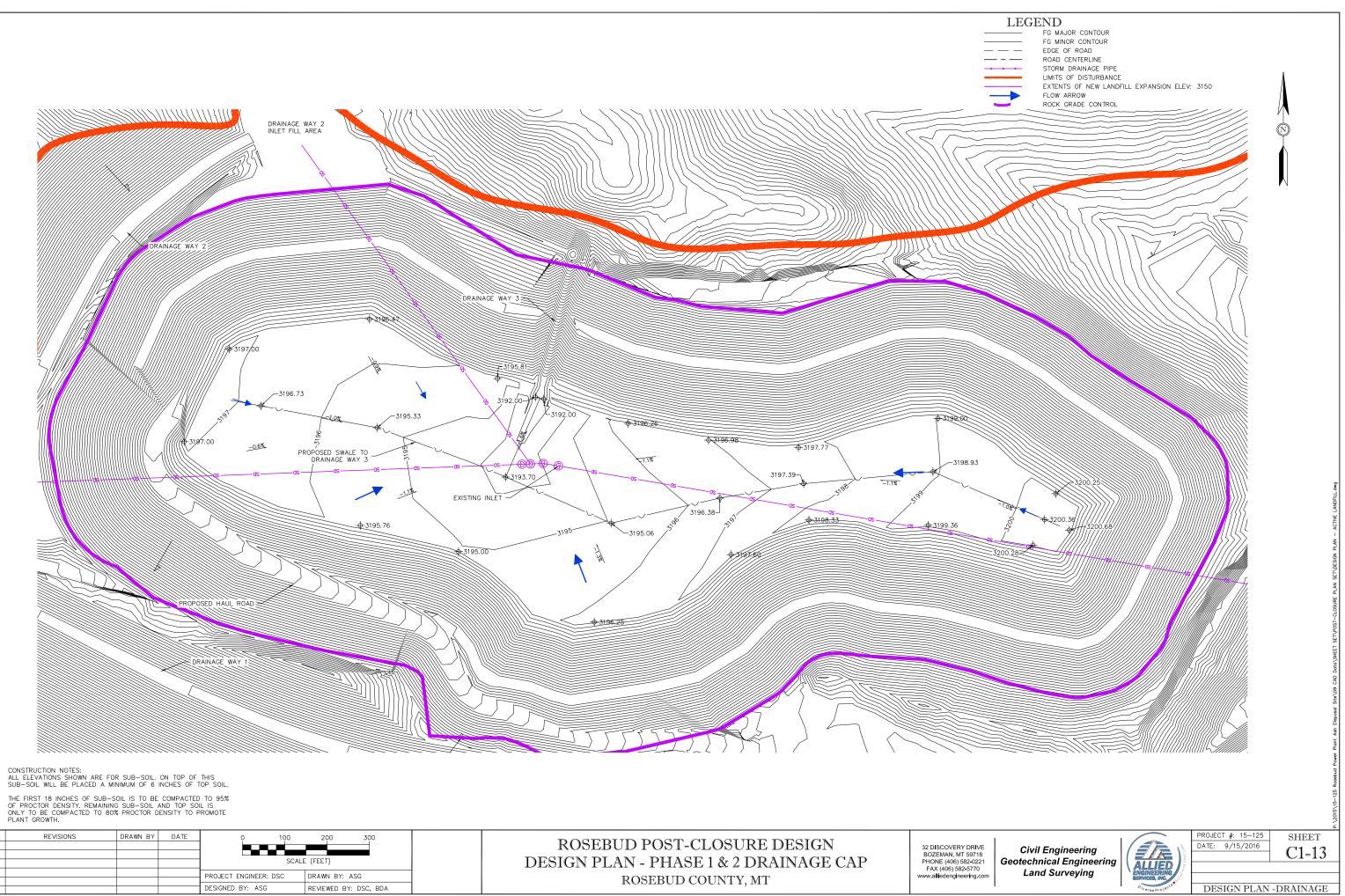
NOTE: SEE SHEET C3-3 FOR ALIGNMENT TABLE.

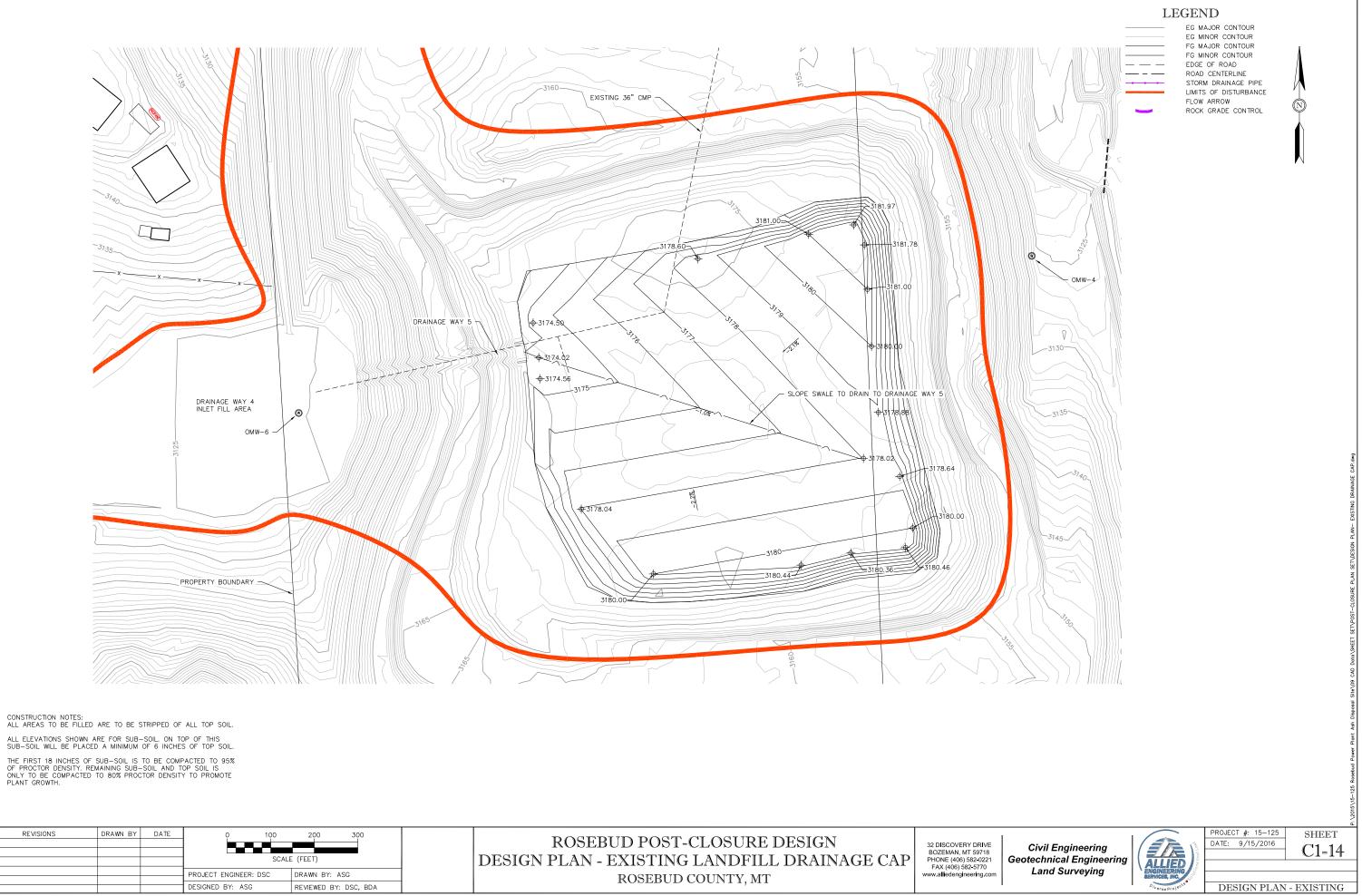

PLAN VIEW - DRAINAGE WAY 3 (STA 7+00 - STA 10+00)



