APPENDIX C

1 07

: E.S.

1 1 1 1 2 1

kood North P^{art}

in dest

prot Eu em

> i. kesi.i

د وسم ا

e m

6.0

124.3

i İtanı

 $\dot{t}_{\rm const}$

10.22

iner T

Sec.

k. J

 $\log d$

haist

PROJECT NO: 75-083-EG

ier V NSC

> par : Last

لفينها

eren Listo

ip m

. Katali

6379 |

CHECKED BY:

. Lessed

PREPARED BY:

APPROVED BY A 11 W. A . DATE .

E por

Geod

fillemo

TEST DATA SUMMARY

1 of 3

	ANULAR DIL COMPONENTS			
Boring No.	Depth (ft.)	Soil Type	Percentage Sand/Gravel	Percentage Silt/Clay
S-1	2.0	ML	25	75
S-l	21	CL-ML	25	75
S-4	10	CL-ML	2	98
S-7	20	SP	96	4
S-10	5	CL-ML	19	81
s-10	10	SM	55	45
S-12	10	CL-ML	20	80
S-12	15	CL-ML	27	73
S-13	25	SP-SM	91	9
TU-5	14	SM	86	14

EXPANSION TEST RESULTS

	Expansion (%)						
Boring Depth No. (ft.)		Air Dried/Field	Field/Saturated	Air Dried/ Saturated			
18	CL	9.0	4.4	13.4			
2	CL	4.9	0.9	5.8			
4	CL	12.2	2.4	14.6			
5	CL	9.0	1.0	10.0			
20	CL	12.1	5.0	17.4			
	(ft.) 18 2 4 5	(ft.) Type 18 CL 2 CL 4 CL 5 CL	Depth Soil (ft.) Type Air Dried/Field 18 CL 9.0 2 CL 4.9 4 CL 12.2 5 CL 9.0	Depth Soil (ft.) Soil Type Air Dried/Field Field/Saturated 18 CL 9.0 4.4 2 CL 4.9 0.9 4 CL 12.2 2.4 5 CL 9.0 1.0			

PROJECT NO: 75-083-EG

. (53)a

(aligned

i fildan Galaa

- CHECKED BY:

. Katal

PREPARED 8Y:

APPROVED BY M. . . DATE . . .

1 000m

laria 13274

1,652

land.

	SAND EQ	UIVALENT TEST	
Boring No.	Depth (ft.)	Soil Type S	and Equivalent
C-12	11	ML	4
PL-2	17	SM	9
PL-4	21	SM	38
PL-5	16	ML	2
PL-6	18	SP-SM	48
PL-8	15	SM	30
SP-2	13	SM	8

DIRECT SHEAR TEST RESULTS

Boring No.	Depth (ft.)	Soil Type	Normal Stress (pcf)	Shear Strength (pcf)
S-7	6	ML	250	280
S-7	6	ML	1000	400
S-7	6	ML	2000	1000
S-7	11	SM	500	300
S-7	11	SM	1200	1850
S-7	11	SM	2200	1900

R VALUE TEST RESULTS

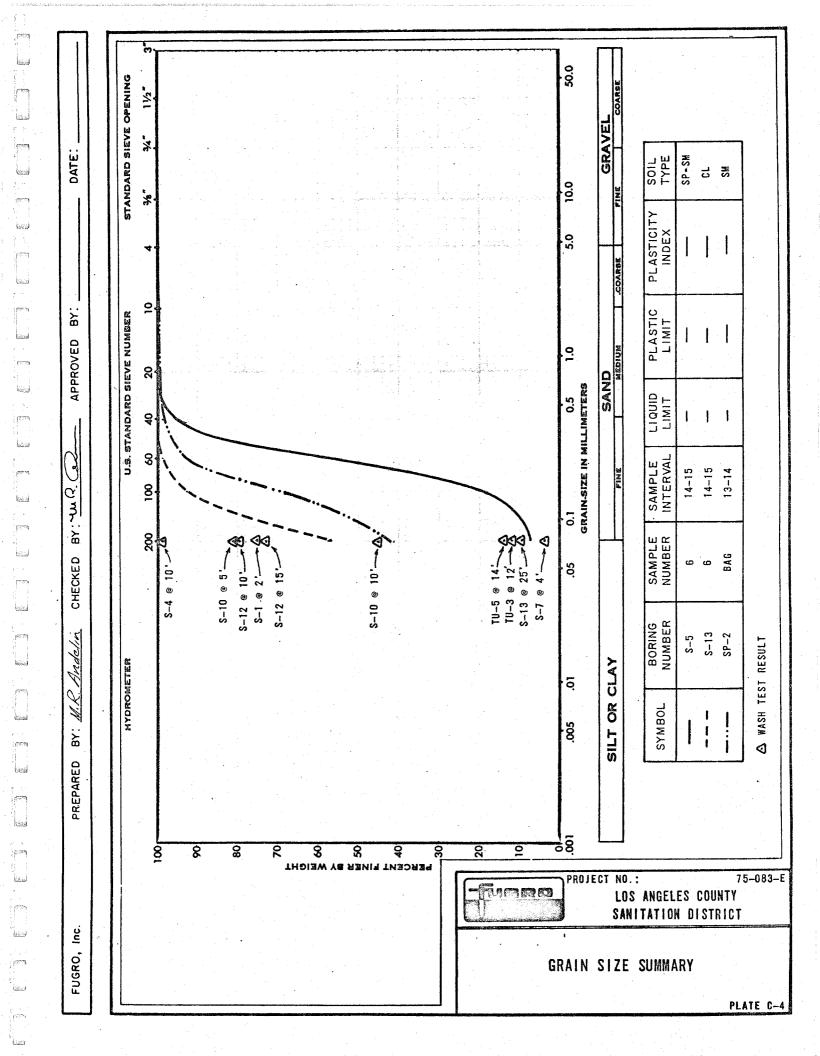
Boring No.	Depth (ft.)	Soil Type	R Value
B-3	11	' CL	3
PL-5	16	CL	4
PL-8	15	SM	63

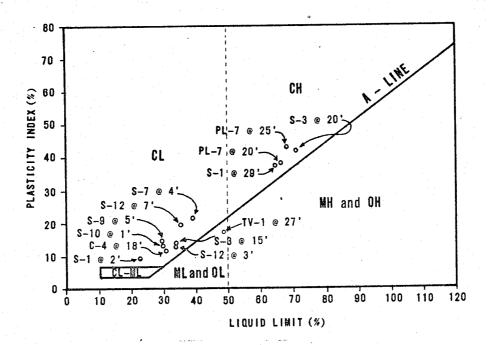
PROJECT NO: 3-083-EG

*

* *

· · · ·			Unconfined Compressive	
Boring No.	Depth (ft.)	Soil Type	Strength (psf)	Cohesion (psf)
S-10	l	SC	26,035	13,017
S-12	3	CL	10,080	5,040
S-12	5	CL	29,400	14,700
S-12	7	CL	7,056	3,528
TU-1	27	СН	3,348	1,674*
TU-3	12	SP-SM	1,180	590**
1.			•	


UNCONFINED COMPRESSION TEST RESULTS


Failure occurred primarily in 1"-2" sand seam.

When dried, similar sample collapsed before testing.

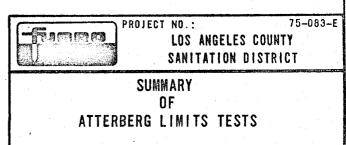
i Cont

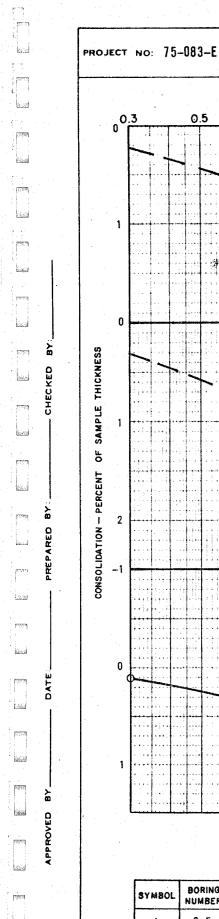
TUGRO

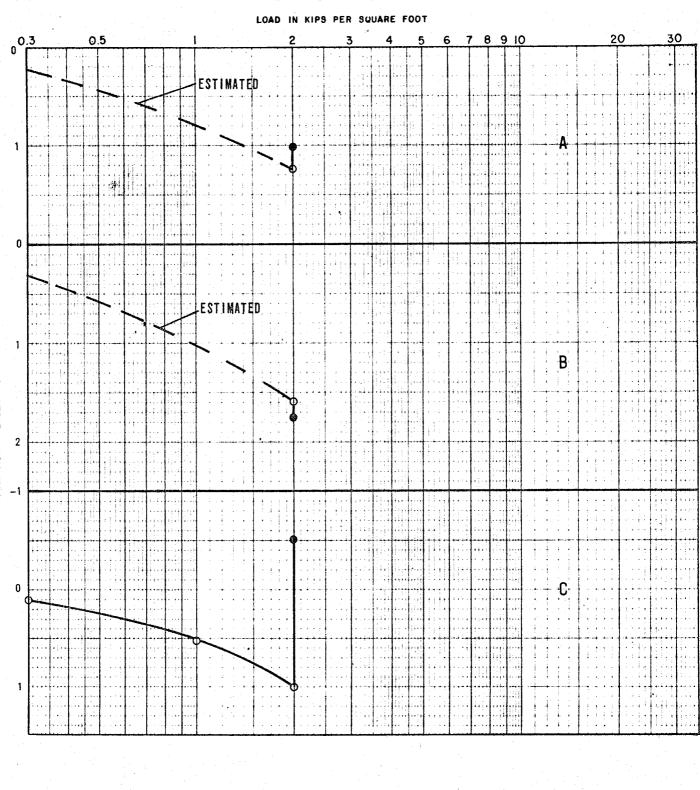
REF 3Y ' 24 ' HE W ' C '

E ______.FE:

المتقارقين ا


فعتنا


التروحا


lasel

- Lacel

Boring No.	Depth (ft.)	Liquid Limit (%)	Plastic Limit (%)	Plastic Index (%)
C-4	18	31	18	13
PL-7	20	66	28	38
PL-7	25	68	24	44
S-1	2	24	15	. 9
S-1	29	65	27	38
S-3	15	34	20	14
S-3	20	71	30	41
S-7	4	39	17	22
S-9	5	30	17	13
S-10	1	30	16	14
S-12	3	34	21	13
S-12	7	35	16	19
TU-1	27	49	32	17

SYMBOL	BORING NUMBER	SAMPLE INTERVAL	TYPE OF SAMPLE	SOIL TYPE	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	e,
A.,	C-5	21-22	RING	ML-CL	109.1	18.7	. 51
В	C-8	20-21	RING	SP	104.7	3.4	. 64
° C	PL-7	20-21	RING	CL	91.8	32.5	. 80

SAMPLE SATURATED
 SAMPLE AT FIELD MOISTURE

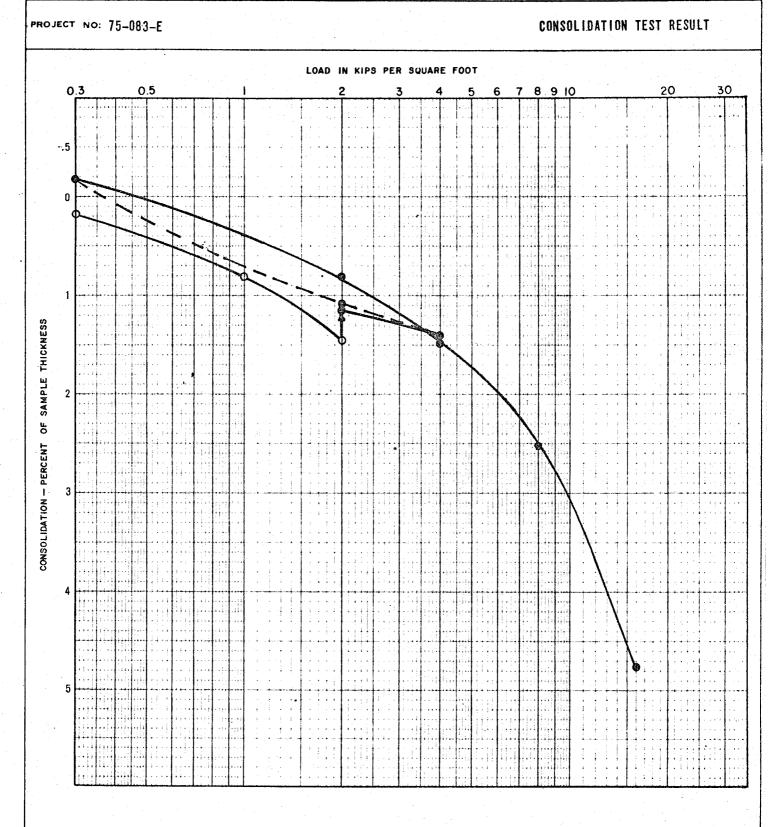
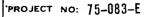

MODIFIED CONSOLIDATION TEST RESULTS

PLATE C-6

TUORO

. Josia


SYMBO	BORING NUMBER	SAMPLE INTERVAL	TYPE OF SAMPLE	SOIL TYPE	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	eo	Cc	Cr
	S-7	3.8-4.3	RING	CL	115.8	17.0	. 43	. 12	. 02

SAMPLE SATURATED

O SAMPLE AT FIELD MOISTURE

fueno

Gaul

1.58

14.5

ines.

