
Prime Producing Polynomial  

By Matt 



Irreducible polynomial  

• An irreducible polynomial does not factor 
under the rational numbers. 

• W^2 + 1 is irreducible 

• Let h(n) = n^2 + n + 41 

• Then h(n) is irreducible. 



• Assume n is an integer 

• Again, h(n) = n^2 + n + 41. 

We can describe when h(n) is a composite 
number by  

 1)a data table / list,  

    2) by parametric expressions, and  

 3) by a single expression in two variables. 

 



Data table 

h(y) = y2+y+41 

h(y) mod x ≡ 0 

x y 

41 0 

41 40 

43 1 

43 41 

47 2 

47 44 

53 3 

53 49 

61 4 

61 56 



Parametric expressions 

n(2,1) = z^2 + 40 

 

n(3,1) = 3z^2 + 2z + 122 

 

n(3,2) = 6z^2 + z + 244 

 

Restrictions on n(r,c) – both r and c are integers, 
1<c, 0<r<c, and gcd(r,c) = 1 



Single expression p(r,c) 

 p(r,c) = (c*x – r*y)2 – r*(c*x – r*y) – x + 41*r2. 

 

Probrably, if p(r,c) = 0 then there are points on a 
graph.   

 

The graph is not shown here. 

 

End. 



A prime producing polynomial 

Observations on the Trinomial n2 + n + 41 

By Matt C. Anderson 

March 9 2021 

In number theory, 

We assume that n is an integer.  We focus our attention on the polynomial n2 + n 

+ 41.  Further, we analyze the behavior of the factorization of integers of the form 

q(n) = n2 + n + 41.        (expression 1) 

where n is a non-negative integer.  It was shown by Legendre, in 1798 that if  

0≤ n ≤ 40 then r(n) is a prime number.  Certain patterns become evident when 

considering points (a,n) where  

q(n) ≡ 0 mod a.        (expression 2) 

The collection of all such points produces what we are calling a “graph of discrete 

divisors”.  It has certain repeated features.  From experimental data, we find that 

the integer points in this dataset are contained by parabolas.  And more, the 

parabolas are described by a closed form expression.  We see that the parabolas 

are indexed (r,c) by pairs of relatively prime integers.  The expression for the 

middle parabolas is  

p(r,c) = (c*x – r*y)2 - x*(c*x – r*y) – x + 41*r2   (expression 3) 

The restrictions on p(r,c) are that 0<r<c and gcd(r,c) = 1.  Where gcd() means 

greatest common divisor of two arguments.  And all four of r,c,x, and y are 

integers. 

When we take the derivative of p(r,c) with respect to x and set this expression 

equal to zero, we obtain 

x = (163*r2)/4        (expression 4) 



Each such pair (r,c) yields (again determined experimentally and by observation of 

calculation in a computer algebra system) an integer polynomial a*z2 + b*z + c.  

The first few (r,c) pairs are (2,1); (3,2); (3,1); (4,3); (4,1) and (5,4).  Again, r and c 

must be relatively prime numbers.  Further, the quartic r(a*z2 + b*z + c) will factor 

algebraically over the integers into two quadratic expressions.  We call this our 

“parabola conjecture” (or conjecture ‘a’).  Certain structure in the ‘graph of 

discrete divisors’ are do to elementary relationships between pairs of co-prime 

integers.  

We conjecture that all composite values of r(n) arise by substituting integer values 

of z into q(a*z2 + b*z + c), where this quartic divisors algebraically over Z for a*z2 + 

b*z + c a quadratic polynomial determined by a pair of relatively prime integers (r, 

c).  We are confident of this conjecture because of the structure of the graph of 

discrete divisors produced by some computer code in our computer algebra 

system (Maple).  We call this our “no stray points conjecture” (or conjecture ‘b’)  

because all the points in the graph appear to lie on a parabola. 