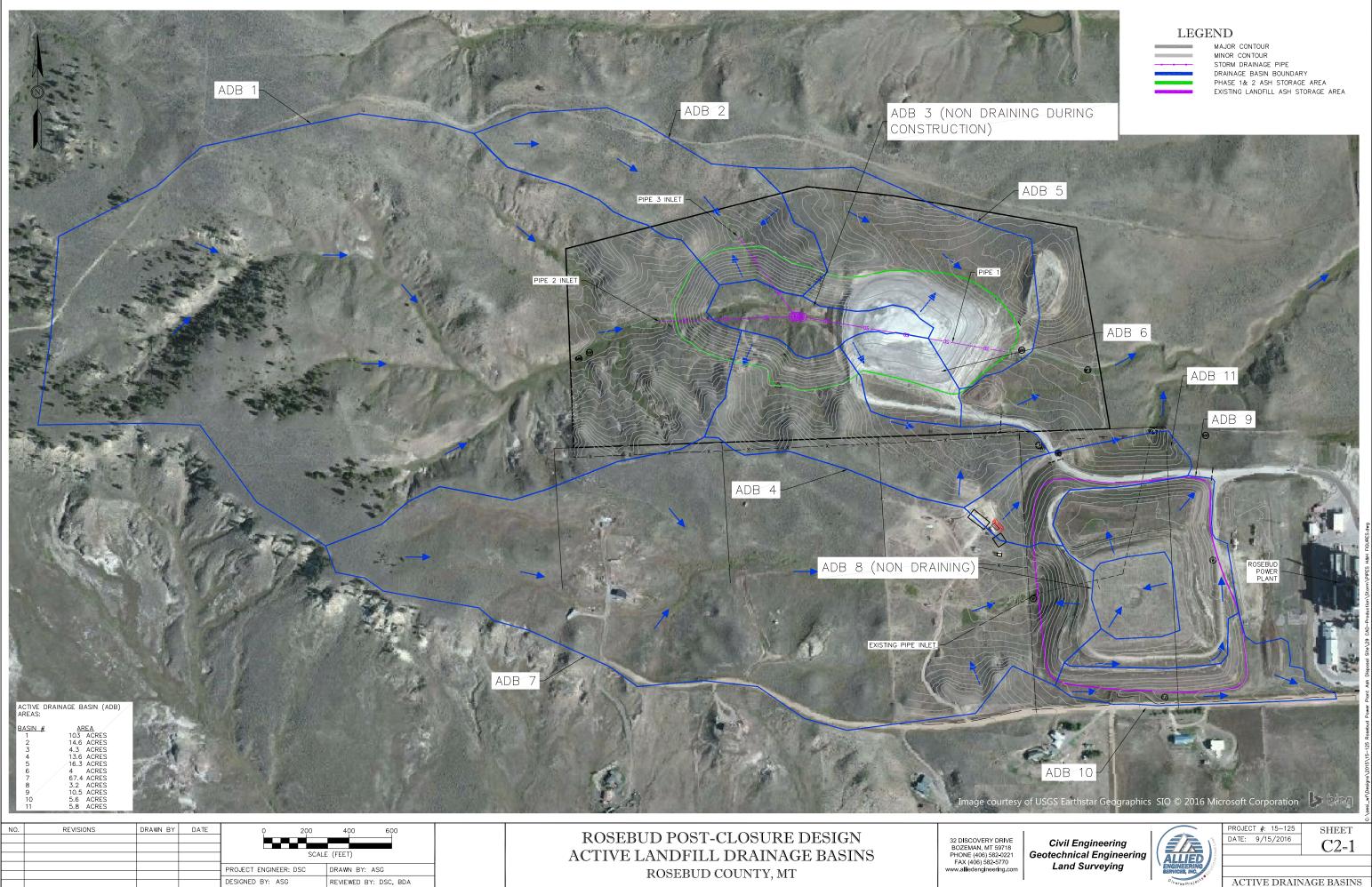
CONSTRUCTION NOTES: ALIGNMENT TABLE: SEE SHEET C3-3 EROSION CONTROL: SEE SHEET C4-1 FOR CHANNEL TYPICAL CROSS-SECTIONS OF DRAINAGE WAY 3 ON SHEET C3-1.


						_
NO.	REVISIONS	DRAWN BY	DATE	HORIZONTAL SCALE FEET	VERTICAL SCALE FEET	
				0 40 80	0 4 8	
				PROJECT ENGINEER: DSC	DRAWN BY: ASG	1
				THOSE OF ENGINEERIN BOO	BIORIN BIT HOO	
				DESIGNED BY: ASG	REVIEWED BY: DSC, BDA	