FIRM

Sala

644

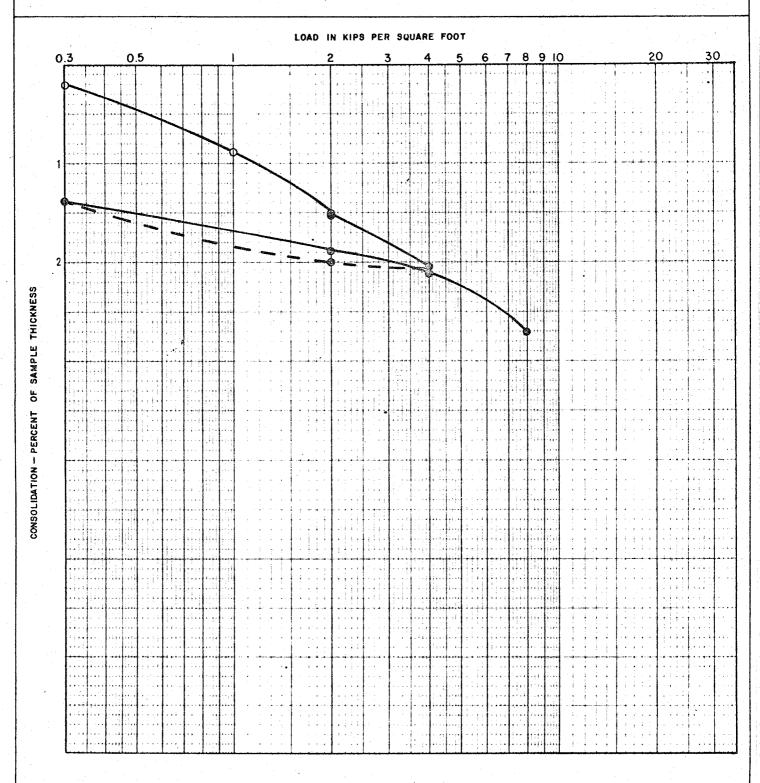
. Line g

hin

. 1292af

Selected and a select

lind

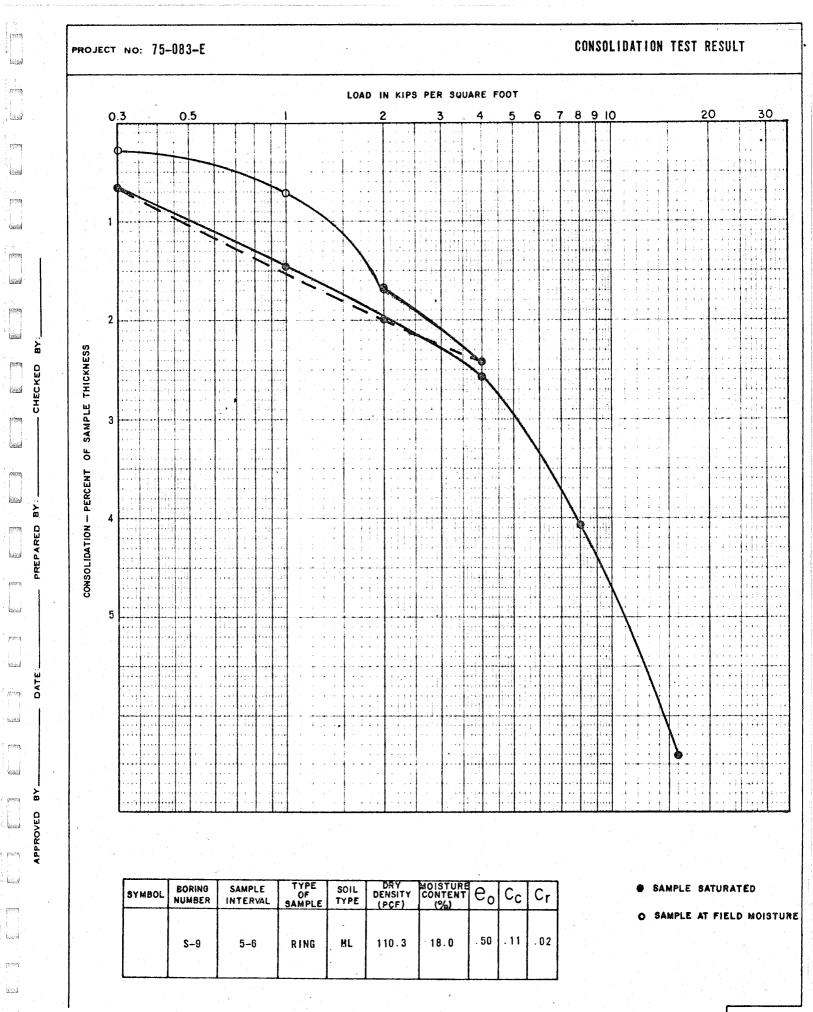

PREPARED

DATE

APPROVED BY

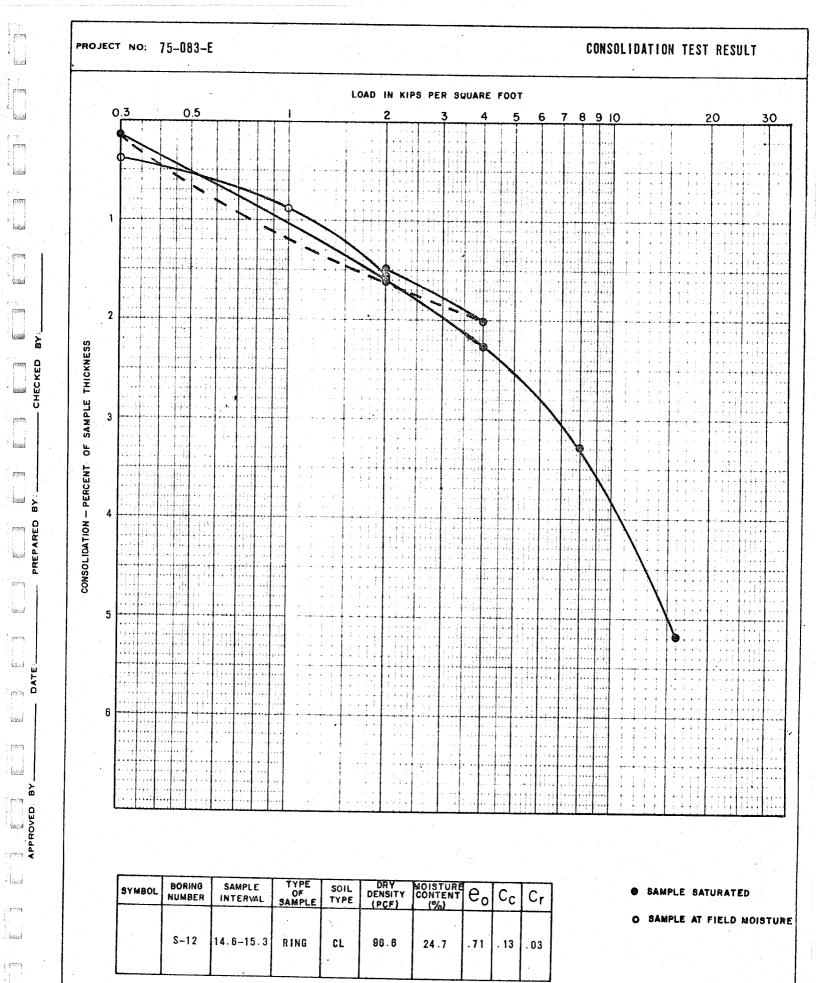
CHECKED

CONSOLIDATION TEST RESULT



TYPE OF SAMPLE DRY DENSITY (PCF) MOISTURE CONTENT (%) BORING SAMPLE SOIL C_{c} SYMBOL e, Cr NUMBER INTERVAL TYPE 3.9 0.52 .01 004 108.4 S--7 19.6-20.3 RING SP-SM

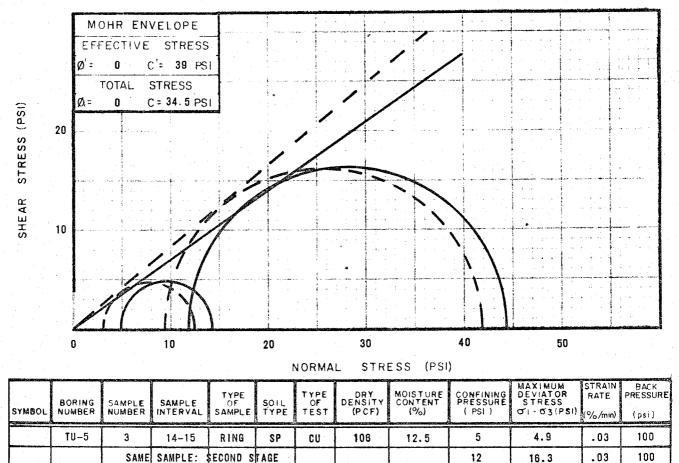
SAMPLE SATURATED


O SAMPLE AT FIELD MOISTURE

The wo

fuereo

1.00


Tuene

\$ 16.0

i kand

AXIAL STRAIN (%)

COMMENTS:

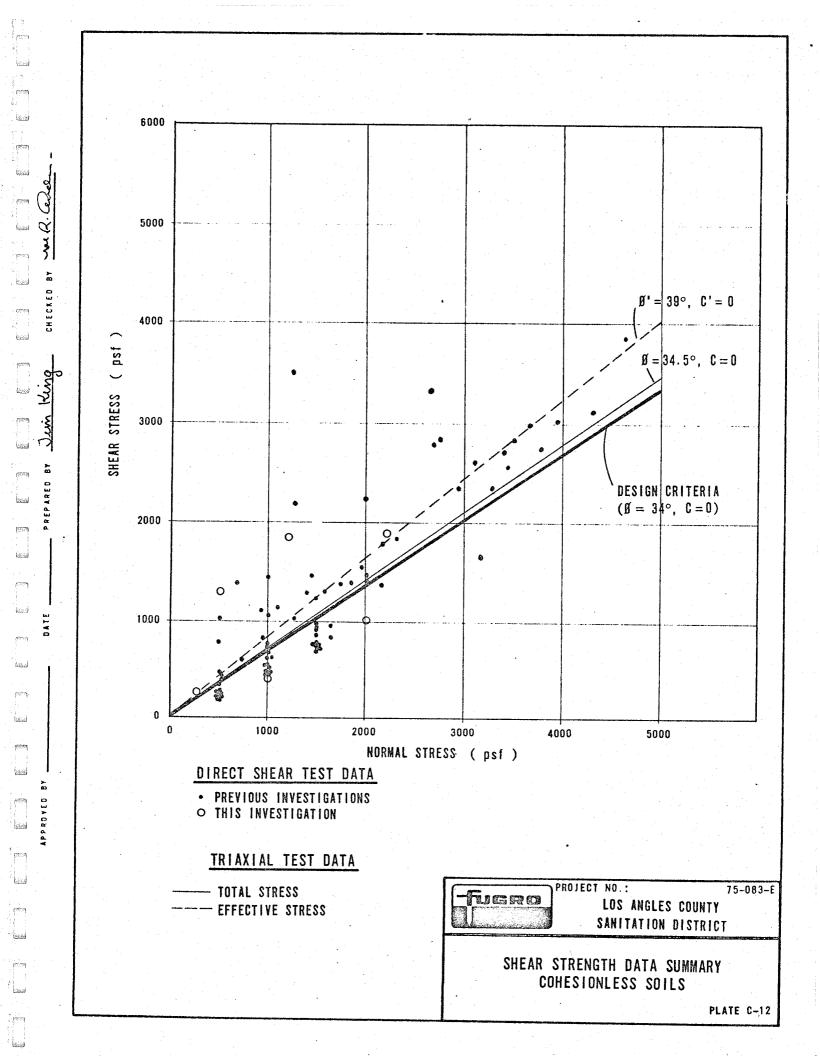
l prin si biss

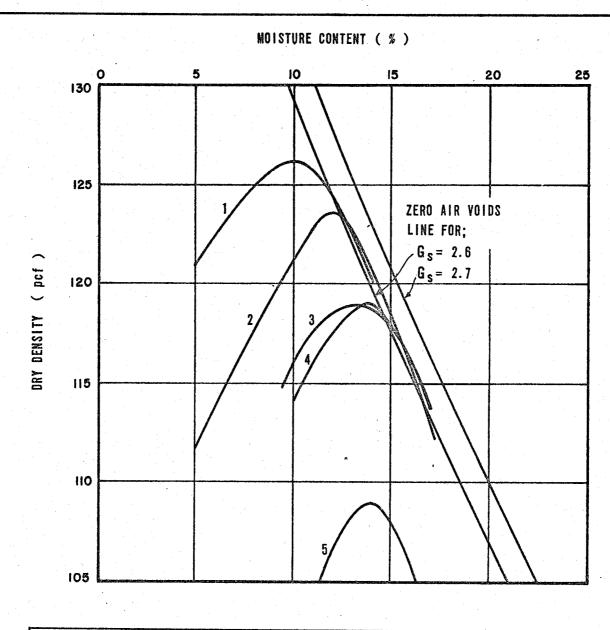
123

.

62354

17950


(cent)


164.29

TOTAL STRESS DATA

----- EFFECTIVE STRESS DATA

pinga S Lagra

. Gifte

PREPARED BY: M. C. HECKED BY: -----

DATE

lasis

CipTer Light

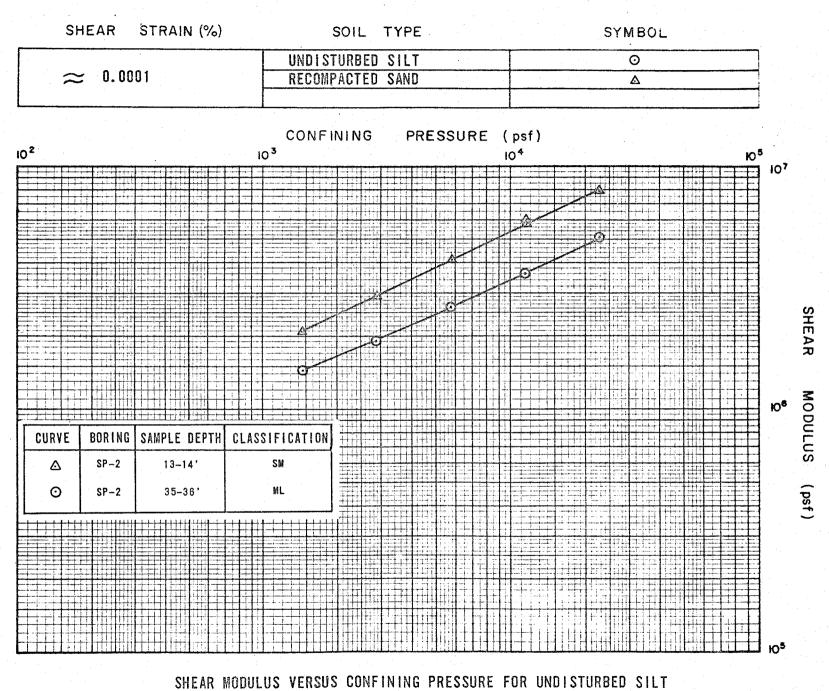
APPROVED

Estal

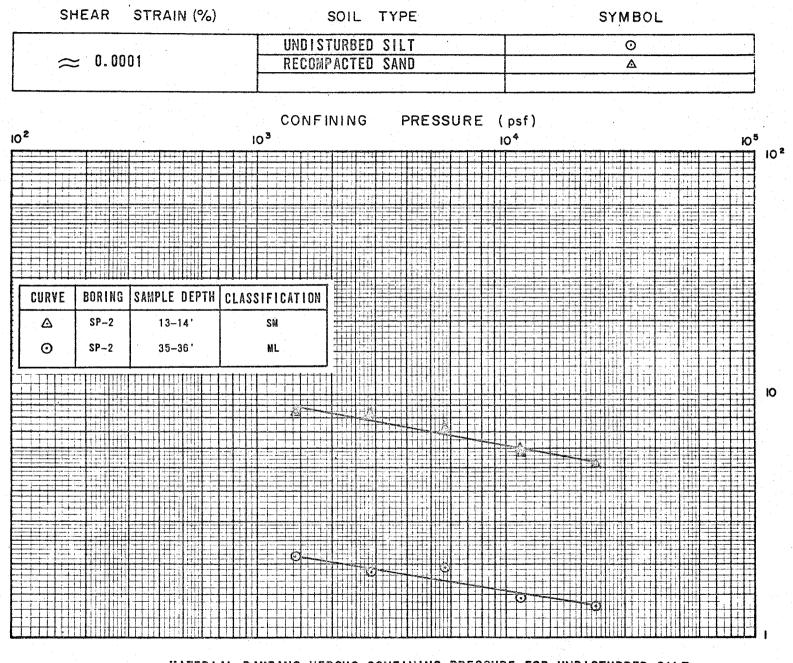
((^{67,6})

i Umal

- IERCH


3 15389

1582


SYMBOL	BORING NO.	DEPTH (ft)	SOIL TYPE	OPTIMUM Moisture Content (%)	MAXIMUM DRY DENSITY (pcf)	
1	S-12	}	CL-ML	11	126	
2	SP-2	13	SM	12	124	
3	PL-5	16	ML	13	119	
4	PL-2	17	SM	14	119	
5	PL-8	15	SP-SM	14	109	

PROJECT NO.: 75-083-E LOS ANGELES COUNTY SANITATION DISTRICT

COMPACTION TEST RESULTS

AND RECOMPACTED SAND

DAMPING

RATIO

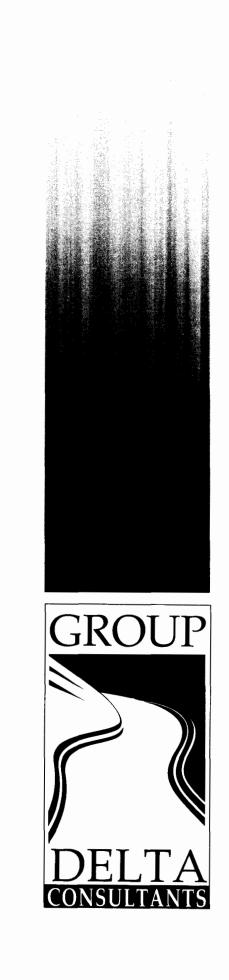
(%)

MATERIAL DAMPING VERSUS CONFINING PRESSURE FOR UNDISTURBED SILT AND RECOMPACTED SAND

Report 2

GEOTECHNICAL ENGINEERING REPORT GDC Project No. L-236

November 5, 1999


Geotechnical and Environmental Assessments Report Proposed Environmental Laboratory Building Joint Water Pollution Control Plant Carson, California

Prepared For:

County Sanitation Districts of Los Angeles County 1955 Workman Mill Road Whittier, CA 90607

Prepared By:

Group Delta Consultants, Inc. 2341 West 205th Street Suite 103 Torrance, CA 90501

Los Angeles County 1955 Workman Mill Road Whittier, CA 90607

County Sanitation Districts of

November 5, 1999 Project No. L-236

Certified DBE/MBE

Geotechnical Envincering

Geology

ingtrogeology

Coastal Engineering

Hydrology

Hydraulics

Environmental Engineering

Attention: Mr. Paul Stoppelmann

Subject:

Geotechnical and Environmental Assessments Report **Proposed Environmental Laboratory Building** Joint Water Pollution Control Plant Carson, California

Mr. Stoppelmann:

GROUP DELTA CONSULTANTS, INC. (GDC) is herewith submitting the Geotechnical and Environmental Assessments Report for the subject project. The authorized scope of services include field exploration, laboratory testing, engineering analysis and preparation of this report. It should be noted that the exploration program was based on the original design of the building, which consisted of constructing additional laboratory space and a two-story underground parking structure. The intended footings were originally at approximately 30 feet below existing surface. In addition, hand-auger drilling was required for the first 7 feet. The design was then modified to concrete slab-on-grade with no underground parking structure. Due to the significant changes in design and lack of shallow data, we recommend an additional investigation consisting of two borings to 20 feet in depth and additional lab work. The findings from the additional investigation program, if approved, will be submitted in an addendum.