We further conjecture that the minimum x-values for parabolas corresponding to 

(r, c) are given by expression 4.  The vertical lines x = 163*c2/4 where c = 2, 3, 4, …  

The numerical evidence seems to support this.  This is called our “parabolas line 

up conjecture. 

Theorem 1 – Consider r(n) with n a non negative integer.  Then, 

r(n) never has a factor less than 41. 

We prove Theorem 1 with a modular construction.  We make a residue table of 

r(y) mod x, with all the prime divisors less than 41.  A form of the fundamental 

theorem of arithmetic states that any integer greater than one is either a prime 

number, or can be written as a unique product of prime numbers (ignoring the 

order).  So if r(n) never has a prime factor less than 41, then by extension it never 

has a prime factor less than 41. 

For example, to determine that r(n) is never divisible by 2, note the first column of 

the residue table.  If n is even then r(n) is odd.  Similarly, if n is odd then r(n) is 



also odd.  In either case, r(n) does not have factorization by 2.  Since all integers 

are either even or odd, r(n) is never divisible by 2 when n is a positive integer. 

Also, for divisibility by 3, there are 3 cases to check.  They are n ≡ 0, 1, and 2 mod 

3.  r(0) mod 3 is 2.  r(1) mod 3 is 1 and r(2) mod 3 is 2.  Since none of these results 

is 0, we have that r(n) is never divisible by 3.  This is the second column of the 

residue table. 

The number 0 is first found in the residue table for the cases r(0) mod 41 and 

r(40) mod 41.  We can see that 402 + 40 + 41 = 412.  This means that if n is 

congruent to 0 mod 41 then r(n) will be divisible by 41.  What’s more is that these 

are the only two cases for divisibility by 41.  Similarly, if n is congruent to 40 mod 

41 the r(n) will also be divisible by 41. 

After the residue table, we observe a curve fit to our ‘graph of discrete divisors’ 

which has points when q(y) mod x is divisible by x.  This is an exact curve fit.  The 

points (x,y) can be seen in a data table, and on a bifurcation graph. 

< see residue table > 

Thus we have shown that q(n) never has a factor less than 41. 

Theorem 2 

Since q(a) = a2 + a + 41, we want to show that q(a) = q(-a-1). 

Proof of theorem 2 

Because q(a) = a*(a+1) + 41, 

Now q(-a -1) = (-a -1)*(-a -1 +1) + 41. 

So q(-a -1) = (-a –1)*(-a) + 41, 

And q(-a -1) = q(a). 

End of proof of theorem 2. 

Corrolary 1 

Further, if r(b) mod c ≡ 0 then q(c –b -1) mod c ≡ 0. 

We see that it is amazing that the data points all fall within an exact curve fit.  All 

the parabolas have integer coefficients. 



End 
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A composite number producing polynomial project 

Observations on the trinomial n2 + n + 41 

By Matthew C. Anderson 

 

We assume that n is an integer.  We consider the composite values of n
2
 + n + 41.  We 

only consider positive integer values for n in this paper. 

 

The story so far 

 

We consider the behavior of the factorization of integers of the form h(n) = n
2
 + n + 

41 where n is a non-negative integer.  It was shown by Legendre, in 1798 that if 0 ≤ 

n < 40 then h(n) is a prime number. 

 

Certain patterns become evident when considering points (x,y) where h(y) ≡ 0 mod x.  

These points can be enumerated using a computer tool such as a Computer Algebra 

System or spreadsheet program.  The collection of all such point produces what we are 

calling a “graph of discrete divisors” for h(n) due to certain self-similar features.  

From experimental computer data we find that the integer points in this graph lie on 

a collection of parabolic curves indexed by pairs of relatively prime integers.  Each 

such pair yields (again determined experimentally and by observation of calculations) 

an integer polynomial a*z
2
 + b*z + c, and the quartic h(a*z

2
 + b*z + c) then factors 

non-trivially over the integers into two quadratic expressions.  A quadratic 

expression, when graphed forms a parabola. 

 

We call this above statement our "parabola conjecture".   