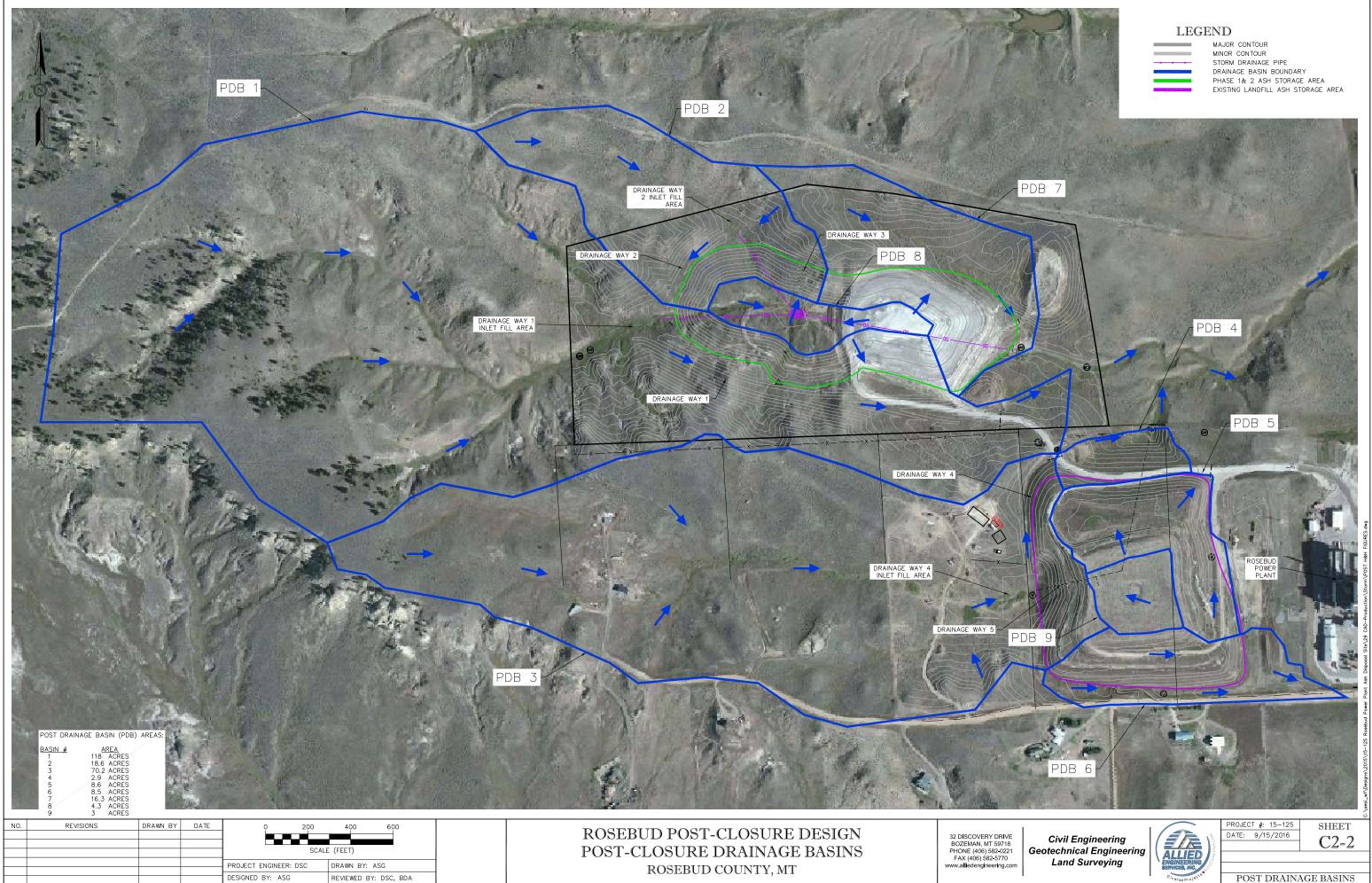

ROSEBUD POST-CLOSURE DESIGN PLAN & PROFILE - DRAINAGE WAY 3 ROSEBUD COUNTY, MT



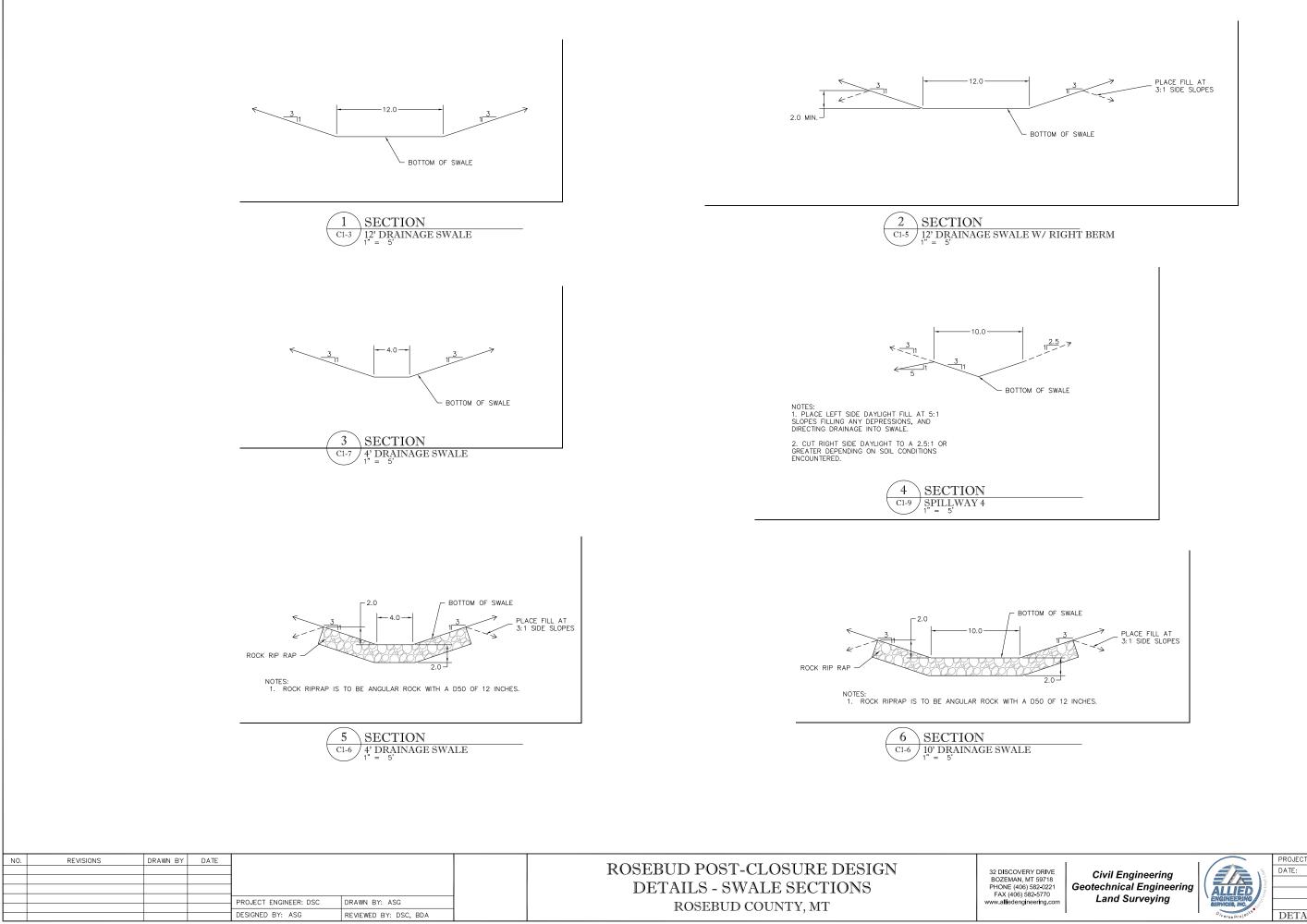
P & P - DRAINAGE WAY 4

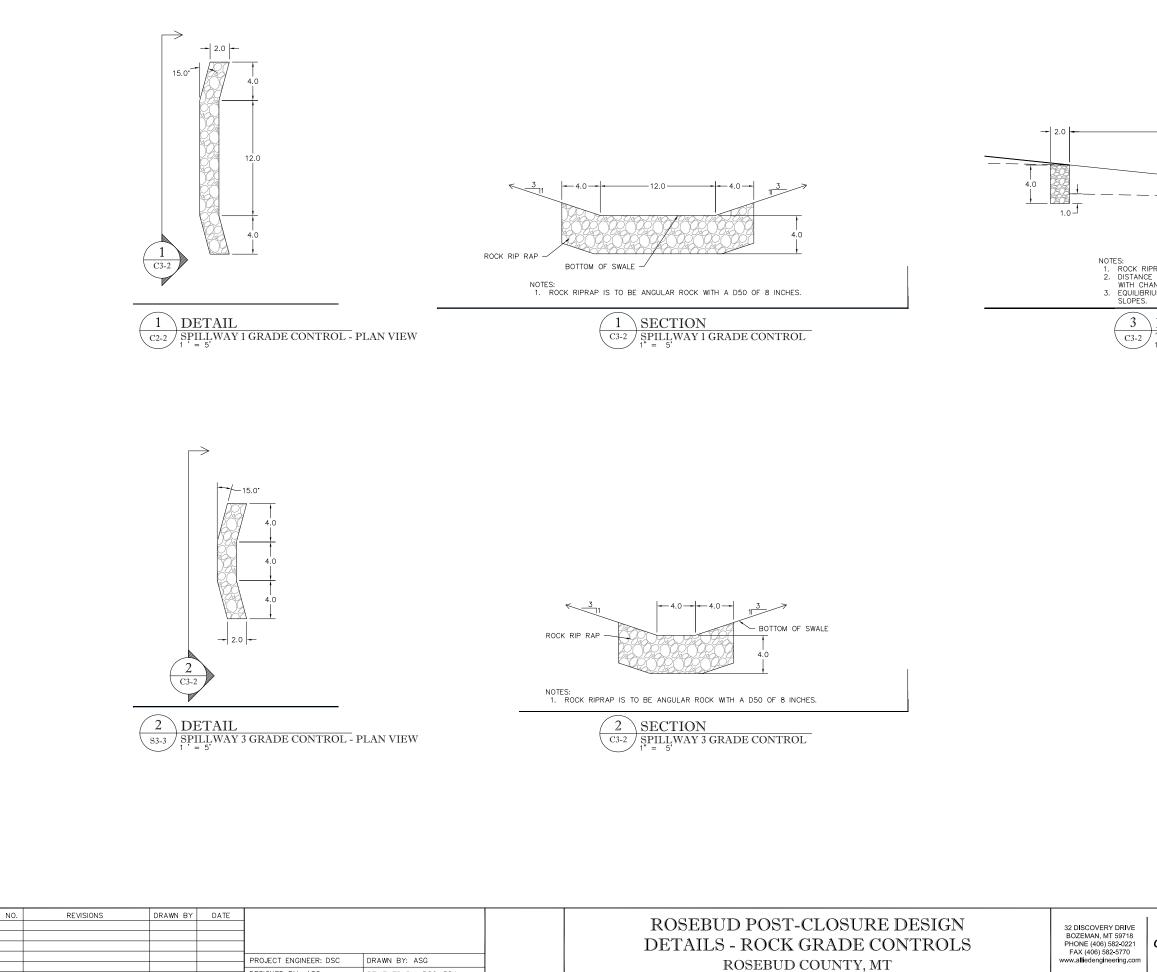


NO.	REVISIONS	DRAWN BY	DATE	Q 100	200 300				
				SCALE (FEET)					
				PROJECT ENGINEER: DSC	DRAWN BY: ASG				
				DESIGNED BY: ASG	REVIEWED BY: DSC, BDA				



NO.	REVISIONS	DRAWN BY	DATE	ò	100	200	300	
				SCALE (FEET)				
				PROJECT ENGINEER: DSC		DRAWN BY: ASG		
				DESIGNED BY: ASG REVIEWED BY: DSC, BDA		: DSC, BDA		


FROJE	JI #. IJ-I2	20	SHEET
DATE:	9/15/2016	5	C1 14
			C1-14
TOTO	CLON DI	3 3 7	TATACATA



PROJECT #: 15-125 DATE: 9/15/2016	sнеет С 3-1
	001
DETAILS - SWA	LE SECTIONS

DESIGNED BY: ASG

REVIEWED BY: DSC, BDA

CONSTRUCTED CHANNEL	
2% EQUILIBRIUM SLOPE	
ROCK GRADE CONTROL	
RIPRAP IS TO BE ANGULAR ROCK WITH A D50 OF 8 INCHES. CE BETWEEN GRADE DROPS IS SHOWN ON PLANS. IT VARIES HANNEL SLOPE. RIUM SLOPE WAS DETERMINED BY COMPARISON OF EXISTING	

/	DETAIL
Ϊ	TYPICAL GRADE CONTROL PROFILE

FROJECT #. 13-123	SHEET
DATE: 9/15/2016	(12.)
	C3-2
DETAILS - ROO	CK CONTROL

PO FOT # 15 125

	DRAINAGE WAY 1 ALIGNMENT										
Number	Radius	Length	Line/Chord Direction	Start Station	End Station	Start Northing, Easting					
L3		146.31	N88° 36' 59.04"E	0+00.00	1+46.31	643344.5741, 2687756.5228					
C6	150.00	73.86	S77* 16' 41.83"E	1+46.31	2+20.16	643348.1068, 2687902.7880					
L4		271.68	S63° 10' 22.69"E	2+20.16	4+91.85	643332.0065, 2687974.1047					
C1	312.15	17.89	S64°48′54.31"E	4+91.85	5+09.74	643209.3966, 2688216.5469					
L1		77.78	S66* 27' 25.94"E	5+09.74	5+87.52	643201.7835, 2688232.7365					
C2	1084.22	246.98	S72° 58' 58.71"E	5+87.52	8+34.50	643170.7161, 2688304.0411					
L2		166.70	S79° 30' 31.48"E	8+34.50	10+01.19	643098.5926, 2688539.6957					
C3	1614.37	117.37	S81° 35' 29.84"E	10+01.19	11+18.57	643068.2396, 2688703.6054					
L6		491.00	S83° 40' 28.20"E	11+18.57	16+09.57	643051.0800, 2688819.6928					
C4	516.43	178.80	N86* 24' 25.40"E	16+09.57	17+88.37	642996.9829, 2689307.7071					
L5		125.15	N76° 29' 19.00"E	17+88.37	19+13.52	643008.1319, 2689485.2646					
C5	732.50	209.26	N68' 18' 16.74"E	19+13.52	21+22.78	643037.3726, 2689606.9542					
L7		205.73	N60' 07' 14.48"E	21+22.78	23+28.51	643114.4664, 2689800.7281					
L8		85.01	S82° 55' 28.98"E	23+28.51	24+13.52	643216.9581, 2689979.1158					

