```
> # Goldbach's Weak Conjecture is equivalent to all odd numbers greater than 9 are the sum of 3
        odd prime numbers.
> # This 3 primes problem was proven in 2013 by Helfgott.
> # We will shine a light on his efforts.
# His proof is over 50 pages and involves mathematical 'major arcs'.
> # Here we consider only the sum of two prime numbers. This is called the 'strong Goldbach
        conjecture'.
> restart
> # Goldbach Partition written gp
> gp := \mathbf{proc} (n :: integer) :: integer,
     description "Return the number of ways that n can be written as the sum of two primes.";
     local a, b, c, d, temp, counter;
     counter := 0;
     for b from 2 to \frac{n}{2} do
     for c from 2 to \frac{n}{2} do
     temp := ithprime(b) + ithprime(c);
     if n = temp then counter := counter + 1; end if;
     end do:
     end do:
     return counter;
     end proc;
                                                                                                     (1)
gp := \mathbf{proc}(n::integer)::integer;
    local a, b, c, d, temp, counter;
    description "Return the number of ways that n can be written as the sum of two primes.";
    counter := 0;
    for b from 2 to 1/2*n do
        for c from 2 to 1/2*n do
             temp := ithprime(b) + ithprime(c); if n = temp then counter := counter + 1 end if
         end do
    end do;
    return counter
end proc
 > gp(2)
                                                0
                                                                                                     (2)
                                                                                                     (3)
> for e from 2 to 20 by 2 do
    print(e, gp(e))
     end do
                                               2, 0
                                               4, 0
                                               6, 1
                                               8, 2
```

```
10, 3
12, 2
14, 3
16, 4
18, 4
20, 4

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is only 3 + 3, given only odd prime numbers. Also, 8 is 5+3 and 3+5, so gp
(8) is 2. Similarly, 10 is 5+5, 3+7 and 7 + 3. and gp(10) is 3.

When the first example 6 is o
```