 

Conjecture is a mathematical term that means possibly true statement. 

 

Certain symmetries in the graph of divisors are due to elementary relationships 

between pairs of co-prime integers.  For instance if m<n are co-prime integers, then 

there is an observable relationship between the parabola it determines that that 

formed from (n-m, n). 

 

We conjecture that all composite values of h(n) arise by substituting integer values 

of z into h(a*z
2
 + b*z + c), where this quartic factors algebraically over Z for a*z

2
 

+ b*z + c a quadratic polynomial determined by a pair of relatively prime integers.   

 

We name this above statement our "no stray points conjecture" because all the points 

in the graph of discrete divisors appear to lie on parabolas. 

 

We further conjecture that the minimum x-values for parabolas corresponding to (m, n) 

with gcd(m, n) = 1 are equal for fixed n.  Further, these minimum x-values of 

parabolas line up at 163*d^2/4 where d = 1, 2, 3, ...  The numerical evidence seems 

to support this.   

 

This statement above is called our "parabolas line up" conjecture. 

 

The notation gcd(m, n) used above is defined here.  The greatest common devisor of 

two integers is the smallest whole number that divides both of those integers.  

 

Theorem 1 - Consider h(n) with n a non negative integer.   

h(n) never has a factor less than 41. 

 



We prove Theorem 1 with a modular construction.  We make a residue table with all the 

prime factors less than 41.  The fundamental theorem of arithmetic states that any 

integer greater than one is either a prime number, or can be written as a unique 

product of prime numbers (ignoring the order).  So if h(n) never has a prime factor 

less than 41, then by extension it never has an integer factor less than 41. 

 

For example, to determine that h(n) is never divisible by 2, note the first column of 

the residue table.  If n is even, then h(n) is odd.  Similarly, if n is odd then h(n) 

is also odd.  In either case, h(n) does not have factorization by 2. 

 

Also, for divisibility by 3, there are 3 cases to check.  They are n = 0, 1, and 2 

mod 3. h(0) mod 3 is 2.  h(1) mod 3 is 1. and h(2) mod 3 is 2.  Due to these three 

cases, h(n) is never divisible by 3.  This is the second column of the residue table. 

 

The number 0 is first found in the residue table for the cases h(0) mod 41 and h(40) 

mod 41.  This means that if n is congruent to 0 mod 41 then h(n) will be divisible by 

41.  Similarly, if n is congruent to 40 mod 41 then h(n) is also divisible by 41. 

After the residue table, we observe a bifurcation graph which has points when h(y) 

mod x is divisible by x.  The points (x,y) can be seen on the bifurcation graph. 

 

*see residue table page* 

 

Thus we have shown with a proof that h(n) never has a factor less than 41. 

 

 

Theorem 2 

 

Since h(a) = a^2 + a + 41,  we want to show that h(a) = h( -a -1). 

 

Proof of Theorem 2 

Because h(a) = a*(a+1) + 41, 

Now h(-a -1) = (-a -1)(-a - 1 + 1) + 41. 

So h(-a -1) = (-a -1)*(-a) + 41, 

And h( -a -1) = h(a) 

 

Which was what we wanted 

End Proof of Theorem 2 

 

 

Corollary 1 

 

Further  if h(b) mod c ≡ 0 the h(c -b -1) mod c ≡ 0. 

 

We can observe interesting patterns in the graph of discrete divisors on a following 

page. 

 

 

  