	DRAINAGE WAY 2 ALIGNMENT										
Number	Radius	Length	Line/Chord Direction	Start Station	End Station	Start Northing, Easting					
L6		143.04	N33° 10' 00.74"E	0+00.00	1+43.04	643431.7828, 2687980.2610					
C5	150.00	19.11	N29° 31' 01.66"E	1+43.04	1+62.15	643551.5167, 2688058.5138					
L4		52.14	N25° 52' 02.59"E	1+62.15	2+14.29	643568.1351, 2688067.9226					
L5		94.91	N28° 30' 48.36"E	2+14.29	3+09.20	643615.0533, 2688090.6719					
C4	150.00	38.30	N35* 49' 38.90"E	3+09.20	3+47.50	643698.4554, 2688135.9809					
L1		22.47	N43°08'29.44"E	3+47.50	3+69.97	643729.4211, 2688158.3366					
C3	150.00	22.62	N47° 27′ 42.66"E	3+69.97	3+92.59	643745.8146, 2688173.6997					
L2		71.88	N51°46′55.89″E	3+92.59	4+64.47	643761.0939, 2688190.3518					
C2	355.54	73.57	N57° 42' 36.31"E	4+64.47	5+38.04	643805.5653, 2688246.8288					

	DRAINAGE WAY 3 ALIGNMENT											
Number	Radius	End Station	Start Northing, Easting									
L7		79.14	N23* 58' 15.77"E	7+08.26	7+87.39	643460.8902, 2688626.003						
L8		176.01	N13º 05' 01.79"E	7+87.39	9+63.40	643533.2022, 2688658.155						
L9		52.31	N67° 32' 36.83"W	9+70.77	10+23.08	643711.8326, 2688699.603						
L10		123.04	N66° 51' 54.52"W	10+23.08	11+46.12	643731.8139, 2688651.2609						
L11		55.76	N65° 51' 12.83"W	11+46.12	12+01.89	643780.1573, 2688538.1121						
L12		20.20	N66' 02' 56.78"W	12+01.89	12+22.09	643802.9681, 2688487.228						

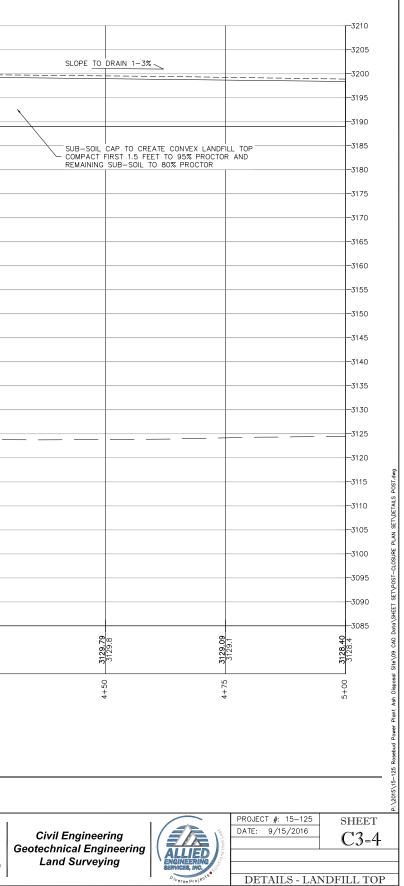
Number	Radius	Length	Line/Chord Direction	Start Station	End Station	Start Northing, Easting
L1		398.47	N7 12 41.64"W	0+00.00	3+98.47	641989.0819, 2689783.7761
C1	150.00	8.71	N5° 32' 52.52"W	3+98.47	4+07.18	642384.3984, 2689733.7549
L2		146.40	N3' 53' 03.40"W	4+07.18	5+53.58	642393.0672, 2689732.9129
C2	200.00	60.61	N4° 47' 51.97"E	5+53.58	6+14.19	642539.1338, 2689722.9953
L3		41.48	N13* 28' 47.34"E	6+14.19	6+55.68	642599.3026, 2689728.0455
L4		27.57	N19* 55' 02.83"E	6+55.68	6+83.24	642639.6409, 2689737.7148
C3	150.00	45.78	N28 39 40.33 E	6+83.24	7+29.02	642665.5578, 2689747.1055
L5		8.19	N37* 24' 17.83"E	7+29.02	7+37.21	642705.5746, 2689768.9789
L6		48.18	N41°16′43.16"E	7+37.21	7+85.40	642712.0804, 2689773.9539
L7		41.65	N47°12'05.16"E	7+85.40	8+27.04	642748.2914, 2689805.7420
L8		72.23	N72 35' 03.58"E	8+27.04	8+99.27	642776.5860, 2689836.2990
L9		70.01	N55 15' 38.42"E	8+99.27	9+69.28	642798.2050, 2689905.2192
C4	219.87	108.74	N69° 25' 41.66"E	9+69.28	10+78.02	642838.0991, 2689962.7492
L10		75.94	N83* 35' 44.90"E	10+78.02	11+53.95	642875.9183, 2690063.5164
C5	150.00	5.84	N82 28 49.16"E	11+53.95	11+59.80	642884.3884, 2690138.9792
L11		118.41	N81° 21' 53.41"E	11+59.80	12+78.20	642885.1527, 2690144.7693
C6	150.00	19.94	N77° 33' 23.89"E	12+78.20	12+98.14	642902.9304, 2690261.8327
L12		36.07	N73 44' 54.38"E	12+98.14	13+34.21	642907.2237, 2690281.2896
L13		57.47	N88° 02' 50.21"E	13+34.21	13+91.68	642917.3186, 2690315.9202

	DRAINAGE WAY 5 ALIGNMENT									
Number	Radius	Length	End Station	Start Northing, Easting						
L14		76.31	N88* 27' 10.46"W	5+98.22	6+74.53	642178.8475, 2689815.0061				
L15		212.62	S81° 05' 30.77"W	3+85.60	5+98.22	642211.7723, 2690025.0646				
L16		385.60	N83° 58' 06.39"W	0+00.00	3+85.60	642171.2554, 2690408.5251				

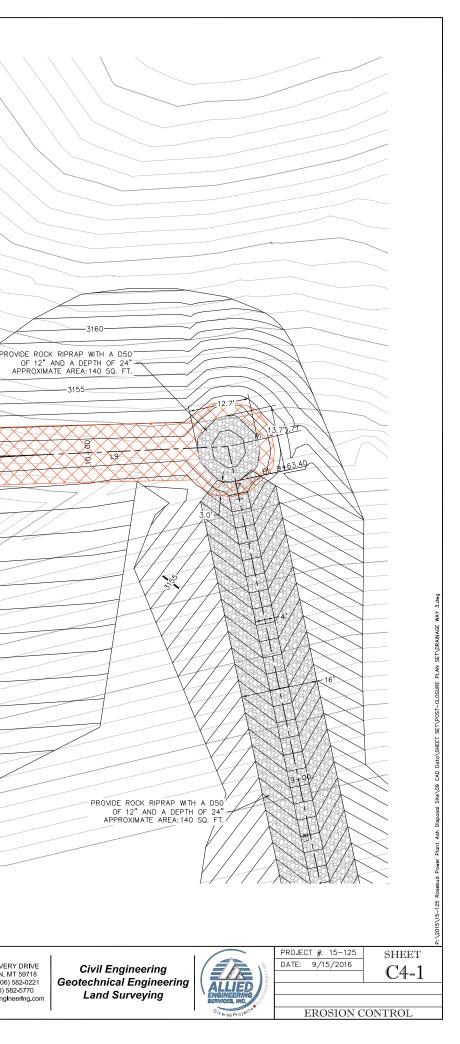
NO.	REVISIONS	DRAWN BY	DATE				
							ROSEBUD POST-CLOSURE DESIGN
							DETAILS - ALIGNMENT TABLES
				PROJECT ENGINEER: DSC	DRAWN BY: ASG		
				TROCEOT ERGINEERA DOO	BRANNE BRE 1600	-	ROSEBUD COUNTY, MT
				DESIGNED BY: ASG	REVIEWED BY: DSC, BDA		