We appreciate the opportunity to provide geotechnical services for this project. If you have any questions pertaining to the report, or if we can be of further services, please do not hesitate to contact GDC.

Respectfully Submitted, GROUP DELTA CONSULTANTS, INC.

GISTERED

OF CA

Long Bao Nguyen **Project Engineer**

Steven H. Kolthoff, C. Senior Geologist

L236 LACSD Report.doc

Distribution: (8) Addresse

Michael D. Reader, G.E. #2259 Project Manager

2341 W 205th Street, Suite 103 ▲ Torrance, California 90501-1459 ▲ (310) 320-5100 voice ▲ (310) 320-2118 fax -San Diego, California 🔺 (858) 573-1777 Aliso Viejo, California 🔺 (949) 609-1020 www.GroupDelta.com

GEOLOG

TABLE OF CONTENTS

Sectio	on	Page No.
1.0		4
1.1		
1.2		
1.3		
2.0	PREVIOUS INVESTIGATIONS	3
2.1	GENERAL	3
3.0	FIELD EXPLORATION	5
3.1	GENERAL	5
3.2	GEOPHYSICAL SURVEY	5
3.3	DRILLING, SAMPLING, AND LOGGING	6
3.4	BORING DESTRUCTION	
3.5		
3.6	SOIL CORROSIVITY	
3.7		
4.0	LABORATORY TESTING	9
4.1	GEOTECHNICAL TESTING	9
4.2	ANALYTICAL TESTING	9
5.0	SUBSURFACE CONDITIONS	
5.1	GENERAL	
5.2	GROUNDWATER CONDITION	
6.0	SEISMIOLOGY	
6.1	GENERAL	11
6.2		
7.0	RECOMMENDATIONS	12
	BEARING CAPACITY AND SETTLEMENTS	
7.1 7.2		
7.2		
7.4	SHORED EXCAVATIONS	
7.5	RETAINING WALLS	
7.6	ASPHALT CONCRETE PAVEMENT	
7.7	PORTLAND CEMENT CONCRETE PAVEMENT	
7.8	CONCRETE SLABS-ON-GRADE	
7.9		
7.10		
7.1 [,]	1 GROUNDWATER	
8.0	EARTHWORK REQUIREMENT	
9.0	SITE PREPARATION	21
•	Delta Consultants Proposed Environmental	• •
LA Cou	unty Sanitation Districts	Carson, California

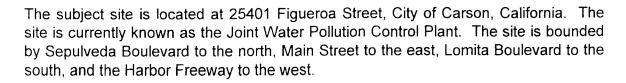
10.0	CONST	RUCTION CONSIDERATIONS 2	2
10.1 10.2		PORARY SHORING	
11.0	POST I	NVESTIGATION SERVICES2	.3
12.0	CLOSU	IRE2	4
13.0	REFER	ENCES 2	5
APPE		FIELD EXPLORATIONA-	1
APPE	NDIX B	GEOTECHNICAL LABORATORY TESTINGB-	1
APPE	NDIX C	ANALYTICAL LABORATORY TESTINGC-	.1
APPE	NDIX D	GEOPHYSICAL SURVEY D-	·1

1.1 General

This report presents the results of the geotechnical and environmental investigations performed by **Group Delta Consultants, Inc. (GDC)** for the proposed Environmental Laboratory Building Project at the Joint Water Pollution Control Plant (JWPCP) in the City of Carson, California. The project locations are depicted on Figure 1, Vicinity Map.

The purpose of this investigation was to:

- 1. Evaluate the subsurface site condition.
- 2. Provide recommendations for the foundation and geotechnically related construction procedures.
- 3. Evaluate the presence of potential contaminants related to worker safety and construction operations.
- 4. Prepare this report addressing our findings and recommendations.


This report has been prepared solely for the County Sanitation Districts of Los Angeles County (CSDLA) for the purposes stated above.

1.2 Scope of Work

The scope of work for the subject project includes the following tasks:

- Data Review Review of available data from previous reports.
- Geophysical Survey Process of locate underground utilities.
- Subsurface Exploration Drilling, sampling, and logging of 4 geotechnical borings and 1 environmental boring using a hollow stem auger drill rig.
- Laboratory Testing Laboratory testing of collected soil samples at selected depths to evaluate engineering properties of the materials.
- Analytical Testing Analytical testing of collected soil samples to evaluate the presence of possible contaminants at the subject site.

1.3 **Project Description**

The CSDLA is planning to expand the existing environmental laboratory at the JWPCP in Carson, California. The design of the expansion was not available at the time of this report. Based on the discussion with the design team, however, it is our understanding that the expansion could consist of constructing a structural steel-frame building with masonry cladding; a masonry, shear/load bearing wall building. The height of the masonry wall or cladding would be approximately 30 feet. The maximum dead load for the column is anticipated to be 60,000 pounds. The foundation of the building will be slab-on-grade with individual column footings and/or strip footings for masonry walls.

A depiction of the site is presented on Figure 1, Vicinity Map and Figure 2, Site Plan.

2.1 General

Prior to our investigation, we collected and reviewed several available geotechnical reports previously prepared for the development within the vicinity of the subject site. Our findings from the reviewed reports are as followed:

Final Report of Geotechnical and Environmental Subsurface Assessments for the Cryogenic Oxygen Generation Plant, Air Flotation Tank Facilities, Force Main Expansion, and East-Side Tunnel at the Joint Water Pollution Control Plant. (AES, 1999)

The report was prepared by Advanced Earth Science (AES) dated January 1999. AES performed a geotechnical investigation to evaluate the subsurface foundation conditions for the above listed developments. The field exploration included drilling of 14 geotechnical/environmental borings to depths ranging from 40 to 60 feet below existing surface. During the exploration, AES encountered 6 to 20 feet of artificial fill which generally consisted of clay, sandy clay, and silty sand. Below the fill, 6 to 28 feet of alluvium sediments were encountered which generally consisted of lean clay, sandy silt, and sand. The Lakewood Formation was encountered below the fill and alluvium to bottom of all borings. The Formation generally consisted of fine-grained native sand and silty sand. Groundwater was encountered at depths ranging from 54 to 63 feet below existing surface. The groundwater was relatively stable with less than 1-foot fluctuation. Boring C-2 of this investigation is included in Figure 2, Site Plan and Appendix A.

Preliminary Geotechnical Investigation for the Expansion of Water Treatment Facilities (GLA, 1995).

GLA performed a preliminary geotechnical investigation to evaluate foundation conditions for the proposed expansion. The field exploration included drilling, logging and sampling 70 borings at the site to depths ranging from 15 to 65 feet. Sands, silty sands, sandy silts, and silts were encountered to depths of up to 65 feet in the borings. Lakewood Formation material consisting of dense alluvium was encountered at a depth of 40 feet below ground surface. Free groundwater was encountered in some borings at depths between 58 and 64 feet. A majority of the existing fills encountered was considered undocumented and unsuitable for structure foundations.

Field Characterization Report for JWPCP (GLA, 1995).

This exploration was performed for the purposes of environmental assessment of the site and included drilling 45 borings to an average depth of 30 feet. Selected soil samples were analyzed for Pesticides and PCBs, Petroleum, Hydrocarbons, and Metals.

The report concluded that:

- Pesticide-contaminated soils were present on site; however, the concentration and volume were too small to pose a significant risk.
- Of the 112 samples analyzed, 51 had detectable levels of petroleum hydrocarbons at concentration levels ranging between 11 and 7,400 mg/kg. The maximum volume of hydrocarbon-contaminated soils was estimated to be less than 16,000 cubic yards.
- Based on the measurements, soils contaminated with metals are relatively restricted in volume and spatial distribution and are unlikely to pose a significant risk.

3.1 General

Field exploration for this project was conducted on July 21 and 22, 1999 by utilizing a hollow stem auger drill rig. Prior to the exploration a geophysical survey was conducted to help locate underground utilities and a buried abandoned oil well. A total of 4 geotechnical/environmental borings and 1 solo environmental boring were drilled to depths ranging from 25 to 61 feet below the existing surface. The approximate boring locations are depicted on Figure 2, Site Plan. Details of the materials encountered are presented in Appendix A, Log of Test Borings.

3.2 Geophysical Survey

A geophysical survey was performed at the drilling and oil well sites by Advanced Geosciences, Inc. (AGI) as a sub-consultant to GDC. The survey's purpose was conducted to locate the abandoned Hamilton Oil Well No. 2 and existing subsurface utilities at each of the geotechnical borehole locations.

To locate the abandoned oil well, a magnetometer survey was performed in the open area shown on Figure 2, Site Plan. A GeoMetrics G856AX magnetometer was used to record measurements of the total magnetic field. This measurements were made on a 10-foot (north-south) by 5-foot (east-west) grid in the vicinity of the oil well. The magnetic measurements recorded across this grid were downloaded to a field computer to prepare a contour map showing the resulting magnetic field pattern. This contour map is shown on Figure D-2 in Appendix D.

After the magnetometer survey, Ground Penetrating Radar (GPR) profiles were performed across the well location. These profiles were used to search for radar reflection patterns indicating evidence of an isolated steel object. The profiles were recorded using a GeoPhysical Survey Systems Inc. SIR-3, GPR unit equipped with 120 and 500 Mega-Hertz antennas.

GPR surveys were also performed to within a 25-foot square area surrounding each of five drilling locations to locate existing underground utilities. Several GPR profiles (with 120 and 500 Mega-Hertz antennas) were recorded across each area to search for metal pipelines and other subsurface utilities. A Geonics EM-31D terrain conductivity meter and Fischer Gemini-3 metal detector were also used to scan the areas for the presence of shallow metal pipelines.

In summary, the results of this survey confirmed the location of the Hamilton Oil Well No. 2 near the position marked by SCDLA. In addition, a metal pipeline was detected near B-2G boring location. The boring was relocated to avoid possible damage to the pipeline.

3.3 Drilling, Sampling, and Logging

The subsurface exploration included drilling, sampling and logging of 5 borings to depths ranging between 26 and 61 feet below existing surface. The objective of drilling borings B-1 through B-4 was to evaluate the geotechnical conditions of the subsurface soils to 61 feet below the ground surface. This included evaluating conditions during possible excavation, and to determine soil characteristics for geotechnical design of the proposed structure. The objective of drilling boring B-5 was to evaluate the subsurface soils in the vicinity of the abandoned oil well for environmental concerns.

Environmental samples were also obtained from each of the geotechnical borings as a part of our scope of work. Representative drive samples for environmental and geotechnical testing were obtained alternatively at 2.5-foot intervals beginning at a depth of 7 feet below existing surface. No environmental samples were collected below 26.5 feet in any of the borings.

The proposed boring locations were originally marked in the field by CSDLA representative. Based on the results of geophysical surveys and involved utility companies, boring B-3 was moved approximately 15 feet to the north to avoid possible utility conflict with an underground Chevron oil pipeline. The approximate boring locations are shown on Figure 2, Site Plan.

On-site drilling was performed by Layne Christensen Company (LCC), as a subcontractor to GDC, under the full-time field supervision of a GDC field engineer. The borings were drilled using a CME750 drill rig utilizing a 7.5-inch outside diameter (OD) hollow-stem auger. The upper 7 feet of each boring were drilled using a hand auger to minimize the risk of penetrating any utilities/buried structures with the drill rig.

Geotechnical Sampling – Relatively undisturbed drive samples and bulk samples were collected for geotechnical logging and testing purposes. The samples were obtained by driving a 3.25-inch O.D. by 18-inch-long, California-Modified split barrel (CM) sampler lined with 2.5-inch O.D. by 1-inch-long brass rings. Split-spoon samples were obtained in conjunction with the Standard Penetration Test (SPT). In general, samples were obtained at 5-foot intervals, alternating between the SPT and California drive samplers. The first geotechnical sample was obtained at a depth of 7.5 feet and at 5-foot intervals to the bottom of borings. Modified-California and SPT samplers were driven 12 and 18 inches, respectively, into the soil by successive blows of a 140-pound hammer with a 30-inch stroke. The number of blows for each 6 inches of penetration is recorded on the boring log.

In addition to the drive samples, bulk samples of representative soil cuttings were obtained at selected depths for laboratory testing.

Boring cuttings were logged using a combination of visual observation, close examination of soil samples, and equipment behavior. All logs were completed at the exploration site, following recovery of each sample. Soils were classified by GDC field engineer in accordance with the United Soil Classification System (USCS). Boring logs are presented in Appendix A.

Environmental Sampling – Environmental samples were obtained from each of the geotechnical borings by driving a 2-5-inch O.D. by 18-inch log split-barrel sampler, fitted with 2-inch O.D. by 6-inch long brass liners at the desired sampling depth. The first environmental sample was obtained at a depth of 5 feet and sampling continued at 5-foot intervals thereafter to the bottom of all borings. The sampler was driven 18 inches by a 140-pound hammer having a 30-inch stroke. And the number of blows for each 6 inches of penetration was recorded on the boring log. The collected samples were placed in a cooler and transported to laboratory for testing.

3.4 Boring Destruction

The borings were destroyed by backfilling with bentonite chips. Potable water was added during the backfilling process to hydrate the chips. The borings were capped with cold patch asphalt or grassy sod where applicable.

3.5 Cleanup and Decontamination

All drilling and sampling equipment used during the field investigation were decontaminated prior to use at the site. The hollow stem augers were decontaminated onsite with a portable steam cleaner. In order to minimize the potential for cross-contamination between individual samples, sampling equipment was thoroughly decontaminated between sampling events. The decontamination procedures for the soil sampling equipment (sampler and liners) consisted of the following:

- Washed and scrubbed with AlconoxTM detergent solution.
- Double rinsed with potable water.
- Rinsed with distilled water.