Residue Table 
            

 
2 3 5 7 11 13 17 19 23 29 31 37 41 43 

 
0 1 2 1 6 8 2 7 3 18 12 10 4 0 41 

 1 1 1 3 1 10 4 9 5 20 14 12 6 2 0 
 2 

 
2 2 5 3 8 13 9 1 18 16 10 6 4 

 3 
  

3 4 9 1 2 15 7 24 22 16 12 10 
 4 

  
1 5 6 9 10 4 15 3 30 24 20 18 

 5 
   

1 5 6 3 14 2 13 9 34 30 28 
 6 

   
6 6 5 15 7 14 25 21 9 1 40 

 7 
    

9 6 12 2 5 10 4 23 15 11 
 8 

    
3 9 11 18 21 26 20 2 31 27 

 9 
    

10 1 12 17 16 15 7 20 8 2 
 10 

    
8 8 15 18 13 6 27 3 28 22 

 11 
     

4 3 2 12 28 18 25 9 1 
 12 

     
2 10 7 13 23 11 12 33 25 

 13 
      

2 14 16 20 6 1 18 8 
 14 

      
13 4 21 19 3 29 5 36 

 15 
      

9 15 5 20 2 22 35 23 
 16 

      
7 9 14 23 3 17 26 12 

 17 
       

5 2 28 6 14 19 3 
 18 

       
3 15 6 11 13 14 39 

 19 
        

7 15 18 14 11 34 
 20 

        
1 26 27 17 10 31 

 21 
        

20 10 7 22 11 30 
 22 

        
18 25 20 29 14 31 

 23 
         

13 4 1 19 34 
 24 

         
3 21 12 26 39 

 25 
         

24 9 25 35 3 
 26 

         
18 30 3 5 12 

 27 
         

14 22 20 18 23 
 28 

         
12 16 2 33 36 

 29 
          

12 23 9 8 
 30 

          
10 9 28 25 

 31 
           

34 8 1 
 32 

           
24 31 22 

 33 
           

16 15 2 
 34 

           
10 1 27 

 35 
           

6 30 11 
 36 

           
4 20 40 

 37 
            

12 28 
 38 

            
6 18 

 39 
            

2 10 
 40 

            
0 4 

 41 
             

0 
 42 

             
41 

 

                  



 

The function h(n) which was defined as n2 + n +41 has interesting properties.  Especially when n is restricted to the 

integers.  As we know h(n) is a prime number for as n goes from 0 to39.   

h(40) = 412, which is a composite number. 

 

Also h(n) can be generated recursively as h(0) = 0 and h(n) = h(n-1) + 2*n.   

This is a linear recurrence with constant coefficients. 

 

 

Bifurcation Graph  

These are pairs of numbers (x,y) such that h(y) mod x ≡ 0. 

And h(y) = y2 + y + 41. 

  



 

 

Here is a zoomed out iteration of the same graph as the previous page. 

There seems to b an apparent regular structure in this graph of divisibility. 

The points give themselves to an exact curve fit of parabolas. 

The general form of these parabolas is –  

p(r,c) = c2x2 – 2c*r*x*y +r2y2 – (c*r +1)*x + r2y +41r2.   (Equation 1). 

p is for parabola, r is for row index, c is for column index, x is the horizontal axis and y is the vertical axis. 

This does not include the top and bottom parabolas. 

There are also 3 restrictions. 

1<r 

0<c<r 

Gcd(r,c) = 1. 

All the parabolas can be described exactly and algebraically. 

 

  



The x minimum of p(r,c) is 

Pmin  = (163*r^2)/4.      (expression 2) 

This can be found with the Mape Commmand extrema. 

To wit –  

 

 

This project is not finished. 

  



Here is some Maple code to show the exact curve fit for the graph of divisors. 

> # Maple code  
> x[bottom] := z^2+z+41; y[bottom] := z; 
> p2 := plot([x[bottom], y[bottom], z = 0 .. 20]); 
> with(plots); 
> x[1, 1, top] := z^2+z+41; y[top] := z^2+40; 
> p3 := plot([x[top], y[top], z = 0 .. 20]); 
>  
> y[2, 1] := 2*z^2+z+81; x[2, 1] := 4*z^2+163;  
> p4 := plot([x[2, 1], y[2, 1], z = -10 .. 10]);  
>  
> y[3, 1] := 3*z^2+2*z+122; x[3, 1] := 9*z^2+3*z+367; 
> p5 := plot([x[3, 1], y[3, 1], z = -4 .. 3]); 
>  
> y[3, 2] := 6*z^2+z+244; x[3, 2] := 9*z^2+3*z+367; 
> p6 := plot([x[3, 2], y[3, 2], z = -4 .. 3]); 
> 
> d1 := display([p2, p3, p4, p5, p6]) 
> # code for graph of divisors 
> xv := Vector[row](89); yv := Vector[row](89); counter := 1;  
> for a from 2 to 600 do  
     for b from 0 to a-1 do  
        if `mod`(b^2+b+41, a) = 0 then  
           xv[counter] := a; yv[counter] := b; counter := counter+1  
        end if  
     end do  
  end do; 
> counter; 
> d2 := plot(xv, yv, style = point, symbol = asterisk); 
> display(d1, d2) 
> # This produces a graph. 