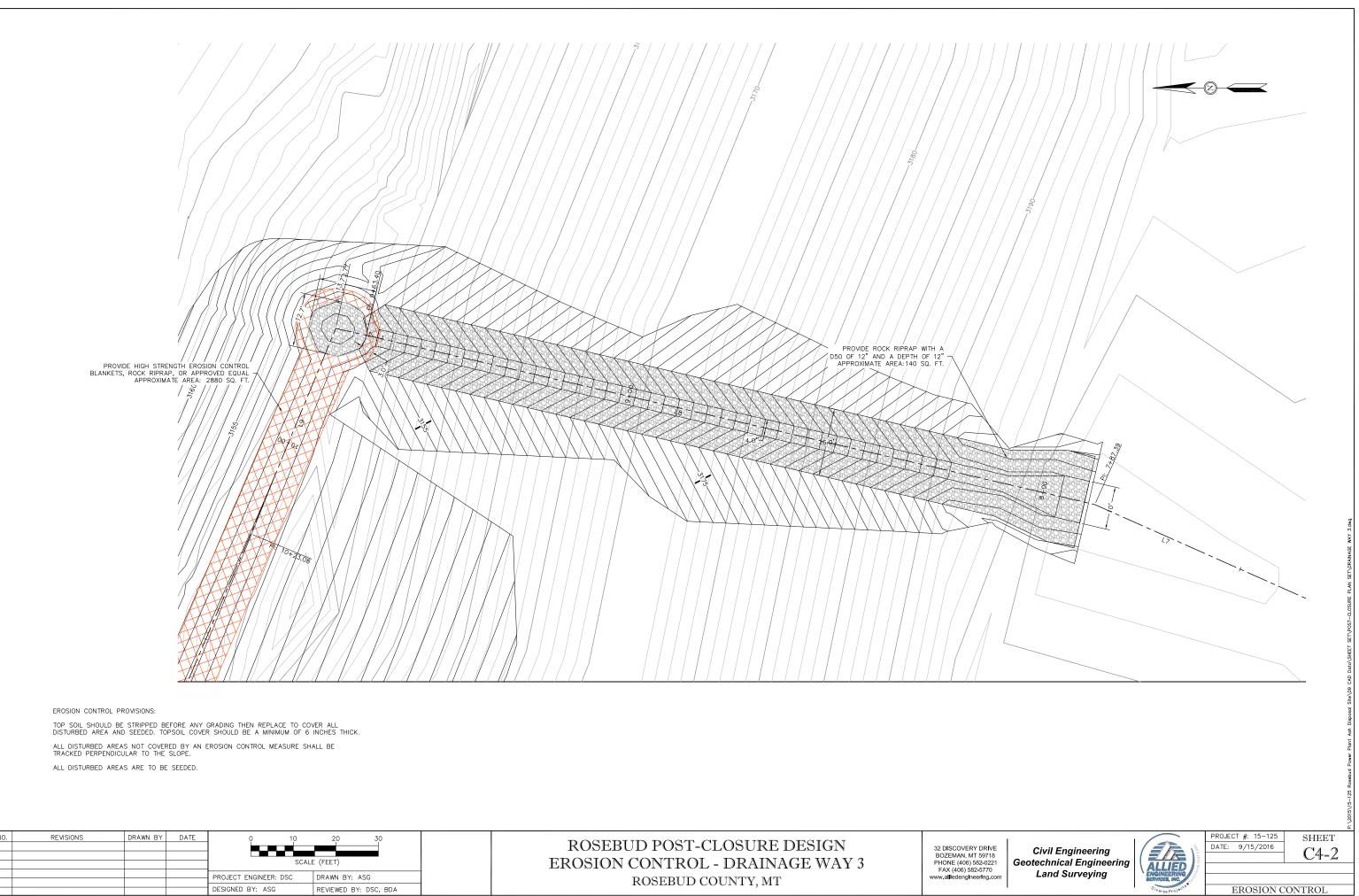
Civil Engineering Geotechnical Engineering Land Surveying

32 DISCOVERY DRIVE BOZEMAN, MT 59718 PHONE (406) 582-0221 FAX (406) 582-5770 www.alliedengineering.com

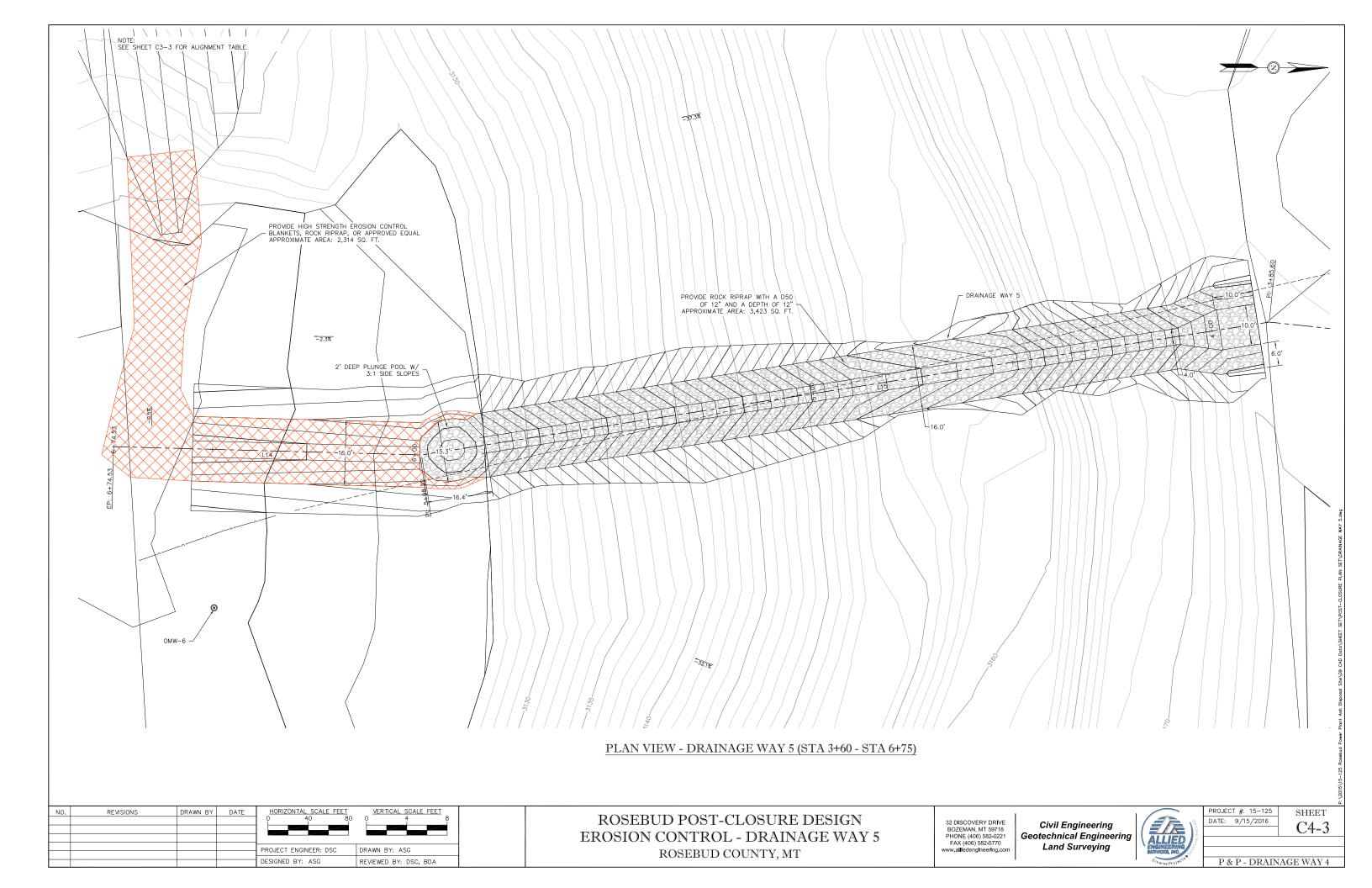


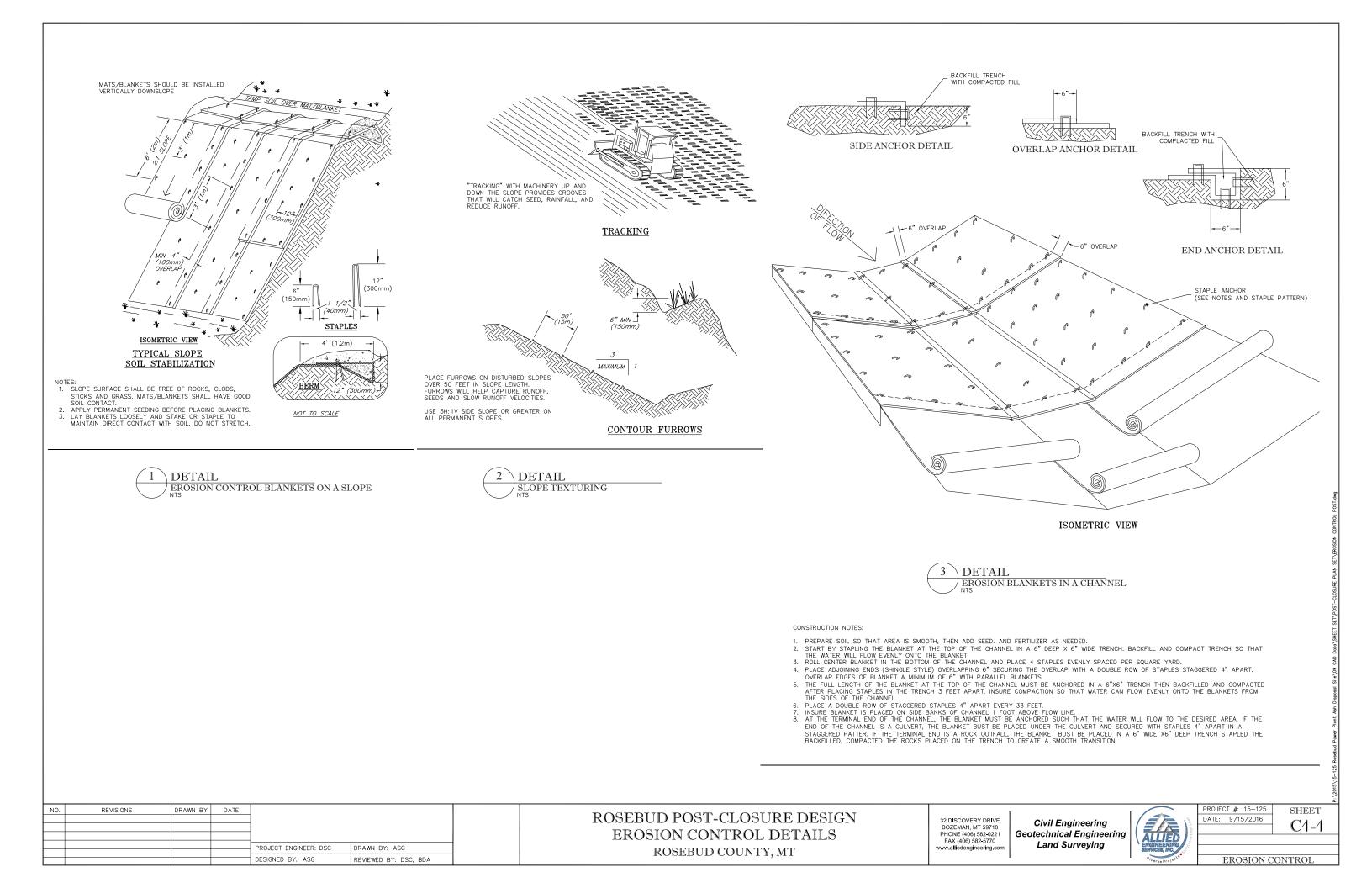
PROJECT #: 15-125	SHEET
DATE: 9/15/2016	(1))
	<u> </u>
DETAILS -	TABLES