3.6 Soil Corrosivity

The scope of this study was limited to an evaluation of soil corrosivity and general corrosion control recommendations for materials likely to be used for construction.

As part of the current investigation, GDC conducted a corrosivity evaluation that included field and laboratory resistivity test. Laboratory testing was performed on soils collected from the site. In-place soil resistivity tests were performed in the field by Advanced Geoscience, Inc. (AGI).

The electrical resistivity of the soil was estimated at 3 locations using a Wenner Four Electrode Method (described in ASTM G 57-95a). This procedure required that four electrodes be placed into the soil with equal separation along a straight line. The outer electrodes are used to introduce a DC current into the ground and the inner electrodes are used to measure the resulting voltage potential. The electrode spacing (or "A-spacing") is increased after each measurement of resistance is made

(i.e. voltage/applied current). The measured resistance is roughly equal to the "average" resistance to a depth equal to the electrode spacing.

For these surveys electrode spacing of 2.5, 5, 7.5, 10, 12.5, and 15 feet were used. The average resistance measured at each of these electrode spacings was used to calculate soil layer resistivities using the Barnes Method (Telford, Applied Geophysics, 1976). Table B-7, in Appendix B, provides a spreadsheet with these estimated layer resistivities. These calculations assume the electrode spacing is equal the depth of the base of the soil layer.

The Wenner measurements were performed at three locations identified as Sites 1, 2 and 3 in Figure 2, Site Plan. The approximate locations of these sites are shown in Figure 2. Each site was positioned to avoid interference from electrically conductive underground utilities.

The measurements were made using the MineRes earth resistivity meter manufactured by L&R Instruments. The electrodes consisted of 0.475-inch diameter stainless steel stakes. To avoid polarization effects at the electrodes the current was reversed and the resulting measurements were averaged.

3.7 Soil Boring Survey

The locations of the borings were surveyed by the representative of CSDLA, Mr. Towner, on August 20, 1999. The results of the survey are listed in Table 3.6.1, Boring Surveying.

Boring	Coordinates	Elevation (feet)*
B-1G	N 253.46	44.20
	E. 1455.84	
B-2G	N 495.34	42.47
	E. 1465.05	
B-3G	N 592.50	41.19
	E. 1533.83	
B-4G	N 294.25	39.87
	E. 1596.73	
B-5E	N 648.83	41.99
	E. 1549.06	

Table 3.7.1 Boring Surveying

* Elevation is in feet above mean sea level

It should be noted that the coordinates of the borings were based on local plant coordinate system.

4.1 Geotechnical Testing

Geotechnical laboratory testing was performed to aid in evaluating the engineering properties of subsurface materials at the site. The performed geotechnical tests are listed in Table 4.1.1, Geotechnical Testing. The results of the tests are presented in Appendix B, Geotechnical Laboratory Testing.

Table 4.1.1 Geotechnical Testing

Test	Test Procedure		
Moisture Content & Dry Unit Weight	ASTM D2216		
Maximum Dry Density	ASTM D1557-91		
Shear Strength	ASTM D3080-90		
Consolidation Test	ASTM D2435-90		
Soil Corrosivity	ASTM D512-89, CTM 417, CTM 643		
Resistance Value (R-Value)	CTM 301		
Expansion Index	ASTM D4829		
Atterberg Limits	ASTM D4318		
-200 Sieve Wash	ASTM D1140		
Specific Gravity	ASTM D854		

4.2 Analytical Testing

Soil cuttings and fluid generated from the drilling were placed in steel drums for later disposal. Prior to disposal, these materials were tested in an analytical laboratory to provide some indication as to the nature and concentration of contaminants present in the cuttings. The test procedures performed on the cuttings were listed in Table 4.2.1, Analytical Testing. The analytical testing was performed by EMAX Laboratory. The details of sampling protocol and type of analytical tests performed and the test results are presented in Appendix C, Analytical Testing.

Table 4.2.1	Analytical	Testing
-------------	------------	---------

Boring	Depth	Test Procedures
B-1	10'-25'	EPA 8081A, EPA M8015, EPA 5030A/ M 8015
B-2	10'-25'	EPA 8081A, EPA M8015, EPA 5030A/M8015
B-3	10'-25'	EPA 8081A, EPA M8015, EPA 5030A/M8015
B-4	10'-25'	EPA 8081A, EPA M8015, EPA 5030A/M8015
B-5	7'-25'	EPA 8081A, EPA M8015, EPA 5030A/M8015, EPA 418.1

Based on the results of analytical testing, the soil cuttings from the field exploration were either not contaminated or below the legal limits of contamination.

5.1 General

Generally, the site consists of 4 to 6 feet of fill materials. The encountered fill materials were described as Silty Sand, Silt, and Clayey Sand.

Below the fill, terrace deposit materials were encountered. This material consisted of Silty Sand and Siltly Clay to depths of 4 to 11 feet.

Below the terrace deposits, Lakewood Formation (CDWR, 1961) materials, described as alternating layers of Silty Sand and Sandy Silt with some Sand layers were encountered. In general, the Lakewood Formation materials were described as slightly compact to stiff based on SPT N-Values.

San Pedro Formation (Poland, 1959) soils were encountered below the Lakewood Formation at depths of approximately 45 feet from the surface. In general, the San Pedro Formation materials are described as Sand and Silty Sand with minor Sandy Silt.

Refer to the Figure 3 and boring logs in Appendix A, Field Exploration for a detailed description of the materials encountered.

5.2 Groundwater Condition

No groundwater was encountered in borings during the investigation. Consequently, groundwater is not a factor in design and construction.

6.1 General

The project site is located in the general proximity of active and potentially active faults typical of southern California. Earthquakes occurring within 60 miles of this site are capable of generating ground shaking of engineering significance to the proposed construction.

6.2 Local Faulting and Seismicity

The site is not located within a currently established Alquist-Priolo Special Studies Zone. Neither field observation nor a literature search disclosed active faulting through the project. The closest fault to the site is the Palos Verdes Fault, which is approximately 1.5 miles from the site. The next two closest faults to the site are the Newport-Inglewood and Cabrillo Faults, which are approximately 4.0 to 5.4 miles from the site. The Palos Verdes are not considered active but the Newport-Inglewood Fault is considered active at the present time.

An evaluation was performed of faults in the vicinity of the site capable of generating significant ground motion. The evaluation included researching and analyzing published literature pertaining fault locations, characteristics, current ground motion analyses methods, and using GDC's in-house data, program and experience. This evaluation is not intended as a design tool, but as a point of information. A soil factor for design is presented in a subsequent section.

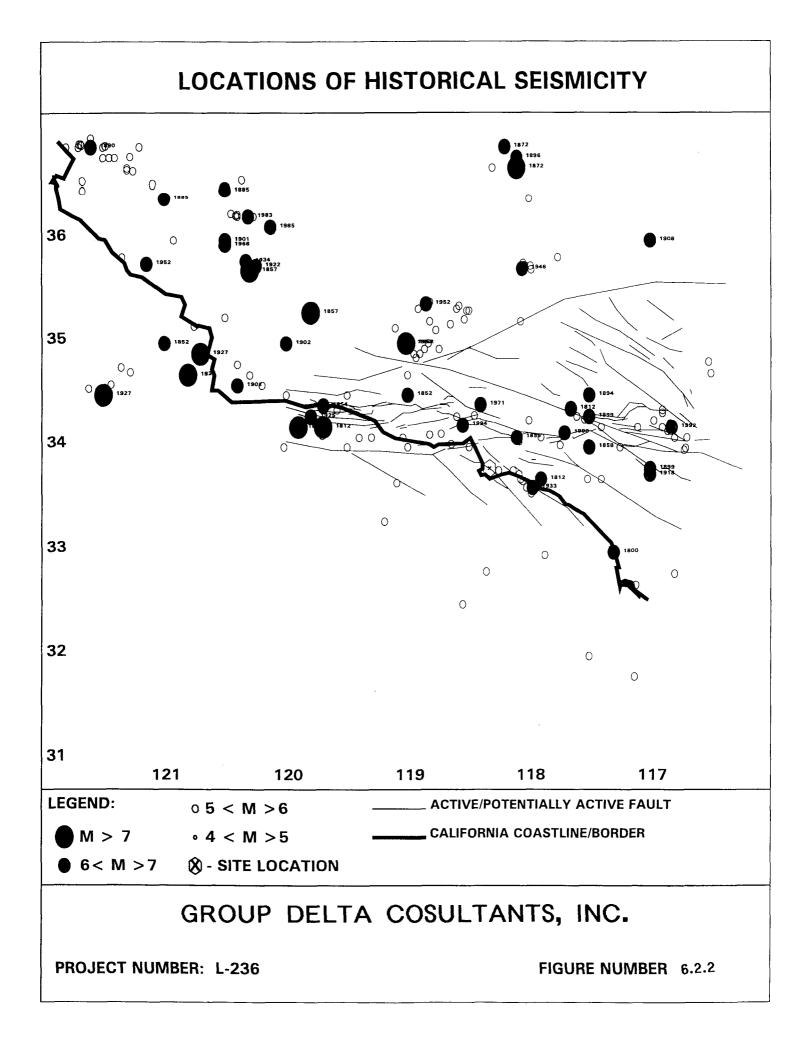
The results of the evaluation are contained in Table 6.2.1, Characteristics of Active and Potentially Active Faults of Seismic Significance to the subject site, which also lists the pertinent characteristics of the fault used in this analyses. As noted on Table 6.2.1, the Palos Verdes Fault is the closest known fault to the site. This fault is at a distance of about 1.5 miles from the site. The next two closest faults to the site are Newport-Inglewood and Cabrillo Faults, located approximately 4.0 and 5.5 miles from the site, respectively.

If the aforementioned faults had a seismic event, the estimated maximum moment magnitude of M = 7.0, 7.0, and 6.5, respectively could be recorded. Since groundwater was not encountered in all borings, the potential for liquefaction is considered to be low.

A seismicity analysis also evaluates the potential ground shaking at a site using historically measured earthquakes in the region, within 60 miles of a particular site. To perform this analysis, GDC maintains an in-house database of over 8,000 earthquake records in the State of California dating back to the year 1800. The database is a subset of records maintained at the National Earthquake Center in Golden, Colorado. It should be noted that for this analysis, only earthquakes of magnitude 5.0 or greater are included. The results of this analysis are presented on Figure 6.2.2, Locations of Historical Seismicity.

TABLE 6.2.1

Characteristics of Active and Potentially Active Faults of Seismic Significance to the Site


SITE LONGITUDE (E-W) SITE LATITUDE (N-S)	118.2833 33.8008					
PROJECT NAME		ab Building				
PROJECT NUMBER	L-236			•		
Fault	DIST. TO	MAX. CREDIBLE	HORIZONTAL	TYPE	LENGTH	Slip Rate
	FAULT(mi.) (1)	and the second sec	ACCEL (g) (2)		(KM.)	(MM/YR)
PALOS VERDES	1.5			RR(?)	100	0.7
NEWPORT-INGLEWOOD A	4.5	6.9		RV(?)	36	. 1
NEWPORT-INGLEWOOD B	4	6.8		RV(?)	22	
CABRILLO	5.5	6	0.241	• .	20	0.05
LOS ALAMITOS	9.5	6	0.162		9	0.05
ELSINORE A (WHITTIER)	19	7.3	0.161	RL	46	4
SAN PEDRO BASIN	18		0.146		67	0.5
SANTA MONICA	18	6.7	0.124	<u>R?</u>	24	0.3
NORWALK	13.5	6	0.116		28	0.05
ANACAPA-SANTA CRUZ ISLAND	26.5	7.4	0.115		124	0.9
HOLLYWOOD	19.5	6.4	0.097		26	0.5
RAYMOND	23	6.7	0.094		15	0.15
NEWPORT-INGLEWOOD O.Z.D.	24	6.7		RV(?)	54	1
VERDUGO FAULT	23	6.6	0.089		21	0.05
MALIBU COAST	26.5	6.9	0.088	R	25	0.1
COYOTE HILLS	18.5	6	0.083		3	0.05
EAGLE ROCK-SAN RAFEAL	22	6.3	0.08		10	0.05
SAN ANDREAS-Hwy 166 to Cajon Pass		8.25	0.078		201	34
SAN FERNANDO	30.5	7	0.078		28	3
DUARTE	28.5	6.5	0.065		. 11	. 1
SIERRA MADRE	27.5	6.4	0.065	R?	67	. 4
SAN JOSE A	31.5	6.6	0.061		20	0.05
NORTHRIDGE	30	6.5	0.061		14	0.1
SANTA CRUZ/CATALINA RIDGE	37.5	7	0.06	•	71	0.5
SAN GABRIEL B	33	6.7	0.06		30	3
SANTA SUSANA	36	6.9	0.06		35	3
CHINO	35	6.8	0.059	RR	20	0.1
INDIAN HILL	31.5	6.5	0.057		16	0.05
SIMI FAULT	40	6.9	0.052		33	0.05
CHATSWORTH RESERVIOR	34	6.4	0.049		11	0.1
SAN GABRIEL A	43.5	7	0.048		47	3
ELSINORE B	53	7.5	0.047		53	4
SUNLAND	31	6	0.045	R	6	0.5

Fault Type: R-Reverse, N-Normal, RL-Right Lateral, LL-Left Lateral, RR-Right Reverse, LR-Left Reverse, RV-Right Vertical, LV-Left Vertical, RN-Right Normal, LN-Left Normal

Note: Distance to fault are calculated by LKR's program FAULTS, which is used to calculate seismic hazards from faults on a regional scale. Distances should be considered accurate to ±0.5 mile.

References: (1) Wesnousky, 1986

(2) Joyner and Boore, 1988, mean attenuation curve Greater of 2 Horizontal Components

7.1 Bearing Capacity and Settlements

Our recommendations were based on the provided information by the CSDLA. Based on the provided information, it is understood that development could consist of constructing a structural steel-frame building with masonry cladding; a masonry, shear/load bearing wall building. The height of the masonry wall or cladding would be approximately 30 feet. The maximum dead load for the column is anticipated to be 60,000 pounds. The foundation of the building will be slab-on-grade with individual column footing and/or strip footings for masonry walls. In addition, the following conditions were assumed for design:

- 1. All existing fill is removed and replaced with granular compacted fill.
- 2. All footings are founded on dense native soils or compacted fill.
- 3. All footings are embedded at least 24 inches into dense native soils or compacted fill
- 4. All footings are 5 feet by 5 feet or greater

Based on the provided and assumed information, field exploration, laboratory testing, and engineering analysis, an allowable bearing capacity of **4,500 psf** is recommended for footing design.

The estimated consolidation settlement of the foundation under its anticipated foundation pressure consists of primary and secondary settlements within the zone of influence of the foundation. In addition, it is based on the estimated compressibility characteristics of the underlying soils and the thickness of the compressible layer. Consolidation settlement analyses were performed by using GDC in-house computer program, which generally computes the settlement of 3-foot soil layers from the footing to approximately 20 feet below the proposed subgrade.

It is our assumption that the proposed expansion will generate a maximum anticipated foundation pressure of 4,500 psf. Based on this assumed pressure, provided design information, laboratory testing, and engineering analysis, the maximum total settlement is estimated to be 1.0 inch at the center and the maximum differential settlement is anticipated at 0.5 inch. The foundation for the proposed structure should be designed to withstand these settlements.

7.2 Lateral Resistance

For footings placed in compacted fill or dense native sand on level ground, we recommend an ultimate passive fluid pressure of 360 pcf. We recommend a sliding friction coefficient of 0.40 for design. Passive and sliding resistance may be used in combination without reduction.