 

The graph of divisors with 5 parabolas appears on the next page. 

  



 

Graph of Divisors with parabolas that exactly fit the points 

 

  



 

 

 

 

 

There is still more to be done with this project. 

 



A prime producing polynomial. 

 

Observations on the trinomial n
2
 + n + 41. 

 

by Matt C. Anderson 

 

May 2021 

 

In number theory, 

 

We analyze the behavior of the factorization of integers of the form  

 

h(n) = n
2
 + n + 41        (expression 1) 

 

where n is a non-negative integer.  It was shown by Legendre, in 1798 that 

if 0 ≤ n < 40 then h(n) is a prime number. 

 

Given that n is restricted to positive integers, it is an unsolved problem 

whether or not h(n) is a prime number an infinite number of times.  I 

suspect that h(n) is prime infinitely often.  Numerical evidence supports 

this. 

 

Certain patterns become evident when considering points (a,n) where  

 

h(n) ≡ 0 mod a.          (expression 2) 

 

The collection of all such point produces what we are calling a "graph of 

discrete divisors" due to certain self-similar features.  From 

experimental data we find that the integer points in this bifurcation 

graph lie on a collection of parabolic curves indexed by pairs of 

relatively prime integers.  The expression for the middle parabolas is –  

 

p(r,c) = (c*x – r*y)
2
 – r*(c*x – r*y) – x + 41*r

2
.  (expression 3) 

 

The restrictions are that 0<r<c and gcd(r,c) = 1 and all four of r,c,x, 

and y are integers. 

 

Each such pair (r,c) yields (again determined experimentally and by 

observation of calculations) an integer polynomial a*z2 + b*z + c, and the 

quartic h(a*z2 + b*z + c) then factors non-trivially over the integers 

into two quadratic expressions.  We call this our "parabola conjecture".  

Certain symmetries in the bifurcation graph are due to elementary 

relationships between pairs of co-prime integers.  For instance if m<n are 

co-prime integers, then there is an observable relationship between the 

parabola it determines that that formed from (n-m, n). 

 

We conjecture that all composite values of h(n) arise by substituting 

integer values of z into h(a*z
2
 + b*z + c), where this quartic factors 

algebraically over Z for a*z
2
 + b*z + c a quadratic polynomial determined 

by a pair of relatively prime integers.  We name this our "no stray points 

conjecture" because all the points in the bifurcation graph appear to lie 

on a parabola. 

 



We further conjecture that the minimum x-values for parabolas 

corresponding to (r, c) with gcd(r, c) = 1 are equal for fixed n.  

Further, these minimum x-values line up at 163*c^2/4 where c = 2, 3, 4, 

...  The numerical evidence seems to support this.  This is called our 

"parabolas line up" conjecture. 

 

The notation gcd(r, c) used above is defined here.  The greatest common 

devisor of two integers is the smallest whole number that divides both of 

those integers.  

 

Theorem 1 – The only small factors theorem - Consider h(n) with n a non 

negative integer.   

h(n) never has a factor less than 41. 

 

We prove Theorem 1 with a modular construction.  We make a residue table 

with all the prime factors less than 41.  Also, we test all possible 

residues for each prime.   