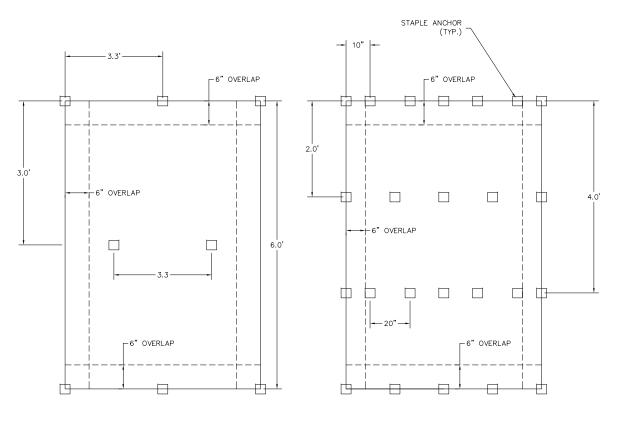

3200							TOP OF TOPSOIL	COVER ELEV: 3200.0		
3200					TO	P OF SUBSOIL CAP ELEV: 3199.	b		====	
3195										
3190				TOP OF	ASH STORAGE ELEV: 318	9				
3185				BENCH DIKE -					<u> </u>	
3180					20.0					
3175										
3170			BENCH E	ELEV: 3170						
3165										
3160			1	1.5	<u>\</u>					
3155										
3150										
3145										
3140	×									
		/ /								
3135										
3130										
3125										
3120									ND PER 1/27/16 T	OPOGRAPHIC SURVEY
3115										
3110										
3105										
3100										
3095										
3090										
3085										
0000			4.66 4.7	54.7 54.7 54.0	5	33.3	32.6	31.9 31.9	31.18 31.2	0.48 30.5
			3 14 314	<u>313</u> 312 312			313	313 313	313	<u>313</u> 313
2+00	2+25		2+50	2+75		3+72 3+72	3+50	3+75	4+00	4+25
2	2		N	(M 0		(*)	(1	(4	4	4
					PROFI	LE VIEW - LANDI	FILL CONTAI	NMENT BERMS	AND TOP	
). RE	REVISIONS DRAWN BY	DATE HOR	IZONTAL SCALE FEET VEI 10 20 0	RTICAL SCALE FEET 10 20		ROSEBUD PO	OST CLOSI	IPF DESIGN		
							S - LANDFI			32 DISCOVERY DRIVE BOZEMAN, MT 59718 PHONE (406) 582-0221 FAX (406) 582-5770
		PROJE	CT ENGINEER: DSC DRAWN	BY: ASG						FAX (406) 582-5770 www.alliedengineering.com
			ED BY: ASG REVIEW	ED BY: DSC, BDA	ROSEBUD COUNTY, MT					1


3210-

3205-




 \bigcirc PROVIDE HIGH STRENGTH EROSION CONTROL BLANKETS, ROCK RIPRAP, OR APPROVED EQUAL APPROXIMATE AREA: 2880 SQ. FT. L12 R EROSION CONTROL PROVISIONS: TOP SOIL SHOULD BE STRIPPED BEFORE ANY GRADING THEN REPLACE TO COVER ALL DISTURBED AREA AND SEEDED. TOPSOIL COVER SHOULD BE A MINIMUM OF 6 INCHES THICK. ALL DISTURBED AREAS NOT COVERED BY AN EROSION CONTROL MEASURE SHALL BE TRACKED PERPINDICULAR TO THE SLOPE. REVISIONS DRAWN BY DATE NO. 20 10 ROSEBUD POST-CLOSURE DESIGN 32 DISCOVERY DRIVE BOZEMAN, MT 59718 PHONE (406) 582-0221 FAX (406) 582-5770 www.alledengineering.com **EROSION CONTROL - DRAINAGE WAY 3** SCALE (FEET) PROJECT ENGINEER: DSC DRAWN BY: ASG ROSEBUD COUNTY, MT DESIGNED BY: ASG REVIEWED BY: DSC, BDA



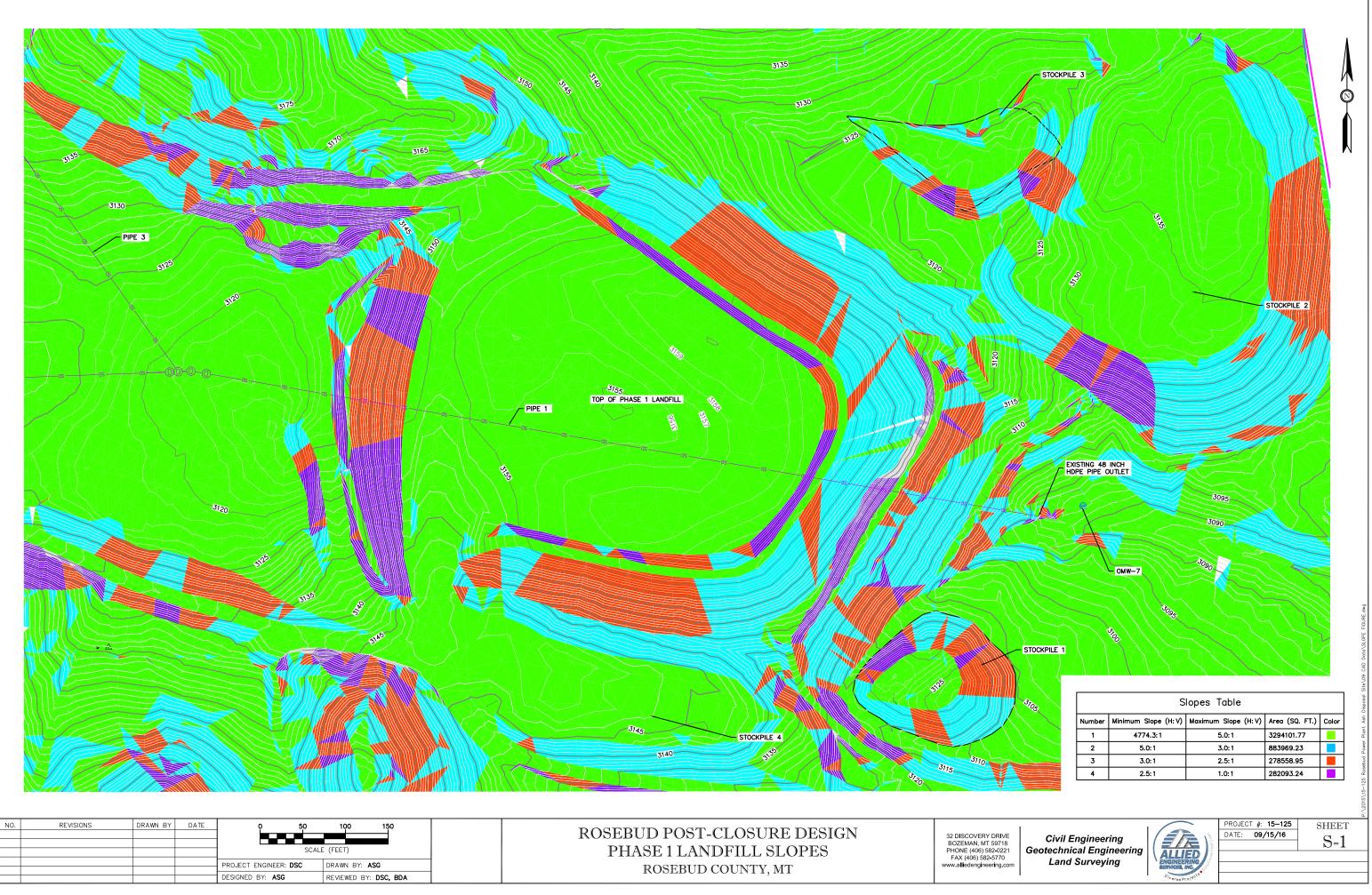
NO.	REVISIONS	DRAWN BY	DATE		0	10	20	30	Т
				SCALE (FEET)					
				PROJECT E		190	DRAWN BY:	150	-
				FROJECTE	NOINEEN. L	/30	DRAWN DT.	A30	
				DESIGNED	BY: ASG		REVIEWED B	Y: DSC, BDA	