7.3 Slope Excavations

Temporary excavations may be either sloped back or shored, depending on the availability of space surrounding the structures. Based on the provided information, no temporary slope excavation is proposed into the terrace deposits or Lakewood Formation materials. Temporary slopes with heights less than 15 feet that are excavated in stiff artificial fills and do not expose cohesionless (running or raveling) sands may be excavated at a 1:1 slope ratio. All slope excavations should be observed by the Geotechnical Engineer. Based on encountered field conditions, the slope configuration may have to be modified. Excavations should not extend into the zone of influence of adjacent structures, unless the excavation is shored or the depth of excavation is less than 5 feet. In general, the zone of influence may be obtained by projecting a live sloping outwards and downwards at 1:1 down to the edge of the existing structure. All stockpiles of excavated materials should be kept away from the top of the excavation. If surcharge loads were anticipated at the top of the excavation, the design of slopes would have to be modified accordingly.

In addition to the recommendations in this report, all slope excavation shall conform to current Federal and State regulations.

7.4 Shored Excavations

The preliminary recommended parameters for shoring design are described in Table 7.4, Soil Parameters for Shoring Design.

Table 7.4	Soil Parameters for Shoring Design
-----------	------------------------------------

Unit Weight (pcf)	Friction Angle (Degree)	Кд	Кр	KO	Κφ
125	30	0.33	3.0	0.5	0.40

K_A Active Pressure Coefficient

K_P Passive Pressure Coefficient

K_o At-rest Pressure Coefficient

Ko Coefficient of Friction

The recommendations for shoring design might be adjusted when detailed design of the proposed structure is available.

7.5 Retaining Walls

All wall foundations should be embedded a minimum of 24 inches into approved compacted fill or dense native soils. For foundations so constructed, a bearing value of 4,500 psf may be used for design. Compacted fill should extend laterally at least one footing width, minimum 5.0 feet, below and beyond all footings.

If the recommendations in this report are executed properly, the total settlement of the wall foundations should be less than 1 inch. Differential settlement between similarly

loaded foundations should be less than 0.5 inch.

For design purposes, soil parameters for backfill are presented in Table 7.5 Retaining Wall Soil Parameters. It should be emphasized that the data provided is based on structural backfill. The allowable bearing pressure is recommended based on a total settlement of 1.0 inch. The structural backfill materials should be in accordance to Caltrans Standard Specifications.

Unit Weight of Backfill (pcf)	Allowable φ' for Backfill and Foundation Materials (Degree)	Cohesion of the Backfill (ksf)	Allowable Passive Resistance of Soils (psf/ft.)	Coefficient of Friction Between the Soil & Concrete Footing	Allowable Bearing Capacity (ksf)
125	34	0	360	0.40	4.5

TABLE 7.5 RETAINING WALL SOIL PARAMETERS

For lateral considerations, the recommended design parameters for the walls are as followed:

- Active Pressure: 33 pcf
- Passive Pressure: 360 pcf
- At-Rest Pressure: 50 pcf

If actual conditions are different, the equivalent fluid pressures provided above should be re-evaluated by the geotechnical engineer. All related factors should be taken into consideration in calculating the earth pressures.

The magnitude of lateral pressure on retaining structures depends on their freedom for lateral movement. The values of at-rest conditions should be used in the design if the wall is prevented from lateral movement at the top (e.g., basement walls). If the wall is unrestrained and allowed to move at least 0.001H at the top of the wall (where H is the height of the wall), active pressure should be used in the design of retaining structures.

Passive pressure parameters are used to compute lateral soil resistance developed against lateral structural movement. Relatively large movements are required to mobilize the passive resistance. A safety factor should be applied to the ultimate passive resistance in cases of limited movement. If passive pressures and friction (sliding resistance) are combined to provide lateral resistance, a factor of safety of 3 should be used to the passive pressure.

Passive pressure should not be considered unless a key is included in the footing design. If the resultant load falls within the middle one-third of the footing, the allowable load may be increased one-third (1/3) as long as the average between the maximum and minimum does not exceed the allowable.

In area where truck traffic will be located adjacent to the top of retaining walls, a traffic surcharge should be added to the wall design.

All backfill materials shall be free draining sand, and have an expansion index of less than 20. The existing on-site clayey soils are not suitable for use as wall backfill materials. A more specific specification would be to require that structural fill in accordance with <u>Section 300-3.5.1 of Standard Specifications For Public Works</u> <u>Construction</u> (Green Book) be placed at 90% relative compactive except for 12 inches below the concrete slab should be compacted to at least 95% relative compaction.

7.6 Asphalt Concrete Pavement

Recommendations for Asphalt Concrete Pavement Structural Sections are based on an assumed Traffic Index (TI) of 6 to 8. Flexible (asphalt concrete) pavement structural sections were calculated in general accordance with Caltrans Highway Design Manual. Laboratory tests were conducted to obtain a Resistance Value (Rvalue) for the subgrade soils. An R-Value of 17 was used in calculating the structural pavement thickness. The aggregate base used for design purposes was an R-Value of 78. Based on pavement design criteria, recommendations for pavement structural sections are as follows:

TABLE 7.6	ASPHALT CONCRETE PAVEMENT

Traffic Index (TI)	AC / CAB or CMB
6	0.25'/0.95' (0.70' ACor Full Depth)
7	0.30'/1.10' (0.85' AC for Full Depth)
8	0.40/1.40' (1.25' AC for Full Depth)
AC- Asphalt Concrete	

AC- Asphalt Concrete CAB- Crushed Aggregate Base CMB- Crushed Miscellaneous Base

Asphalt concrete and aggregate base shall conform to Standard Specifications for Public Works Construction (Green Book) or Caltrans Standard Specifications, and shall be compacted in accordance with Section 8.0, Earthwork Requirement and Section 9.2, Pavement Construction, of this report.

Ground water was not encountered at the time of our investigation. However, any free seeping water in the subgrade soils, if revealed during grading operation, should not be permitted to migrate through the subgrade and any saturated soils should be removed and replaced.

Positive surface drainage should be provided on the pavement to reduce water infiltrating into underlying soils. Finished pavement should be sloped down-and-away to facilitate drainage. All drainage should be directed to appropriate discharge areas via non-erosive devices. A regular maintenance program should be implemented to keep drainage devices in good working condition.

7.7 Portland Cement Concrete Pavement

Recommendations for Concrete Pavement Structural Sections are based on an assumed Traffic Index (TI) of 6 to 12. Concrete pavement structural sections were calculated in general accordance with Caltrans Highway Design Manual. A k-value of 250 pci is recommended for design purposes.

Based on pavement design criteria, recommendations for concrete pavement structural sections are as follows:

TABLE 7.7 CONCRETE PAVEMENT

Traffic Index (TI)	PCCP / CAB or CMB
6-7	0.50'/0.50'
7.5-8	0.60'/0.50'
8.5-10	0.70'/0.60'
10.5-12	0.75'/0.60'
PCCP- Portland Cement Concret	e Pavement

CAB- Crushed Aggregate Base

CMB- Crushed Miscellaneous Base

7.8 Concrete Slabs-On-Grade

It is expected that footing excavation will generate expansive clayey soils. These soils shall not be used for fill below any concrete slab-on-grade. Prior to constructing the slab, a minimum of 2 feet of existing fill should be removed and replaced with approved non-expansive (EI<20) compacted fill materials. For design of concrete slab-on-grade, a coefficient of subgrade modulus of 250 pci may be used.

Where a moisture-sensitive floor covering is planned, or where slab dampness can not be tolerated, it is suggested that the floor slab be supported on a 4-inch layer of gravel or on any impermeable membrane of at least six-millimeter thickness as a capillary break. The sand should be kept moist but not saturated prior to pouring concrete. A suggested gradation for the gravel layer is as follows:

TABLE 7.8 SUGGESTED BASE GRADATION FOR SLABS-ON-GRADE

Sieve Size	Percent Passing (%)
³ ⁄ ₄ inch	90-100
No.4	0-10
No.100	0-3

In lieu of the suggested base gradation in Table 7.8, materials that meet Green Book specifications for CAB or CMB may be used.

The soils exposed at subgrade level should be kept moist (but not saturated) during construction. Care should be taken during the placement and curing of all concrete slabs. Excessive slump (water-cement ratio) in the concrete and/or improper curing procedures during either hot or cold weather conditions could lead to excessive shrinkage, cracking or curling of the slabs.

7.9 Underground Utilities

Excavation for the pipeline shall be by open trench. Based on the GDC field exploration, standard excavation equipment may be used to excavate trenches for the utility installations. The maximum and minimum width of the trench shall be in accordance with the plans. If the maximum width is exceeded, the additional cost of bedding and backfill shall be borne by the contractor.

In order to provide a smooth, firm and uniform foundation for the utility lines, the lines should be bedded on competent compacted fill, select sand, or native materials, if feasible. The bedding thickness, shaping and/or placement should be as necessary to satisfy design requirements. The bedding shall be water densified by jetting prior to backfilling. This jetting will be sufficient to saturate the bedding material around the pipe.

Generally, the encountered materials at time of exploration are not suitable for use as bedding materials. The materials used for at the base of the pipe should conform to the gradation No. 3 or 4 for concrete aggregate as specified in the 1997 Standard Specifications for Publics Works Construction (Green Book). The maximum size of this aggregate shall not exceed 3/4". Bedding which extends up to 12-inches above the pipe shall consist of material with a maximum size of 4 inches. In both cases, the backfill materials shall have a Sand Equivalent (SE) greater than 20.

In general, the encountered materials during exploration are considered suitable for use as backfill materials. Backfill shall be considered as starting at 12 inches above the pipe. All backfill in the trench should be compacted throughout to the specified geotechnical requirements. Flooding or jetting is not allowed as the compaction method for backfill materials. Mechanical compaction will be required to accomplish compaction for fine-grained, cohesive backfill, and should be the sole method to achieve compaction in the street-zone along the entire alignment.

All backfill, particularly materials within the street-zone, should be moisture conditioned to, or slightly above, optimum moisture content, placed in lifts not exceeding six to eight inches in thickness, and compacted throughout to at least 90 percent of the maximum dry density as determined by the ASTM D1557-91. The exception is that the compaction requirement within the street zone (24-inches below bottom of pavement structural section) should be increased to 95 percent of the ASTM D1557-91 maximum dry density.

7.10 Corrosion and Chemical Attack Resistance

To evaluate the corrosion potential of the near-surface soils, we used the following correlation between electrical resistivity and corrosion potential:

Electrical Resistivity (Ohm-cm)	Corrosion Potential
Less than 1,000 1,000 – 2,000 2,000 – 10,000 Greater than 10,000	Severe Corrosive Moderate Mild

Fill resistivity survey results indicate resistivities ranging from 1,800 to 8,000 Ohmcm. These results indicate a moderately corrosive to corrosive environment for ferrous metals. The sulfate attack hazard is moderate for existing near-surface soils. Type II cement and water ratio of 0.45 would be appropriate for design of footing in contact with near-surface soils. Any imported fill soil which may be in contact with the near-surface soils shall be tested for sulfate content, and an appropriate concrete mix selected based on the results.

7.11 Groundwater

Ground water was not encountered at the time of our investigation. Consequently, ground water is not a factor in the design and construction of the proposed development.

All earthwork and grading performed within the subject site will be subject to approval of this office and must conform to the requirements of the owners and the following recommendations:

- 1. The general or grading contractor is responsible for notifying the owner, the appropriate governmental agency, and the geologist/geotechnical engineer of the planned start of the site clean-up, the start of grading operations and anytime grading is resumed after an interruption. Each phase of the operations described below must be approved in a specific area by the geologist/geotechnical engineer before proceeding with the work. Where such approval is not obtained, the contractor at his own expense will re-do the work at the discretion of the geologist/geotechnical engineer.
- 2. The fill materials at the site should be removed. Based on the field exploration, the depth of the fill materials ranges from 4 to 6 feet below existing surface. All areas to receive fill, slabs, or pavement shall be stripped and cleared of all vegetation, debris, or other soft, porous or unsuitable material. For soils that have Expansive Index (EI) greater than 20 shall not be used as fill material below any concrete slab-on-grade.
- 3. The resulting bottom shall then be observed by the project geotechnical engineer and the controlling governmental agency, if required, prior to placing any fill.
- 4. After the required observations, the approved excavation bottom shall be scarified to a depth of 8 inches, moisture conditioned to or maximum of +3% of the optimum moisture content, and compacted to 90% relative compaction as determined by ASTM D1557-91.
- 5. All fill to be placed shall be free of organic, debris or rocks greater than 3 inches in size, non-expansive (EI<20), and shall be approved by the project geotechnical engineer. If conforming to these requirements, the on-site soils shall be considered suitable for use as compacted fill. All import to the project site, in addition to conforming to these requirements, shall be non-expansive and shall be approved by the project geotechnical engineer prior to being imported to the site.</p>
- 6. Fill soils shall be placed in thin layers, well mixed, and moisture conditioned to ± 3% of the optimum moisture content and compacted using suitable compaction equipment to a relative compaction of 90% as determined by ASTM D1557-91. The resulting compacted layer shall be no more than 6 inches in thickness. Compaction equipment and techniques shall be selected by the contractor to achieve the required compaction and shall take into consideration, among other factors, the material type and the working limits of the projects. In no case will flooding or jetting be allowed.

- 7. All material used as asphalt concrete and base below paving shall conform to the "1997 Standard Specifications for Public Works Construction" (Green Book) or the equivalent, and shall be compacted to 95% relative compaction.
- 8. Unless otherwise specified, all earthwork and grading will be performed under the continuous observation of the project geotechnical engineer. Compaction testing of the fill soils shall be performed at the discretion of the project geotechnical engineer. Testing should be performed approximately every 2 feet in fill thickness or every 2000 cubic yard of compacted fill, whichever occurs first. If specified compaction is not achieved, additional compactive effort, moisture conditioning of the fill soils, and/or removal and recompaction of the below-minimum-compaction soils will be required at the expense of the contractor.
- 9. If during the course of the grading, conditions are encountered which, in the opinion of the project geotechnical engineer, differ significantly from those described in the geotechnical report, work shall be stopped and the condition(s) evaluated. Revaluation might include further investigations.
- 10. If, in the opinion of the project geotechnical engineer, contractor or owner, an unsafe condition is created or encountered during grading, all work in the area will be stopped until measures can be taken to mitigate the unsafe condition. An unsafe condition shall be considered any condition, which might create a danger to workers, on-site structures or construction, or any off-site properties or persons.

Prior to any grading operation, the existing fill soils at the site should be removed. Based on our exploration, the depth of the existing fill ranged from 4 to 6 feet below existing surface. The excavation bottom should be observed and approved by the project geotechnical engineer prior to any backfill.

No abandoned line was encountered during field exploration. If abandoned utility lines were to be revealed during grading operation, however, they shall be cut off at the property lines, filled with a pressure-pumped sand-cement slurry (minimum 2-bag mix) and sealed at the property lines or demolished and incorporated into the fills in accordance with Section 7.0 this report.

The Contractor shall conform to all applicable occupational and health standards, rules, regulations and orders established by the State of California and the Federal Government. Specifically, the Contractor should provide details of the design of shoring, bracing, sloping or other provisions for worker protection during excavation as provided in <u>Section 5-1.02a</u> of <u>Caltrans Standard Specifications</u>, or <u>Section 306-1.1.6</u> of <u>Standard Specifications</u> for Public Works Construction.

10.1 Temporary Shoring

Excavations during construction should be carried out in such a manner that failure or excessive ground movement will not occur. The short-term stability of excavation depends on many factors including engineering characteristics of the soils, height of the excavation and length of time the excavation remains unsupported and exposed to equipment vibrations, rainfall and desiccation.

Where spacing permits and providing that adjacent facilities are adequately supported, open cuts may be considered for construction. In general, unsupported slopes for temporary construction may stand vertically up to 5 feet in height.