 

For example, to determine that h(n) is never divisible by 2, note the 

first column of the residue table.  If n is even, then h(n) is odd.  

Similarly, if n is odd then h(n) is also odd.  In either case, h(n) does 

not have factorization by 2. 

 

Also, for divisibility by 3, there are 3 cases to check.  They are n = 0, 

1, and 2 mod 3. h(0) mod 3 is 2.  h(1) mod 3 is 1. and h(2) mod 3 is 2.  

Due to these three cases, h(n) is never divisible by 3.  This is the 

second column of the residue table. 

 

The number 0 is first found in the residue table for the cases h(0) mod 41 

and h(40) mod 41.  This means that if n is congruent to 0 mod 41 then h(n) 

will be divisible by 41.  Similarly, if n is congruent to 40 mod 41 then 

h(n) is also divisible by 41. 

After the residue table, we observe a bifurcation graph which has points 

when h(y) mod x is divisible by x.  The points (x,y) can be seen on the 

bifurcation graph. 

 

< see residue table in appendix 4 > 

 

Thus we have shown that h(n) never has a factor less than 41.  This ends 

our proof. 

 

The fundamental theorem of arithmetic states that any integer greater than 

one is either a prime number, or can be written as a unique product of 

prime numbers (ignoring the order).  So if h(n) never has a prime factor 

less than 41, then by extension it never has an integer factor less than 

41. 

 

 

Theorem 2 – the near mirror symmetry theorem 

 

Since h(a) = a^2 + a + 41, we want to show that h(a) = h( -a -1). 

 

Proof of Theorem 2 

Because h(a) = a*(a+1) + 41, 



Now h(-a -1) = (-a -1)*(-a -1 +1) + 41. 

So h(-a -1) = (-a -1)*(-a) +41, 

And h(-a -1) = h(a). 

Which was what we wanted. 

End of proof of theorem 2. 

 

Corollary 1 

Further, if h(b) mod c ≡ = then h(c –b -1) mod c ≡ 0. 

 

We can observe interesting patterns in the graph of discrete divisors on a 

following page. 

 

 

The curve fit data is shown below. 



 

Graph of discrete divisors. 

  



Undiscovered Expressions 

So far, we want to determine when h(n) = n2 + n + 41 is a prime number.  We produce a dataset that 

satisfies the congruency h(y) ≡ 0 mod x.  In other words, we find ordered pairs (x,y) such that x divides 

h(y).  The graph of all pairs (x,y) seems to have obvious regularity and patterns.  We are able to tabulate 

coefficients of parabolas that exactly fit the data.  Here are the first few parabolas : 

P bottom x (z) = z2 + z + 41 

P bottom y (z) = z 

P top x (z) = z2 – z + 41 

P top y (z) = z2 + 40 

P 2,1 x (z) = 4*z2 + 163 

P 2,1 y (z) = 2*z2 + z + 81 

P 3,2 x (z) = 4*z2 + 163 

P 3,2 y(z) = 6*z2 + z + 244 

P 3,1 x (z) = z2 + z + 41 

P 3,1 y (z) = 3*z2 + 2*z + 122 

A computer tool can show that h( P 2,1 x(z)) = P 2,1 y(z) * (z2 +  z + 41).   (equation *) 

The Maple command subs() can substitute one expression into another.  Also the Maple command 

factor() can factor quartic polynomials. 

The important part of equation * is that the right hand side is the product of two integers, both greater 

than one.  This proves that h( P 2,1(z)) is a composite number.  In other words, if you put a positive 

integer of the form 4*z2 +163 as input to h(n), then you will get a composite number as output. 

We have the general parabola 

P c,r x(z) and P c,r y(z). 

I was unable to determine these expressions.  It may be impossible and it is related to the distribution of 

prime numbers.   

My naming scheme for the parabolas requires c and r to be integers and  

0>r>c and gcd(r,c) = 1 

Where gcd is the Greatest Common Divisor of two integers. 