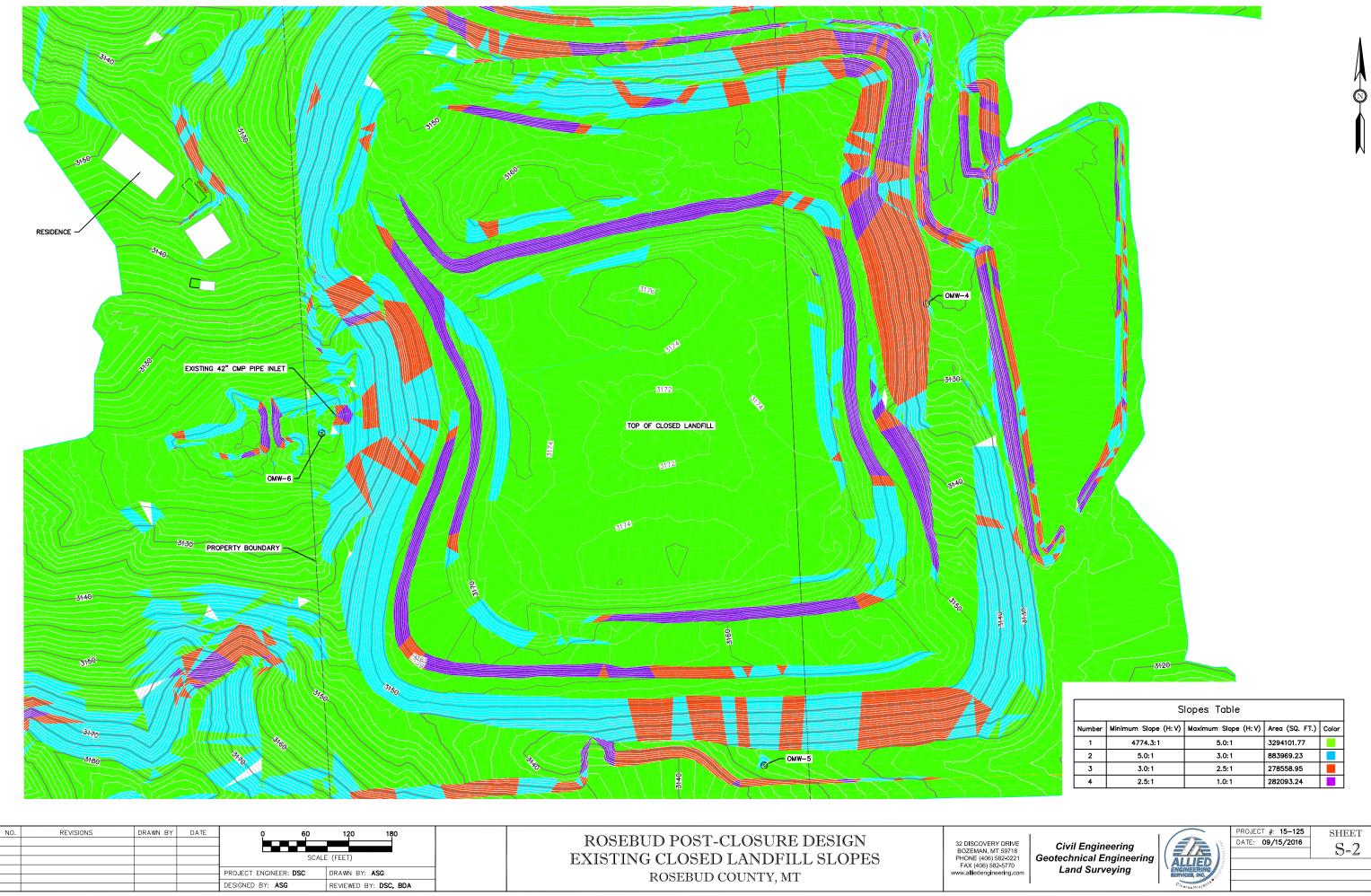
EROSION BLANKET ANCHORING PATTERNS

3:1 SIDE SLOPES

CHANNEL BOTTOM/HIGH FLOW AREAS

ANCHORING NOTES:


CHOICE OF STAPLES WILL DEPEND ON SOIL TYPE AND COMPACTION. STAPLES PLACED IN SOIL SHOULD NOT COME OUT EASILY BY HAND. STANDARD 6" STAPLES WILL BE USED IN MOST CONDITIONS. LONGER STAPLES 8"-12" MAY BE NEEDED IN SANDY SOILS. FOR VERY LOOSE SOILS A LONG PIN WITH WASHER MAY BE USED TO ANCHOR BLANKET.


BLANKET SHALL BE OVERLAPPED A MINIMUM OF 6" WITH THE UPSTREAM BLANKET COMING OVER THE DOWNSTREAM BLANKET (SHINGLE STYLE).

NO.	REVISIONS	DRAWN BY	DATE					
							ROSEBUD POST-CLOSURE DESIGN	32 DISCOVERY DRIVE
				4			EROSION CONTROL DETAILS	BOZEMAN, MT 59718 PHONE (406) 582-0221
				· · · · · · · · · · · · · · · · · · ·		_		FAX (406) 582-5770
				PROJECT ENGINEER: DSC	DRAWN BY: ASG		ROSEBUD COUNTY, MT	www.alliedengineering.com
				DESIGNED BY: ASG	REVIEWED BY: DSC, BDA			

			www. Plant Ash Disposal Site\Q9 CAD Data\SHEET SET\POST-CLOSURE PLAN SET\	
Civil Engineering		PROJECT #: 15-125 DATE: 9/15/2016	SHEET C4-5	
Geotechnical Engineering Land Surveying	ALLIED SERVICES, INC.	EROSION C		

Slopes Table										
Number	Minimum Slope (H:V) Maximum Slope (H:V) Area (SQ. FT.) Ca									
1	4774.3:1	5.0:1	3294101.77							
2	5.0:1	3.0:1	883969.23							
3	3.0:1	2.5:1	278558.95							
4	2.5:1	1.0:1	282093.24							

PROJECT #: 15-125	SHEET
DATE: 09/15/2016	S-2

Appendix B: Soil Hydraulic Conductivity Testing Results

September 13, 2016

Mr. Ron Orton Allied Engineering Services, Inc. 32 Discovery Drive Bozeman, MT 59718

RE: Job #15-125

Dear Mr. Orton,

On August 15, two samples were delivered to our Bozeman, MT laboratory. The samples were identified as B-1 (composite base) and SP-1 (composite stockpile). The samples were given Lab Nos. G16344 and G16345 respectively. The requested testing was performed in general accordance with the following Standards:

- Standard Proctor (ASTM D698); and
- Hydraulic Conductivity using a Flexible Wall Permeameter (ASTM D5084).

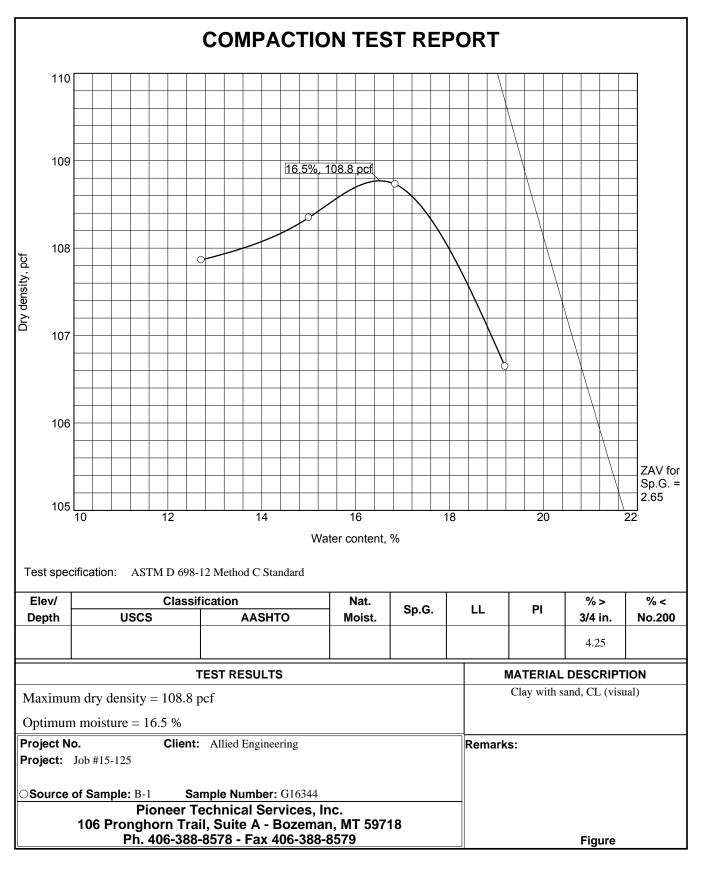
The hydraulic conductivity values are provided in Table 1. The proctor results and hydraulic conductivity sheets are attached with this report.