Surcharge loads such as vehicular traffic or stockpiled materials should be kept away from the top of temporary excavations a horizontal distance equal to at least the depth of excavation. Surface drainage should be controlled along the top of temporary excavations to preclude wetting of the soils and erosion of the excavation walls. Even with the implementation of the above recommendations, sloughing of the surface of the temporary excavations may still occur, and workmen should be adequately protected from such sloughing.

It is important that the structural integrity of the adjacent pavements be maintained. Therefore, the contractor should provide support and backfill with a sand slurry mix any portions of the excavation face that experience sloughing.

Where there is insufficient space for sloped excavations, shoring should be used to support the excavation.

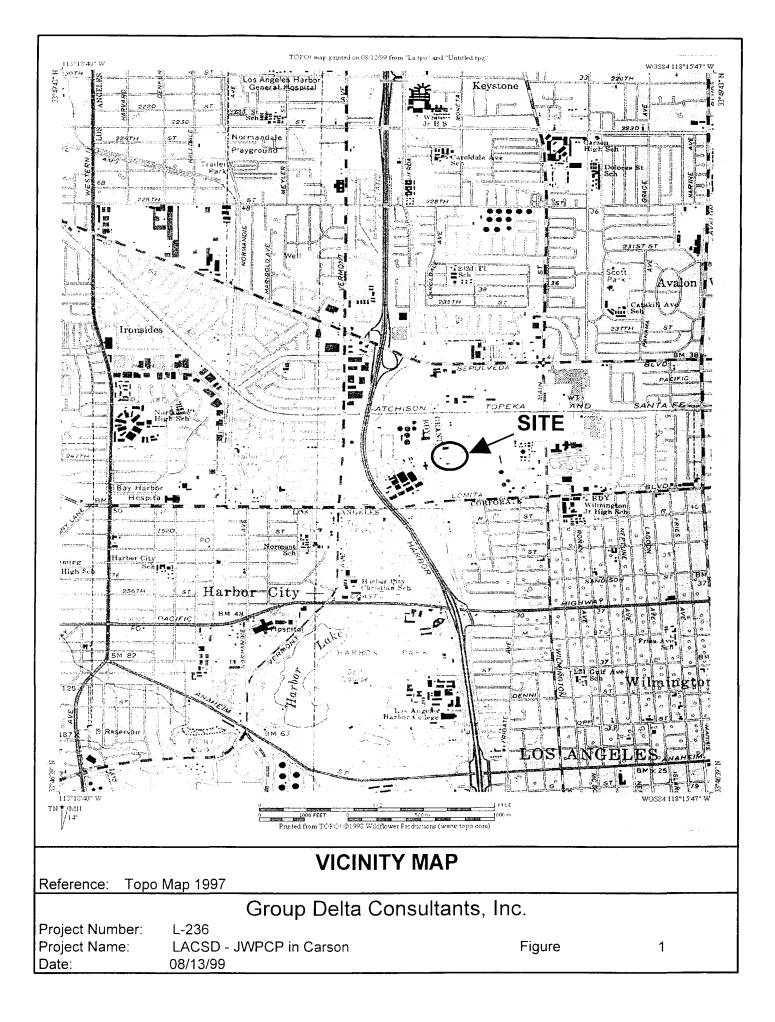
10.2 Pavement Construction

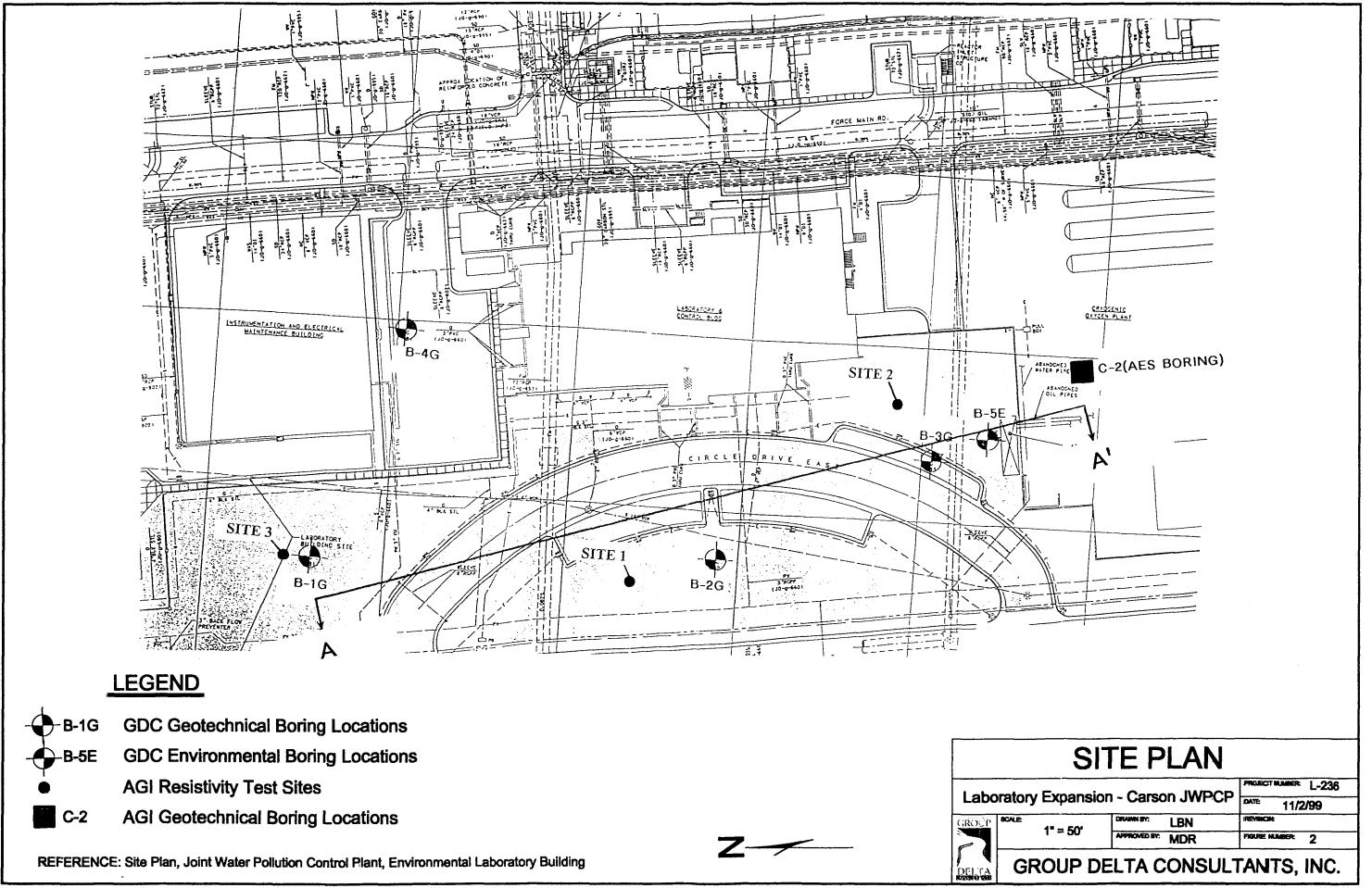
Prior to placing pavement or base, the subgrade shall be scarified and compacted to a depth of at least 12 inches. The relative compaction shall be at least 95% of maximum density per ASTM D1557-91. The subgrade soil shall be at or near optimum when compaction is required. Asphalt concrete (AC) and aggregate base (AB), shall be compacted to 95% of maximum density.

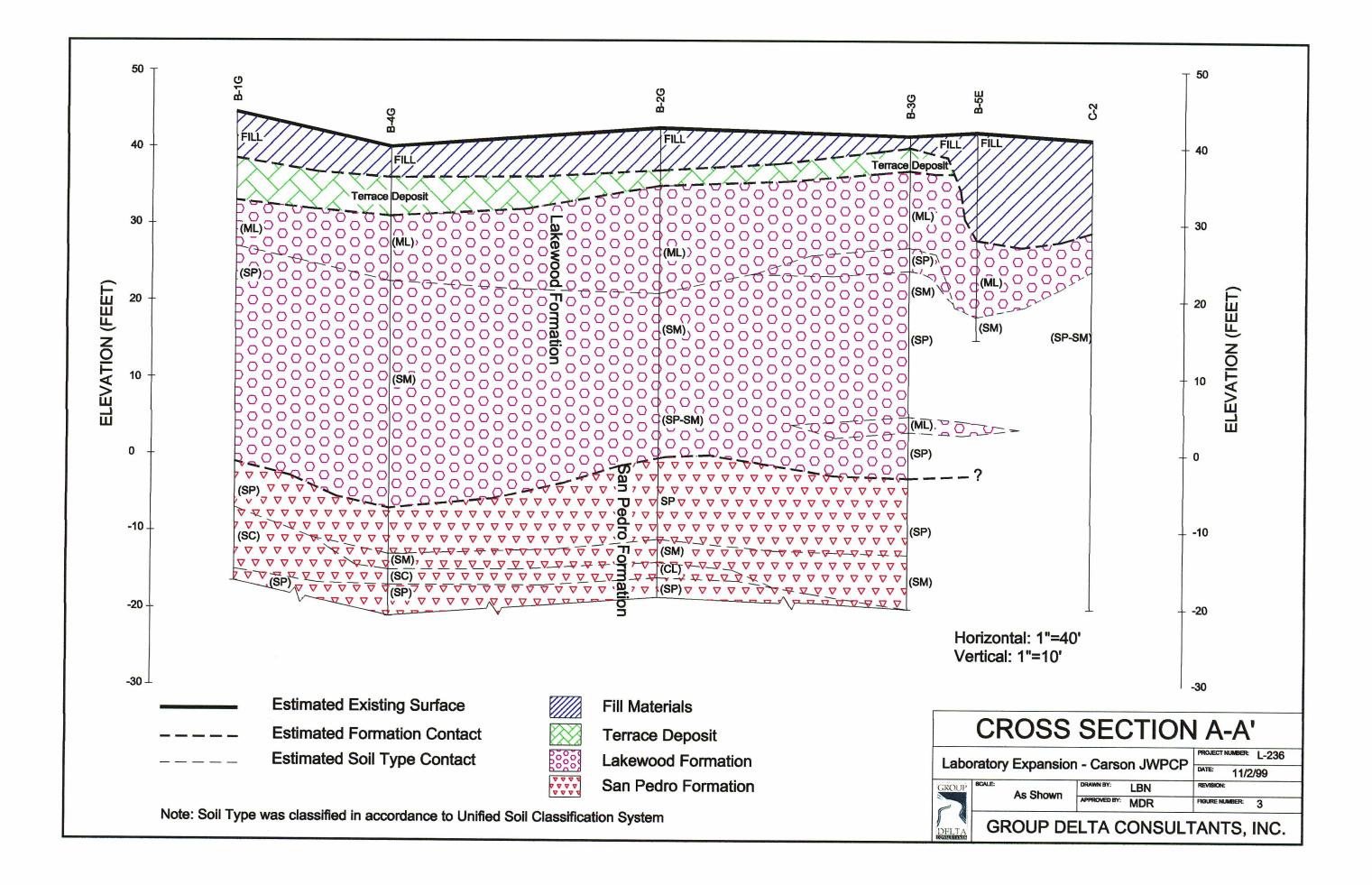
It is recommended that the paved areas be properly sloped to the curbs and gutters and surface drainage facilities provided to minimize water percolation and subsequent saturation of the subgrade soils. Surfaces should be sloped to drain water to gutters or other positive drainage facilities to minimize ponding. Final project plans and specifications should be reviewed by the project geotechnical engineer prior to construction to confirm that the full intent of the recommendations presented herein have been applied to the design.

Following review of plans and specifications, sufficient and timely observation during construction should be performed. These functions are required to confirm subsurface conditions identified during the investigation phase.

This report is based on the project as described and the information obtained from seven borings as indicated on the plan at the specified date. The findings are based on the results of the field, laboratory and office investigations and analyses, combined with an interpolation and extrapolation of soil conditions between and beyond the test pits. The results reflect this office's interpretations of the limited direct evidence obtained. This firm should be notified of any pertinent change in the project or foundation conditions are found to differ from those described herein, it may require a re-evaluation of the recommendations.


The recommendations for this site are, to a high degree dependent upon proper quality control of fill placement and foundation installation. Consequently, the foundation recommendations are made contingent on the opportunity of GDC to observe grading operations and foundation excavations for this phase of construction. If parties other than GDC are engaged to provide such services, they must be notified that they will be required to assume complete responsibility for the geotechnical phase of the project by concurring with the recommendations in this report or provide alternate recommendations.


This report has not been prepared for use by parties or projects other than those named or described above. It may not contain sufficient information for other parties or other purposes. It has been prepared in accordance with generally accepted geotechnical practice and makes no other warranties, either expressed or implied, as to the professional advice or data included in it.



- California Department of Water Resources, 1961, Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A – Ground Water Geology, Bulletin 104.
- Poland, J., Garrett, A. and Sinnott, A, 1959, Geology, Hydrology and Chemical Character of Ground Waters in the Torrance-Santa Monica Area, California, Geological Survey Water-Supply Paper 1461.

APPENDIX A FIELD EXPLORATION

The field exploration was performed on July 21 and 22, 1999 utilizing a truck mounted hollow stem auger drill rig. The field exploration consisted of observing subsurface conditions in 5 borings to depths ranging from 26 to 61 feet below existing ground surface. Subsurface materials encountered were recorded by a GDC field engineer after classifying the material visually in accordance with the Unified Soil Classification System (USCS).

Relatively undisturbed samples and bulk samples of the encountered materials were obtained in the borings as noted on the boring logs. Relatively undisturbed samples were obtained by driven 2.41-inch inside diameter sampler with a 140-pound hammer free-falling 30 inches free drop, retained in brass rings of 1-inch in height, and placed in sealed plastic cans to prevent loss of moisture. Bulk samples were obtained and placed in polyethylene bags.

Approximate locations of the boring were determined by tape measurement from existing property boundary and existing surface structures, and are presented on Figure 2, Log of Test Borings. Pertinent details of subsurface materials encountered in each boring are presented in Figures A-1 through A-6, Log of Test Borings.

