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Any set of prime numbers, with count ‘k’, is a k-tuple.  There are no restrictions.   
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The story so far 

 

We assume that n is an integer.  We focus our attention on the polynomial 

n^2 + n + 41. 

 

Further, we analyze the behavior of the factorization of integers of the 

form  

 

h(n) = n^2 + n + 41        (expression 1) 

 

where n is a non-negative integer.  It was shown by Legendre, in 1798 

that if 0 ≤ n < 40 then h(n) is a prime number. 

 

Certain patterns become evident when considering points (a,n) where  

 

h(n) ≡ 0 mod a.          (expression 2) 

 

The collection of all such point produces what we are calling a "graph of 

discrete divisors" due to certain self-similar features.  From 

experimental data we find that the integer points in this bifurcation 

graph lie on a collection of parabolic curves indexed by pairs of 

relatively prime integers.  The expression for the middle parabolas is –  

 

p(r,c) = (c*x – r*y)
2
 – r*(c*x – r*y) – x + 41*r

2
.  (expression 3) 

 

The restrictions are that 0<r<c and gcd(r,c) = 1 and all four of r,c,x, 

and y are integers. 

 

Each such pair (r,c) yields (again determined experimentally and by 

observation of calculations) an integer polynomial a*z2 + b*z + c, and 

the quartic h(a*z2 + b*z + c) then factors non-trivially over the 

integers into two quadratic expressions.  We call this our "parabola 

conjecture".  Certain symmetries in the bifurcation graph are due to 

elementary relationships between pairs of co-prime integers.  For 

instance if m<n are co-prime integers, then there is an observable 

relationship between the parabola it determines that that formed from (n-

m, n). 

 

We conjecture that all composite values of h(n) arise by substituting 

integer values of z into h(a*z
2
 + b*z + c), where this quartic factors 

algebraically over Z for a*z
2
 + b*z + c a quadratic polynomial determined 

by a pair of relatively prime integers.  We name this our "no stray 

points conjecture" because all the points in the bifurcation graph appear 

to lie on a parabola. 

 



We further conjecture that the minimum x-values for parabolas 

corresponding to (r, c) with gcd(r, c) = 1 are equal for fixed n.  

Further, these minimum x-values line up at 163*c^2/4 where c = 2, 3, 4, 

...  The numerical evidence seems to support this.  This is called our 

"parabolas line up" conjecture. 

 

The notation gcd(r, c) used above is defined here.  The greatest common 

devisor of two integers is the smallest whole number that divides both of 

those integers.  

 

Theorem 1 - Consider h(n) with n a non negative integer.   

h(n) never has a factor less than 41. 

 

We prove Theorem 1 with a modular construction.  We make a residue table 

with all the prime factors less than 41.  The fundamental theorem of 

arithmetic states that any integer greater than one is either a prime 

number, or can be written as a unique product of prime numbers (ignoring 

the order).  So if h(n) never has a prime factor less than 41, then by 

extension it never has an integer factor less than 41. 

 

For example, to determine that h(n) is never divisible by 2, note the 

first column of the residue table.  If n is even, then h(n) is odd.  

Similarly, if n is odd then h(n) is also odd.  In either case, h(n) does 

not have factorization by 2. 

 

Also, for divisibility by 3, there are 3 cases to check.  They are n = 0, 

1, and 2 mod 3. h(0) mod 3 is 2.  h(1) mod 3 is 1. and h(2) mod 3 is 2.  

Due to these three cases, h(n) is never divisible by 3.  This is the 

second column of the residue table. 

 

The number 0 is first found in the residue table for the cases h(0) mod 

41 and h(40) mod 41.  This means that if n is congruent to 0 mod 41 then 

h(n) will be divisible by 41.  Similarly, if n is congruent to 40 mod 41 

then h(n) is also divisible by 41. 

After the residue table, we observe a bifurcation graph which has points 

when h(y) mod x is divisible by x.  The points (x,y) can be seen on the 

bifurcation graph. 

 

< insert residue table here > 

 

Thus we have shown that h(n) never has a factor less than 41. 

 

Theorem 2 

 

Since h(a) = a^2 + a + 41, we want to show that h(a) = h( -a -1). 

 

Proof of Theorem 2 

Because h(a) = a*(a+1) + 41, 

Now h(-a -1) = (-a -1)*(-a -1 +1) + 41. 

So h(-a -1) = (-a -1)*(-a) +41, 

And h(-a -1) = h(a). 

Which was what we wanted. 

End of proof of theorem 2. 

 



Corrolary 1 

Further, if h(b) mod c ≡ = then h(c –b -1) mod c ≡ 0. 

 

We can observe interesting patterns in the “graph of discrete divisors” 

on a following page. 



Residue Table

2 3 5 7 11 13 17 19 23 29 31 37 41 43

0 1 2 1 6 8 2 7 3 18 12 10 4 0 41 Explaination of Residue Table

1 1 1 3 1 10 4 9 5 20 14 12 6 2 0 column index, C are across the top

2 2 2 5 3 8 13 9 1 18 16 10 6 4 row index, R are found along the side

3 3 4 9 1 2 15 7 24 22 16 12 10

4 1 5 6 9 10 4 15 3 30 24 20 18 table values are calculated by

5 1 5 6 3 14 2 13 9 34 30 28 R^2 + R + 41 mod C

6 6 6 5 15 7 14 25 21 9 1 40

7 9 6 12 2 5 10 4 23 15 11 Notice that columns 

8 3 9 11 18 21 26 20 2 31 27 with 41 and 43 contain 0 twice.

9 10 1 12 17 16 15 7 20 8 2

10 8 8 15 18 13 6 27 3 28 22 These 0 values become points in the 

11 4 3 2 12 28 18 25 9 1 graph of discrete divisors.

12 2 10 7 13 23 11 12 33 25

13 2 14 16 20 6 1 18 8

14 13 4 21 19 3 29 5 36

15 9 15 5 20 2 22 35 23

16 7 9 14 23 3 17 26 12

17 5 2 28 6 14 19 3

18 3 15 6 11 13 14 39

19 7 15 18 14 11 34

20 1 26 27 17 10 31

21 20 10 7 22 11 30

22 18 25 20 29 14 31

23 13 4 1 19 34

24 3 21 12 26 39

25 24 9 25 35 3

26 18 30 3 5 12

27 14 22 20 18 23

28 12 16 2 33 36

29 12 23 9 8

30 10 9 28 25

31 34 8 1

32 24 31 22

33 16 15 2

34 10 1 27

35 6 30 11

36 4 20 40

37 12 28

38 6 18

39 2 10

40 0 4

41 0

42 41







Exact Curve Fit 
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Prime Producing Polynomail project rehash 

By Matt C. Anderson 

9/11/2016 

 

We assume n is an integer.  From before, h(n) = n^2 + n + 41.  Our “graph of discrete divisors” shows 

values of y such that 0<y<x and h(y) mod x is congruent to 0.  See graph. 

 

The points on the graph can be connected by exact curve fit.  The connecting curves are parabolas.  We 

have defined a numbering system for each of the parabolas.  All the parabolas are defined 

parametrically. 

 



 

Curve_R_C is defined where R and C are integers and 0<C<R.  Also gcd(R,C) = 1.  That is to say, the row 

index and column index must be relatively prime. 



 

 

Take this for what it’s worth. 

Matt 
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