So the first few parabolas are, besides top and bottom, 

P 2,1 



P 3,1 P 3,2 

P 4,1  P 4,3 

P 5,1 P 5,2 P 5,3 P 5,4 

Hopefully the naming convention for P c,r is now clear. 

I was able to determine an expression for P c,r that eliminates z. 

This is expression 3 from before 

P r,c = (c*x – r*y)2 – r*(c*x – r*y) – x + 41*r2 

We assume r and c are integers.   

  



Appendix 1 - Maple Code for graph of discrete divisors 

 

The number 378 was chosen by trial and error to completely fill the vector of length 55.  The 

number 55 was chosen so that we can easily identify 5 parabolas from the data points. 

 
This code creates a data set and stores it in two vectors. 

Appendix 2 – Mape Code for exact curve fit parabolas 

 
> x[1, 1, bottom] := z^2+z+41; y[1, 1] := z;  
> p2 := plot([x[1, 1, bottom], y[1, 1], z = 0 .. 20]);  
> with(plots);  
> display(p2);  
>  
> x[1, 1, top] := z^2+z+41; y[1, 1, top] := z^2+40;  
> p3 := plot([x[1, 1, top], y[1, 1, top], z = 0 .. 20]);  
> display(p3);  
>  
> y[2, 1] := 2*z^2+z+81; x[2, 1] := 4*z^2+163;  
> p4 := plot([x[2, 1], y[2, 1], z = -10 .. 10]);  
> display(p4);  
>  
> y[3, 1] := 3*z^2+2*z+122; x[3, 1] := 9*z^2+3*z+367;  
> p5 := plot([x[3, 1], y[3, 1], z = -4 .. 3]);  
>  
> y[3, 2] := 6*z^2+z+244; x[3, 2] := 9*z^2+3*z+367;  
> p6 := plot([x[3, 2], y[3, 2], z = -4 .. 3]); 

This code shows that parabolas exactly fit the data produced by (expression 2). 

See graph  above. 

  



Appendix 3 

Graph of discrete divisors with 7 parabolas. 

 

 

The data in this graph seems to appear with a (mostly) regular pattern. 

  



Appendix 4 – residue table 

 

Thus we have tried all prime divisors from 2 to 37 inclusive.  None of them give a zero residue.  The four 

residues in the residue table involve divisibility by 41 and 43. 



A prime producing quadratic expression. 

An exploration on the trinomial f(n) = n^2 + n + 41.  Where n is a non-negative integer. 

Apparently, all cases where f(n) is a composite number can be listed systematically. 

Maple Code for exact curve fit parabolas.  Parabolas are described parametrically. 

 

> x[1, 1, bottom] := z^2+z+41; y[1, 1] := z; 

> p2 := plot([x[1, 1, bottom], y[1, 1], z = 0 .. 20]); 

> with(plots); 

> display(p2); 

>  

> x[1, 1, top] := z^2+z+41; y[1, 1, top] := z^2+40; 

> p3 := plot([x[1, 1, top], y[1, 1, top], z = 0 .. 20]); 

> display(p3); 

>  

> y[2, 1] := 2*z^2+z+81; x[2, 1] := 4*z^2+163;  

> p4 := plot([x[2, 1], y[2, 1], z = -10 .. 10]);  

> display(p4); 

>  

> y[3, 1] := 3*z^2+2*z+122; x[3, 1] := 9*z^2+3*z+367; 

> p5 := plot([x[3, 1], y[3, 1], z = -4 .. 3]); 

>  

> y[3, 2] := 6*z^2+z+244; x[3, 2] := 9*z^2+3*z+367; 

> p6 := plot([x[3, 2], y[3, 2], z = -4 .. 3]); 

Now see plot on next page 

  



 

 

Data points of y2+y+41          .  Also, parabolic exact curve fit of this data. 