LOC	G O	F TE	ST B	BORI	NG			Laboratory Expansio					UMBER			
SITE						LAU	<u>- U</u>		BEG	UN	L-2	2 <u>36</u> сом	PLETED		SHEET N	END
		alifornia				,					1.00			1	1 of 2	2
UNILLEN						8	URILI	L METHOD			LOG	GED E	S Y	CHEC	CKED BY	
DRILL EC	QUIPME	NT					E	BORING DIA. TOTAL DEI 45.0 ft.	νTH	GROUN	DELEV	Ι.	DEPTH.	IELEV. G	ROUNDV	VATER
SAMPLIN	IG METH	IOD				NOTES	'					1				
DEPTH (feet)	ELEVATION	PENETRATION RESISTANCE (BLOWS/FOOT)	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	GRAPHIC LOG	SAMPLE TYPE	DES	CRIPT	ION AND	CLAS	SSIFI	CATION	1		
- 5								FILL - Soil material no	t nativ	e to the lo	ocatior	۱.				
- 10								NATIVE - Soil materia	l natur	ally depo	sited a	at the	locatior).		
15								BULK 1, R-2, S-3 - Re taken.	fers to	the type	and se	equer	רce in w	hich the	sample	was
-								grab, MC, SPT - Re	ers to	the meth	od in v	which	the san	nple wa	s obtaine	ed.
20	·							GRAB - Refers to colle into a plastic bag.	ecting	sample b	y metł	nod ot	f placing	j loose s	soil mate	rial
- 25 - -								MC (CALIFORNIA MOI a 2.4" inside diameter b downward force, usuall	y 12"	ong cylin	drical	samp	ler drive	en into t		
30							\mathbf{X}	SPT (STANDARD PEN method of a 1.4" inside soil by a downward forc	diame	ter by 18	long	cyline	drical sa	mpler d	riven into	ole by o the
GROUI		ROUP D	ELTA	CONS	SULTA	ANTS,	INC	THIS SUMMARY APP OF THIS BORING AND SUBSURFACE COND LOCATIONS AND MA WITH THE PASSAGE PRESENTED IS A SIM CONDITIONS ENCOU) at t itions y cha of tii iplific	HE TIME (MAY DIF NGE AT T ME. THE CATION O	of Dri Fer A His Lo Data	ILLING T OTI DCATI	g. Her Ion	FIG	JRE	A-0a

LOG OF TEST BORING House I LACSD - Laboratory Expansion L-236 B-1 Site Carson, California DRILL Carson, California DRILL METHOD 07/22/99 1 of : ORLLER DRILL METHOD 07/22/99 1 of : 07/22/99 1 of : DRILL Filter Bornix Dia 1 of : 07/22/99 1 of : 07/22/99 1 of : DRILL Carson, California DRILL METHOD NN SHE SHE SHE SHE DRILL Carson, California DRILL METHOD TOTAL DEPTH GROUND ELKY DEPTH/JELE/L/GROUND V Samethod Hyperstring Bornix Dia Total DEPTH GROUND ELKY DEPTH/JELE/L/GROUND V 140-19, 30-in Free Failing Hydraulic Hammer Bornix Dia Total DEPTH GROUND ELKY DESCRIPTION AND CLASSIFICATION 140-19, 30-in Free Failing Hydraulic Hammer Group Elky Elysty Group Elky Elysty Group Elky Elysty Group Elkyty Total DEPTH 140-10, 30-in Free Failing Hydraulic Hammer Group Elkyty Fill Group Elkyty Group Elk	NUMBER
DRILLER DRILL METHOD LOGGED BY DHECKED BY Layne Christensen NN SHK DRILL EQUIPMENT BORING DIA. TOTAL DEPTH GROUND ELEV. DEPTH/JELEV. GROUND V SAMPLING METHOD NOTES Ad-L. 9" 61.0 ft. 44.20 Y I Ad-Lb. 30-10 Free Falling Hydraulic Hammer NOTES DESCRIPTION AND CLASSIFICATION DESCRIPTION AND CLASSIFICATION I Ad-Lb. 30-10 GV III Content of the second of the	
Layne Christensen Hollow Stem Auger NN SHK DRILL EQUIPMENT BORING DIA. TOTAL DEPTH GROUND ELEV. DEPTH/ELEV GROUND V CME 750 Alterain SMMELING METHOD NOTES 61.0 ft. 44.20 X 140-Ib. 30-in Free Falling Hydraulic Hammer NOTES DESCRIPTION AND CLASSIFICATION X 140-Ib. 30-in Free Falling Hydraulic Hammer H from Stem Auger DESCRIPTION AND CLASSIFICATION X 140-Ib. 30-in Free Falling Hydraulic Hammer H from Stem Auger DESCRIPTION AND CLASSIFICATION X 140-Ib. 30-in Free Falling Hydraulic Hammer H from Stem Auger DESCRIPTION AND CLASSIFICATION X 140-Ib. 30-in Free Falling Hydraulic Hammer H from Stem Auger DESCRIPTION AND CLASSIFICATION X 140-Ib. 30-in Free Falling Hydraulic Hammer H from Stem Auger FILL GC GC GC 140-Ib. 2000 H from Stem Auger NOTES FILL GC	
CME 750 Alterain 8" 61.0 ft. 44.20 T SAMPLING METHOD NOTES NOTES NOTES Ide.lb. 30-in Free Falling Hydraulic Hammer Ide.lb. 30-in Free Falling Hydraulic Hammer Ide.lb. 40-in Free Falling Hydraulic Hammer Ide.lb. 30-in Free Falling Hydraulic Hammer Ide.lb. 40-in Free Falling Hydraulic Hammer Builk 1 Ide.lb. 40-in Free Falling Hydraulic Hammer Builk 1 Ide.lb. 40-in Free Falling Hydraulic Hammer Ide.lb. 40-in Free Falling Hydraulic Hydraulic Hydraulic Hydraulic Hydrau Hydrau Falling Hydrau Fallin	•
SAMPLING METHOD NOTES 140-lb, 30-in Free Falling Hydraulic Hammer NOTES Hadding G Hadding G Bulk 1 GRAB Alc CO CO -39 -5 -39 -5 -39 -5 -34 -10 CL) Olive brown, fine, Silty SAND, with some Clay, micaceous, moist CL) Olive brown, soft, Silty CLAY, slightly micaceous, moist LAKEWOOD FORMATION MC 19 23.6 <td>WATER</td>	WATER
Hand Column 1 Hand Column 2 Hand Column 2<	
Bulk 1 GRAB AL CO EI FILL AL CO EI	
GRAB AL - - (SC) Olive brown, fine, Clayey SAND, slightly micaceous. O' - 7' Hand Auger - - - - 0' - 7' Hand Auger R-1 9 13.6 79.6 - - - - SPT 6 - - - - - - - R-2 19 23.6 99.1 CS - - - (CL) Olive brown, soft, Silty CLAY, slightly micaceous, moist LAKEWOOD FORMATION - - - - (ML) Olive gray, Clayey SILT to SILT, with orangish brown stain, micaceous, moist SPT - - - - (ML) Olive brown, stiff, SILT, with light gray and orange stains, micaceous, moist	
R-1 9 13.6 79.6	
R-1 9 13.6 79.6 -39 -5 SPT 6 -34 10 (CL) Olive brown, soft, Silty CLAY, slightly micaceous, moist LAKEWOOD FORMATION (ML) Olive gray, Clayey SILT to SILT, with orangish brown stain, micaceous, moist	
R-1 MC 9 13.6 79.6 TERRACE DEPOSIT (SM) Reddish brown, fine, Silty SAND, with some Clay, micaceous moist S SPT 6 -34 10 (CL) Olive brown, soft, Silty CLAY, slightly micaceous, moist LAKEWOOD FORMATION R-2 MC 19 23.6 99.1 CS - S SPT - - - (ML) Olive gray, Clayey SILT to SILT, with orangish brown stain, micaceous, moist S SPT - - - - (ML) Olive brown, stiff, SILT, with light gray and orange stains,	
R-1 MC 9 13.6 79.6 TERRACE DEPOSIT (SM) Reddish brown, fine, Silty SAND, with some Clay, micaceous moist S SPT 6 -34 10 (CL) Olive brown, soft, Silty CLAY, slightly micaceous, moist LAKEWOOD FORMATION R-2 MC 19 23.6 99.1 CS - S SPT - - - (ML) Olive gray, Clayey SILT to SILT, with orangish brown stain, micaceous, moist S SPT - - - (ML) Olive brown, stiff, SILT, with light gray and orange stains,	
R-1 MC 9 13.6 79.6 TERRACE DEPOSIT (SM) Reddish brown, fine, Silty SAND, with some Clay, micaceous moist S SPT 6 -34 10 (CL) Olive brown, soft, Silty CLAY, slightly micaceous, moist LAKEWOOD FORMATION R-2 MC 19 23.6 99.1 CS - (ML) Olive gray, Clayey SILT to SILT, with orangish brown stain, micaceous, moist S - - - - (ML) Olive brown, stiff, SILT, with light gray and orange stains,	
R-1 MC 9 13.6 79.6 (SM) Reddish brown, fine, Silty SAND, with some Clay, micaceous moist S SPT 6 -34 10 (CL) Olive brown, soft, Silty CLAY, slightly micaceous, moist LAKEWOOD FORMATION R-2 MC 19 23.6 99.1 CS (ML) Olive gray, Clayey SILT to SILT, with orangish brown stain, micaceous, moist S -34 -10 (ML) Olive brown, soft, Silty CLAY, slightly micaceous, moist R-2 MC 19 23.6 99.1 CS (ML) Olive gray, Clayey SILT to SILT, with orangish brown stain, micaceous, moist S -29 -15 (ML) Olive brown, stiff, SILT, with light gray and orange stains,	
MC 9 13.6 79.6 moist S SPT 6 -34 -10 (CL) Olive brown, soft, Silty CLAY, slightly micaceous, moist R-2 MC 19 23.6 99.1 CS (ML) Olive gray, Clayey SILT to SILT, with orangish brown stain, micaceous, moist S -29 -15 (ML) Olive brown, stiff, SILT, with light gray and orange stains,	us,
SPT 6 R-2 19 23.6 99.1 CS S	
SPT 6 R-2 19 23.6 99.1 CS Sort	
SPT 6 R-2 19 23.6 99.1 CS S	
R-2 MC 19 23.6 99.1 CS (ML) Olive gray, Clayey SILT to SILT, with orangish brown stain, micaceous, moist S -29 -15 (ML) Olive brown, stiff, SILT, with light gray and orange stains, micaceous, moist	
MC 19 23.6 99.1 CS - MIL Only gray, Clayey SiLT to SiLT, with drangish brown stain, micaceous, moist	
-29 -15 (ML) Olive brown, stiff, SILT, with light gray and orange stains,	
SPT 19 micáceous, slightly moist	
R-3 MC 20 4.9 96.1 (SP) Olive, fine SAND, with some Silt, slightly micaceous, slightly moist,	1
S SPT 22	
Bulk 2 GRAB	
R-4 some orange staining, slightly moist to dry	
MC 19 2.8 89.0 WA - SG Some brange stanning, signify holst to dry	
S SPT 17 -19 -25 slightly compact, slightly moist to dry	
Bulk 2 GRAB 22 Bulk 2 GRAB 19 2.8 89.0 WA SG - - Image: Compact static stati	
with some Clay balls	

LO	G OF	- TE	ST E	BOR	ING	PROJE		aha	raton/ l	Expansion						OLE NUMBER
SITE							-90 - 1	abu		Expansior	BEG	UN	L-236	OMPLETED		HEET NO.
	ion, Ca	lifornia									07	/22/99		07/22/99		2 of 2
DRILLE							DRILL						LOGGEI	DBY	CHECK	ED BY
	Christer							W Ste	m Auger	TOTAL DEPT	г <u>ш</u>	GROUN		DEDTU		UND WATER
	750 Alter						8			61.0 ft.		44.20		UEF I H/Z	ELEV. GRO	OND WATER
	NG METH					NOTES		·				L				
140-lk	o, 30-in F	ree Fallir	ng Hydrau	ulic Harr	mer			· · · · ·			······					
SAMPLE ID.	PENETRATION RESISTANCE (BLOWS/FOOT)	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	ELEVATION	DEPTH (feet)	GRAPHIC LOG	SAMPLE TYPE			DE	SCRIPT) CLASSIF	ICATION	
R-6 MC	48	4.1	100.7		-9	35			mica (SP)	Olive, fine t ceous, moist Light olive o to slightly n	orange	-				
R-7 MC	40	3.7	92.6	DS	4	4 0			(SP)	Light brown	, fine	SAND, v	vith Silt, n	nicaceous,	slightly m	oist
R-8 MC	30	4.2	95.1				$\sum_{i=1}^{n} \bigotimes_{i=1}^{n} \bigotimes_{i$		SAN (SP)	Olive, fine to PEDRO FO Orange, fra D, slightly mo	RMAT gmen	TON ted weat				to coarse
R-9 MC	22	15.6	108.0				$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-	(SP) shell (SC)	Light olive g fragments, s Olive, fine t ceous, with o	jray, r some o mec	nedium t carbonat lium, Cla	e iyey SAN			
R-10 MC	56	5.2	93.9			- 55			(ML)	Olive browr	i, fine	Sandy S	ILT, mica	aceous, slig	htly mois	t to moist
R-11 MC		12.1	101.3			- 60			some Botto No gi The t grass	Olive orang carbonate, m of B-1 @ oundwater v ooring was b y soil. ooring cutting	slight 61 feo vas ol ackfill	ly moist f et oserved. ed with r	to moist nedium b	entonite ch		

FIGURE A-1b

	g of	TE	STE	BORI	NG	PROJEC LAC		atory Expansion			којест 236	NUMBER	HOLE N	UMBER
SITE	son, Cal	lifornia		a				B	BEGUN 07/21/	90		MPLETED	SHEET	
DRILLE	Ŕ						DRILL METHO		0//21/	L	OGGED		CHECKED BY	and the second se
Layne	e Christer	nsen T					Hollow Sten BORING D		'H GR		NN LEV.	DEPTH/E	SHK	VATER
1	750 Alter					NOTER	8"	61.0 ft.	4	2.47		Ţ		
}	b, 30-in F		ng Hydrai	ulic Ham	mer	NOTES								
							ш					<u></u>		
SAMPLE ID.	PENETRATION RESISTANCE (BLOWS/FOOT)	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	ELEVATION	DEPTH (feet)	GRAPHIC LOG SAMPLE TYPE		DESC	RIPTIO	N AND (CLASSIFI	CATION	
Bulk 3								FILL						
GRAB				AL CO RV				(CL) Reddish bro micaceous, moist 0' to 7' Hand Auge		CLAY, v	with me	dium to fin	e Sand, slight	У
					-37	-5		TERRACE DEPO (SM) Orange bro		Silty SAN	ND, with	n Clay		
R-1 MC Bulk 1 GRAB	10	12.7	105.9			+		LAKEWOOD FOF (ML) Light olive b			T, mica	iceous, slig	ghtly moist	
S SPT	18	-		RV				stiff, increase in C	lay conte	ent, mois	st			
R-2 MC Bulk 2 GRAB	17	22.0	99.7	DS	27	15		color change to ol stiff, moist	live gray,	with ora	nge sta	ins, moist		
S SPT R-3 MC	16	21.4	100.2		-	,		slightly moist to m	noist					
S SPT	18				— 22 -	- 20		stiff, slightly moist	:					
R-4 MC	19	13.0	115.5			-		(SM) Olive brown moist	i, fine Silt	y SAND	, with o	range stair	ns, micaceous	,
R-4 SPT SPT R-5 R-5 MC	32				17 	-25		compact, slightly	moist to r	moist				
R-5 MC	35	:		DS	- 12 			color change to lig	ght grayis	h brown	ı, moist			
	OUP	DEL	TA C	ONS			rs, inc					FIG	GURE A	-2a

1.00⁻⁰ -

......