	Table 1.	
Lab No.	Sample Identification	Hydraulic Conductivity
240 1101	Sampie Identification	(cm/sec)
G16344	B-1 (composite base)	2.1 x 10 ⁻⁰⁷
G16345	SP-1 (composite stockpile)	4.5 x 10 ⁻⁰⁸

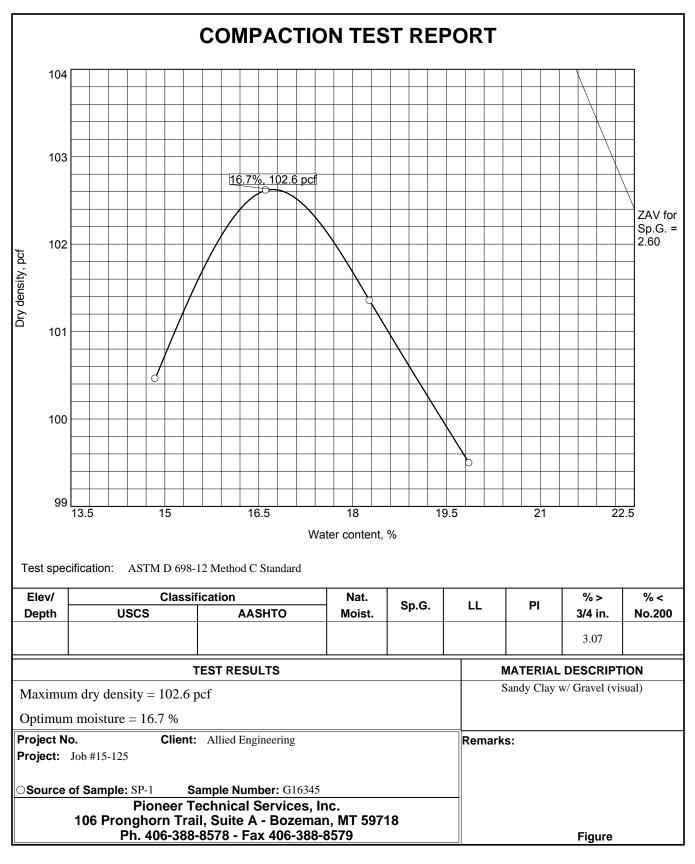
The hydraulic conductivity samples were screened over the $\frac{1}{2}$ " sieve and passing material was used to construct the specimen. At the request of Allied Engineering, the hydraulic conductivity samples were remolded by compacting the specimens at optimum moisture to a dry unit weight equal to 95% of the uncorrected standard proctor value corrected for $\frac{1}{2}$ " minus material. Allied Engineering also requested a confining pressure of zero, but a minimum of 3 psi confining pressure was applied in order to perform the testing.

Please contact us at (406)388-8578 if you have any questions or require any additional information regarding this report.

Sincerely, PIONEER TECHNICAL SERVICES, INC


zur Kligh

Niki Griffis Project Scientist/Laboratory Manager


106 PRONGHORN TR., STE. A • BOZEMAN, MT 59718 PH: 406.388.8578 • FX: 406.388.8579 WWW.PIONEER -TECHNICAL.COM | HEADQUARTERS: PO BOX 3445 • BUTTE, MT 59702

				HYDRAULIC C	ONDUCTIVIT	Y FOR FLEXIBL	E-WALLED TEST S	AMPLES			
						AD APPARATUS					
Client:	Allied Engine	ering					Project:	#15-125			
Sample Description:	G16344	B-1									
Test Specimen											
Dry Density (pcf):		102.1									
Standard Proctor (ASTM D	0698)	95%									
Specimen Length (cm):	,000,	15.24									
Specimen Diameter (cm):		7.112									
				Testing Equipment Height Inlet Above Floor ((cm).						
				Height Outlet Above Bend		21.9					
				Area of Standpipe (cm ²):		0.912					
						0.012					
Increment	Initial	Inital	Final	Final	Time	Applied Pressure	Initial	Final	Average Hydraulic	Hydraulic	Hydraulic
Number	Reading	Reading	Reading	Reading	Increment	Differential	Head	Head	Gradient	Conductivity	Conductivity
	Influent	Effluent	Influent	Effluent							at 20 C
	(cm ³)	(cm ³)	(cm ³)	(cm ³)	(min.)	(psi)	(cm)	(cm)	(cm/cm)	(cm/sec)	(cm/sec)
1	2.5	41.4	6.9	37.9	554	1.6	147.96	140.75	9.47	2.6E-07	2.4E-07
2	6.9	37.9	12.3	33	886	1.5	133.72	124.33	8.47	2.4E-07	2.3E-07
3	12.3	33	14.9	30.6	572	1.6	131.36	126.80	8.47	1.8E-07	1.7E-07
4	14.9	30.6	19.3	26.4	968	1.6	126.80	118.96	8.06	1.9E-07	1.9E-07
	Average Hyd	raulic Condu	ctivity of Last	Four Test Increments =				2.1E-07	cm/sec		
k =	(aL/At) In (h1	(h2)	1		1				1		1
	(··-/							1		1
											1
Water Content Befor	re l'est			Water Content A	tter Test						
Tare #	1100.00			Tare #	4000.00						
Wet Soil + Tare (grams)	1136.00			Wet Soil + Tare (grams)	1332.30						
Dry Soil + Tare (grams)	982.18			Dry Soil + Tare (grams)	1093.20						
Tare Weight (grams)	0.00			Tare Weight (grams)	111.02						
Water Content (%)	15.66			Water Content (%)	24.34						
	Specimen			Source	Specimen						

				HYDRAULIC C	ONDUCTIVIT	Y FOR FLEXIBLE	E-WALLED TEST S	AMPLES			
						AD APPARATUS,					
Client:	Allied Engine	eering				F	Project:	#15-125			
Sample Description:	G16345	SP-1									
Test Specimen											
Dry Density (pcf):		97.1									
% Max ASTM (D698)		95%									
Specimen Length (cm):		15.24									
Specimen Diameter (cm):		7.112									
				Testing Equipment							
				Height Inlet Above Floor ((cm).						
				Height Outlet Above Bend		21.9					
				Area of Standpipe (cm ²):		0.912					
	1		1			0.0.2					
Increment	Initial	Inital	Final	Final	Time	Applied Pressure	Initial	Final	Average Hydraulic	Hydraulic	Hydraulic
Number	Reading	Reading	Reading	Reading	Increment	Differential	Head	Head	Gradient	Conductivity	Conductivity
	Influent	Effluent	Influent	Effluent						,	at 20 C
	(cm ³)	(cm ³)	(cm ³)	(cm ³)	(min.)	(psi)	(cm)	(cm)	(cm/cm)	(cm/sec)	(cm/sec)
1	1.9	43.2	5.4	42.6	547	2.0	178.27	174.53	11.57	1.1E-07	1.0E-07
2	5.4	42.6	7.1	41.8	888	1.1	111.26	108.98	7.23	6.8E-08	6.6E-08
3	7.1	41.8	11.9	41.1	512	2.3	193.34	188.32	12.52	1.5E-07	1.4E-07
4	15	39.2	16.6	38	949	2.2	176.73	174.18	11.51	4.5E-08	4.3E-08
5	16.6	38	17.4	37.5	476	2.2	174.18	172.99	11.39	4.2E-08	4.0E-08
6	18.1	37.4	19.3	36.6	506	2.3	179.29	177.47	11.70	5.9E-08	5.7E-08
7	19.3	36.6	20.7	35.5	914	2.3	177.47	175.19	11.57	4.1E-08	4.0E-08
											_
	Average Hyd	draulic Condu	ctivity of Last	Four Test Increments =				4.5E-08	cm/sec		
			l								
k =	(aL/At) In (h1	l/h2)									_
			1		-	┨─────┤					-
						<u> </u>					
						+			+		
Water Content Befo	ore Test		-	Water Content A	fter Test				+		
Tare #			+	Tare #					+		-
Wet Soil + Tare (grams)	1082.50		+	Wet Soil + Tare (grams)	1297.90				+ +		-
Dry Soil + Tare (grams)	921.68		1	Dry Soil + Tare (grams)	1033.10						
Tare Weight (grams)	0.00		1	Tare Weight (grams)	111.42						
Water Content (%)	17.45		1	Water Content (%)	28.73				+ +		
Source	Specimen		1	Source	Specimen				+ +		
		1	1			4					

Tested By: RG/SJ

Tested By: SJ

_____ Checked By: NG