Rules for naming parabolas 

p_r,c with  p for parabola, r for row and c for column.  Require that r and c are positive integers.  Also, 

0<r<c and gcd(r,c) = 1.  Where gcd stands for greatest common divisor.  Also, the count of the number of 

c parabolas for a given r is Euler’s phi function phi(r). This enumerates as phi(r) = 1,2,2,4,2, … see 

oeis.org/A10.   

  

file:///C:/Users/Matt%20Anderson/Documents/project/oeis.org/A10


Here is a zoomed out view of the same graph. 

 

Horizontal minimum of parabolas (not including p_top and p_bottom) is  163*(x2)/4.  For some reason, 

the parabolas line up.  Such is the nature of the integers. 

  



A prime producing polynomial graph again with more analysis. 

 

See that 163*1/4 = 40.75.  And, 163*(22)/4 = 163. And 163*(32)/4 = 366.75.  So we have 3 vertical lines.  

The x minimum of the curve fit graphs line up exactly with the vertical lines.  The parabolas are tangent 

there. 
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We assume n is an integer.  From before, h(n) = n^2 + n + 41.  Our “graph of discrete divisors” shows 

values of y such that 0<y<x and h(y) mod x is congruent to 0.  See graph. 

 

The points on the graph can be connected by exact curve fit.  The connecting curves are parabolas.  We 

have defined a numbering system for each of the parabolas.  All the parabolas are defined 

parametrically. 

 



 

Curve_R_C is defined where R and C are integers and 0<C<R.  Also gcd(R,C) = 1.  That is to say, the row 

index and column index must be relatively prime. 



 

 

Take this for what it’s worth. 

Matt 
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Analysis of the trinomial f(n) = n2 + n + 17. 

Abstract – Assuming that n is an non-negative integer, we find a pattern of when f(n) = n2 + n + 17 is a 

composite number.  We assign n as n = A*x2+B*x+C.  Where A, B, and C are determined by numerical 

evidence.  The f(n) factors algebraically, and f(n) is a composite number. 

We use the Maple program to calculate the values of ‘n’ where f(n) is a composite number.  Then we 

graph these results.  The graph shows some structure for the composite cases.  See Maple code. 
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Residue Table

2 3 5 7 11 13 17 19 23 29 31 37 41 43

0 1 2 1 6 8 2 7 3 18 12 10 4 0 41 Explaination of Residue Table

1 1 1 3 1 10 4 9 5 20 14 12 6 2 0 column index, C are across the top

2 2 2 5 3 8 13 9 1 18 16 10 6 4 row index, R are found along the side

3 3 4 9 1 2 15 7 24 22 16 12 10

4 1 5 6 9 10 4 15 3 30 24 20 18 table values are calculated by

5 1 5 6 3 14 2 13 9 34 30 28 R^2 + R + 41 mod C

6 6 6 5 15 7 14 25 21 9 1 40

7 9 6 12 2 5 10 4 23 15 11 Notice that columns 

8 3 9 11 18 21 26 20 2 31 27 with 41 and 43 contain 0 twice.

9 10 1 12 17 16 15 7 20 8 2

10 8 8 15 18 13 6 27 3 28 22 These 0 values become points in the 

11 4 3 2 12 28 18 25 9 1 graph of discrete divisors.

12 2 10 7 13 23 11 12 33 25

13 2 14 16 20 6 1 18 8

14 13 4 21 19 3 29 5 36

15 9 15 5 20 2 22 35 23

16 7 9 14 23 3 17 26 12

17 5 2 28 6 14 19 3

18 3 15 6 11 13 14 39

19 7 15 18 14 11 34

20 1 26 27 17 10 31

21 20 10 7 22 11 30

22 18 25 20 29 14 31

23 13 4 1 19 34

24 3 21 12 26 39

25 24 9 25 35 3

26 18 30 3 5 12

27 14 22 20 18 23

28 12 16 2 33 36

29 12 23 9 8

30 10 9 28 25

31 34 8 1

32 24 31 22

33 16 15 2

34 10 1 27

35 6 30 11

36 4 20 40

37 12 28

38 6 18

39 2 10

40 0 4

41 0

42 41
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