```
#This is Maple code
> # by Matt Anderson
> # have procecure to search for and find sets of prime numbers
    #input difference between the two prime numbers in variable diff1 (meaning difference 1)
    # note the set of prime numbers are not neccessarily consecutive primes.
    # you could use ithprime() to optimise this code, and make the calculations sub microsecond.
    # but it is pretty fast already. It is nice clean simple code.
    # input 0 for less than a 10 tuple. Just give pattern.
 \rightarrow tuple 10 := \mathbf{proc}(searchstop, diff1, diff2, diff3, diff4, diff5, diff6, diff7, diff8, diff9, diff10);
     local a, counter;
    counter := 1;
                                  # A passed parameter for list lengths is called searchstop.
    for a from 3 to searchstop by 2 do
    if isprime(a) and isprime(a+diff1) and isprime(a+diff2) and isprime(a+diff3)
         and isprime(a+diff4) and isprime(a+diff5) and isprime(a+diff6) and isprime(a+diff6)
         +diff7) and isprime(a+diff8) and isprime(a+diff9) and isprime(a+diff10) then
    print(counter, "hourah!! we found a set", a, "", a+diff1, "", a+diff2, a+diff3, a+diff4, a
         +diff5, a+diff6, a+diff7, a+diff8, a+diff9, a+diff10);
     counter := counter + 1;
     end if:
     end do:
     end proc;
tuple 10 := proc(searchstop, diff1, diff2, diff3, diff4, diff5, diff6, diff7, diff8, diff9, diff10)
                                                                                                      (1)
     local a, counter;
     counter := 1;
     for a from 3 by 2 to searchstop do
         if isprime(a) and isprime(a+diff1) and isprime(a+diff2) and isprime(a+diff3)
         and isprime(a+diff4) and isprime(a+diff5) and isprime(a+diff6) and isprime(a+diff6)
         +diff7) and isprime(a+diff8) and isprime(a+diff9) and isprime(a+diff10) then
             print(counter, "hourah!! we found a set", a, " ", a+diff1, " ", a+diff2, a+diff3, a
             +diff4, a+diff5, a+diff6, a+diff7, a+diff8, a+diff9, a+diff10);
             counter := counter + 1
         end if
     end do
end proc
    # now try the procedure - like a test drive for computer code. Let's see if it works.
    # these have set repitition. Pretty cool. Good fun.
   tuple10(1000, 82, 0, 0, 0, 0, 0, 0, 0, 0, 0);
                 1, "hourah!! we found a set", 7, " ", 89, " ", 7, 7, 7, 7, 7, 7, 7, 7
```

```
2, "hourah!! we found a set", 19, " ", 101, " ", 19, 19, 19, 19, 19, 19, 19, 19
 3, "hourah!! we found a set", 31, " ", 113, " ", 31, 31, 31, 31, 31, 31, 31, 31, 31
 4, "hourah!! we found a set", 67, " ", 149, " ", 67, 67, 67, 67, 67, 67, 67, 67
 5, "hourah!! we found a set", 97, " ", 179, " ", 97, 97, 97, 97, 97, 97, 97, 97
(2)
> # we have 37 sets of primes, and they are 82 apart. That is the difference between primes in a
 pair is 82.
# note OEIS.org only records prime pairs for even numbers 2 through 44.
# Also, OEIS has limited 3-tuples in the database. They are deemed 'not of general intrest'.
# all prime numbers
```

We want original calculations, that are not already in a public database.