FIGURE A-2a

	g of	TE	ST E	BORI	NG	LAC		_abor	atory I	Expansior	1		PROJECT L-236	NUMBER	HOLE NUMB
Cars	son, Cal	ifornia									BEG		CO	MPLETED	SHEET NO.
DRILLE		noma						метно	D		07/	/21/99	LOGGED	7/21/99 BY	2 of 2 CHECKED BY
RILL E	e Christen QUIPMEN 750 Alter	T ain				NOTEC	Hollow Stem Auger BORING DIA. TOTAL DEPTH GROUN 8" 61.0 ft. 42.47							DEPTH/ <i>EL</i>	SHK EV. GROUND WATE
	NG METHO 5, 30-in Fr		na Hydrai	ulic Hamr	ner	NOTES									
SAMPLE ID.	PENETRATION RESISTANCE (BLOWS/FOOT)	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	ELEVATION	DEPTH (feet)	GRAPHIC LOG	SAMPLE TYPE			DE	SCRIPTI	ON AND	CLASSIFIC	ATION
R-6 MC	29	3.7	97.7		 - 	- 35			(SM ∙ slight	SP) Light (ly micaceou	grayis s, slig	h brown, f htly mois	fine to me t to moist	dium, Silty	SAND to SAND,
R-7 MC	30	12.5	92.6	WA SG	2 	40			mica	ceous, mois	:				
					-	-			SAN	PEDRO FO	RMAT	ION			
R-8 MC	30	6.5	95.3			- 45				Orange bro ceous, moist		edium to	fine SANI	⊃, with sea ⊨	shell fragments,
R-9 MC	32	3.6	105.5		- 	- 50			with v	veathered se	ea she	ell and mid	ca fragme	nts, moist	
R-10 MC	54	15.2	101.8		- 					Olive brown Olive gray,				-	oist to very moist
R-11 MC	45	6.6	107.4			60			weat Botto No gi The t grass	Orange bro nered sea sh roundwater v ooring was b ooring was b ooring cutting	ell fra 61 fee vas ot ackfill	igment, m et oserved. ed with m	noist nedium be	ntonite chip	ne Silt and is and capped wit

LOC	G OF	TE	ST E	BOR	NG			abor	atory Expansion	PROJECT NUMBER HOLE NUMBER				
SITE							,50 - L	abul		CO	MPLETED	SHEET NO.		
Cars	on, Ca र	lifornia					DRILL	METHO	D	07/	21/99	0 LOGGED	7/21/99 BY	1 of 2 CHECKED BY
	Christer						Hollo	w Ster	n Auger			NN		SHK
	QUIPMEN 750 Alter						ВО 8	RING [DIA. TOTAL DEPT 61.0 ft.	н	GROUNI 41.19	DELEV.	DEPTH/EL	EV. GROUND WATER
	NG METH					NOTES	0						`	······································
140-lb		ree Fallir	ng Hydrai	ulic Ham	mer		1							
SAMPLE ID.	PENETRATION RESISTANCE (BLOWS/FOOT)	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	ELEVATION	DEPTH (feet)	GRAPHIC LOG	SAMPLE TYPE		DE	SCRIPT	ION AND	CLASSIFIC	ATION
					_				6" Asphalt 6" Olive Base					
						_			TERRACE DEPO	SIT				
					-	-			(CL) Dark gray bi 1' - 7' Hand Auger	rown, r	Silty CL4	AY, slightly	y moist	
					_	F			LAKEWOOD FOR	RMAT	ION		÷	
					36	5			(ML) Olive brown	, Clay	ey SILT,	slightly m	licaceous, r	noist
D 4					-	-								
R-1 MC		11.2	102.9		!	-			organic, micaceou	us, slig	ghtly moi	st		
						-								
s					31	⊢ 10			von stiff slightly r	moist	to day			
SPT	29				-	-		X	very stiff, slightly r	noist	to ury			
					-	+								
R-2 MC	28	8.6	116.7		-	-			(ML) Grayish bro slightly moist	wn, fir	ne sandy	SILT, witl	h orange sta	ains, micaceous,
					-	1								
S SPT	0 5				-26	- 15		\bigtriangledown	(SP) Olive brown	, com	pact, fine	SAND, w	vith Silt, mic	aceous, slightly
0	25							\square	moist					
R-3					inn i	-			(SM) Grayish bro	wn, fii	ne Silty S	SAND, slig	htly micace	ous, slightly moist
MC	28	8.1	104.8		-	-					÷			
s						_ 20								
SPT	30				—21 -	-20		X	(SP) Olive brown balls, slightly mois		pact, fine	e, SAND, s	slightly mica	aceous, with Clay
Bulk 1 GRAB					! :-	-			- *					
R-4 MC	43	2.2	92.6	CO	: :	+		STO-	color change to ol	ive gr	ay, slight	tly moist to	o dry	
				WA DS	-	Ļ								
S					—16	- 25			gradates to a med	lium t	o fine. de	ense. sliat	itly moist to	dry
SPT	36				-	+			3.222100 10 0 11100				.,	,
i	:				-	-								
					-	- 								
	l				-	-								
R-5 MC	33	5.5	89.2	cs	11	- 30			slightly moist to m	noist				
Bulk 2 GRAB					-	F		CC 2						
			TA C		<u> </u>	- ^ N I								URE A-3a

	G OF	TF	ST F	OR	NG	PROJE		aha							UMBER	
SITE		• •					SD - L	abol	ratory	Expansion	BEG	JN	L-2		PLETED	B-3 SHEET NO.
1	on, Cal	ifornia										21/99			/21/99	2 of 2
DRILLE							DRILL	METHO	D				LOGO	ED E	BY	CHECKED BY
	e Christer								m Auger				NN	,		SHK
							{	RING [DIA.	TOTAL DEPT 61.0 ft.	Ή	GROUN 41.19		•		LEV. GROUND WATER
	750 Alter NG METH					NOTES	8			01.011.		41.13			Ţ	
140-lt	5, 30-in Fi	ree Fallir	ng Hydrai	ulic Ham	mer											
SAMPLE ID.	PENETRATION RESISTANCE (BLOWS/FOOT)	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	ELEVATION	DEPTH (feet)	GRAPHIC LOG	SAMPLE TYPE			DE	SCRIPT		ND C	CLASSIFIC	CATION
R-6				MA	6			en s	mois				<u>_</u>			
MC		21.9	101.4							Olive brown	, Clay	ey SILT	, micac	eou	s, some o	range staining,
R-7 MC	52	4.8	94.5			40		×	(SP)	Olive brown	, fine	SAND, v	with Silt	t and	orange s	tains, moist
R-8 MC	21	7.0	98.4			45			(SP)	PEDRO FOF Orange brow tly moist to m	vn. fir		dium, S	SANI	D, with we	athered sea shells,
R-9 MC	33 37	4.4	105.0			- 50			color	change to lig	ght oli	ve orang	ge, mica	aceo	us, moist	÷
R-10 MC	75	4.1	104.6			- 55			(SM) weat	Light grayis hered sea sh	h, bro ell fra	wn, fine gments,	to mec micaco	lium. eous	, Silty SAN , moist	ND, some
R-10 MC R-11 MC	81	5.7	96.9		- 	60			Botto No g The cold	change to ol orn of B-3 @ roundwater w boring was ba patch asphal boring cutting	61 fee vas ot ackfill t.	et oserved. ed with r	nedium	n ber	ntonite chi	ps, and capped with

FIGURE A-3b

LO	g of	TE	ST E	BORI	NG			Labor	ratory I	Expansion)		PROJECT L-236	NUMBER	HOLE NUMBER
SITE		lifornio								<u>I``</u>	BEG		co	MPLETED	SHEET NO.
DRILLE	son, Ca R	mornia					DRILL	METHO	D		07	/22/99	LOGGED	7/22/99 BY	1 of 2 CHECKED BY
	e Christer								m Auger			000100	NN		SHK
1	750 Alter						- L	ORING I	JIA.	TOTAL DEPT 61.0 ft.	н	GROUNE 39.87	DELEV.		LEV. GROUND WATER
	ING METH					NOTES									
140-11	o, 30-in F	ree Fallir		ulic Ham	mer										
SAMPLE ID.	PENETRATION RESISTANCE (BLOWS/FOOT)	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	ELEVATION	DEPTH (feet)	GRAPHIC	SAMPLE TYPE			DI	ESCRIPT	ION AND	CLASSIFIC	CATION
<u> </u>					-	-		-	6" of 1' thi	Asphalt ck olive Base	9				
									FILL (CL) 1.5' t	Dark olive b o 7' Hand A	rown	, fine San	dy CLAY	, with Grave	el up to 5/8", moist
		90 10 10 10 10 10 10 10 10 10 10 10 10 10			—35 -	-5				Olive brown	-	yey SILT,	micaceo	us, moist	
R-1 MC	30	13.9	110.2	DS	* -				with	Gravel up to	3/4",	moist to s	slightly m	oist	
S SPT	22					- 10		X		EWOOD FOI stiff, fine gra			, with som	ne Clay, mic	caceous, moist
R-2 MC	29	8.0	103.7						color	change to o	range	e olive, mo	oist		
S SPT	18				25	- 15		X	color	change to o	live g	ray, stiff,	moist		
R-3 MC	17	22.0	86.6							change to d Light olive,					oist slightly moist
S SPT	22				- 20 	20		X	comp	oact, slightly	mois	t to dry			
R-4 MC	21	13.7	93.5						color	change to o	live a	nd orange	e, with so	me Clay, m	oist to slightly moist
SPT Bulk 1 GRAB	40				- 15 -	- 25		X	color	change to lig	ght y	ellowish b	rown, der	nse, slightly	moist to dry
R-4 MC S SPT Built 1 GRAB R-5 MC	44	5.0	92.9	MA CO	- 	- 30			mois	t to slightly n	noist				

.....

and the second
FIGURE A-4a

\int	G OF	TE	ST F	SORI	NG	PROJEC						PROJECT	NUMBER	
SITE					110	LAC	<u>SD -</u>	Labo	ratory Expansion	BEGU	N	L-236	PLETED	B-4 SHEET NO.
Cars	on, Cal	ifornia									22/99		/22/99	2 of 2
DRILLE	R						DRILL	METHO	D			LOGGED	BY	CHECKED BY
	Christen								m Auger			NN		SHK
								ORING	DIA. TOTAL DEPT 61.0 ft.	'н	GROUNI 39.87	DELEV.	1	LEV. GROUND WATER
	750 Alter NG METH					NOTES		3''	01.0 it.		39.67	·······	Ţ	
	o, 30-in Fi		na Hydrau	ilic Hami	mer									
140-16			• /					T				· · · · · ·		
SAMPLE ID.	PENETRATION RESISTANCE (BLOWS/FOOT)	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	ELEVATION	DEPTH (feet)	GRAPHIC LOG	SAMPLE TYPE		DES	SCRIPT	ION AND (CLASSIFIC	CATION
R-6 MC	68	5.2	93.3						slightly moist to d	ry				
R-7 MC	56	4 .8	88.7			-40			slightly moist to d	гу				
R-8 MC	73					- 45			moist (ML) olive, Claye	y SILT.	, with o	range stair	is, micace	ous, moist
R-9 MC	76		-	DS					SAN PÉDRO FOF (SM) Light yellow micaceous, slightl	ish bro	wn, fine	Silty SAN	D, with so	me orange stains,
D 40					-	-			moist	-				nicaceous, slightly
R-10 MC	53		- - - - - - - - - - - - - - 			55		X	 (SM) Olive to yell moist 	owish	brown, f	ine to med	lium, Silty	SAND, micaceous,
R-11 MC	79					60			moist Bottom of B-4 @ No groundwater w The boring was ba cold patch asphal The boring cutting	/as obs ackfille t.	served. d with n			ps, and capped with

FIGURE A-4b

DRILLE	on, Cal R Christer	isen						w Sterr	n Auger		07/21/99	N	GED I		CHECKED SHK	
CME SAMPLI	750 Alter NG METHO	ain DD		ulic Ham	mer	NOTES	8	RING D	·iA.	TOTAL DEPTH 26.5 ft.	41.9	ND ELE' 9	v.	DEPTH/E	LEV. GROUN	ID W
SAMPLE ID.	PENETRATION RESISTANCE (BLOWS/FOOT)	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	ELEVATION	DEPTH (feet)	GRAPHIC LOG	SAMPLE TYPE			DESCRIP	TION #	ND (CLASSIFIC	CATION	
		:							FILL (SC) 5/8"	Olive Brown,	fine, Claye	y SANI	D, with	h some Si	It and grave	
S SPT	14				- 37 -	5			(SC)	RACE DEPOS Reddish brov change to bro	vn, Clayey S				ous	
S SPT	9				- 32				loose	, moist						
S SPT	28					- 15		X	(ML)	WOOD FOR Olive brown, htly moist		ne San	dy Si	LT, slightly	/ micaceou	s, n
S SPT	21								(ML) slight	Olive gray, ve ly moist to dry	ery stiff, Cla '	yey Sil	_T, wi	ith orange	stain, mica	cec
S SPT	35				- 17 _	25		X	mica	Olive brown, ceous, slightly	moist	to mee	dium,	Silty SAN	D, slightly	
					-			· · · ·	No gi The b grass	m of B-5 @ 2 oundwater wa ooring was ba y soil. ooring cuttings	as observed ckfilled with	mediu			ps and cap	ped
					12	- 30	:									

Project: Location Client:	:	Carso	n, C	alifo	ornia		nental Assessments a Los Angeles County	t the JV	/PC	CP		Project Number 98-104
Location:	Jo	oint W	ater	Pollu	ition	Control Plant				Elevat and D		40.95 MSL
Coordinate	es:	N 68	1.25	5	E 15	590.38	Depth to None Groundwater (ft):			Total I	Depth	n (ft): 61.0
Drilling Eq	uipr	nent/N	letho	d: (CME	75 HT Hollov	w-Stem Auger		1	Date S	Starte	ed: 6/1/98
Drilling Contractor	:	ABC	Liovir	n Dri	illing		Borehole Diameter: 7.2	5 inches	1	Date C	Comp	leted: 6/1/98
Hammer Informatio	n:	140	b aut	oma	ntic		Logged By: Grant Mi	ler	(Check	ed B	y: Saroj Weeraratne
Depth (feet)	Sample Type	Sample Number	Blow Count	Recovery (%)	Lithologic Log	Ma	terial Description	Unified Soil Classification	Dry Density (pcf)	Moisture Content (%)	OVA Reading	Remarks
		B-1	4	100		brown, moist, f ⁻ some fine-grain -	ery dark grayish-brown to dark firm, medium plastic, trace to red sand, non-stratified, no odor wn, calcareous filaments and	CL			7.5	Pocket pen = 3.25
-		S-3	10 13 4 5	100		firm to stiff, lov	s, no odor e-brown to olive-brown, moist, w plastic fines, some nd, some clay, micaceous,				5.5 8.5	TOTAL END Total DDT = ND
- 10		E-4	6 14 19	83		non-štratified, r - - - - LEAN CLAY; ol plastic, trace fi	no odor live-brown, moist, stiff, medium ine-grained sand, trace mented fragments,					Pocket pen >4.5 TPH = ND Total DDT = ND
-	H	D-5	20 24	75		mottling, moist	a): Dive-brown with olive-gray t, stiff, low plastic fines, nd, micaceous, non-stratified, no		102	8	8.5 5.5	Pocket pen >4.5

This borehole log is based on field classification, on visual soil description, and on the results of laboratory classification tests, where available. The data presented represent conditions only at the location of this borehole and at the time of drilling. Subsurface conditions may differ at other locations in the vicinity of this borehole and may change at this location with the passage of time.

ļ

A

and the second se

1

-

Printed on 9/23/98; Template: AEG5; Proj ID: 98104

<u>=</u> 5	Advanced Earth Sciences, Inc. Geotechnical and Environmental Consultants
------------	--

Project: Location Client:	: (Carso	n, C	alifo	ornia	d Environmental Assessments at Districts of Los Angeles County	the J\	WPC	P		Project Number: 98-104
Depth (feet) 12-	Sample Type	Sample Number	Blow Count	Recovery (%)	Lithologic Log	Material Description	Unified Soil Classification	Dry Density (pcf)	Moisture Content (%)	OVA Reading	Remarks
-		E-6	5 9 21	100		VARIES FROM LEAN CLAY TO SANDY SILT; light olive-brown, moist, stiff, medium plastic fines to low plastic fines (sandy silt), fine-grained sand, micaceous, stratified, no odor				7.5	Pocket pen >4.5
-	X	S-7	9 17 27	100		LAKEWOOD FM(QIw): SILTY SAND; light olive-brown with yellowish-brown mottling, moist, dense, low plastic fines, fine-grained sand, micaceous, non-stratified, no odor	SM			6.5 	
20-		E-8	19 31 50	100		SAND WITH SILT TO SILTY SAND; light olive-brown, moist, dense, fine-grained sand, micaceous, non-stratified, no odor	SP/SM			5.5 3.5	PH = ND otal DDT - ND
	×	D-9	50/6"	67		SAND; light olive-brown, moist, dense to very dense, fine- to medium-grained sand, micaceous, non-stratified, no odor	SP/SW	103	5	5.0 c 4.5	COMP
25-		E-10	11 17 22	100		VARIES FROM SILTY SAND, SANDY SILT TO SAND WITH SILT; light yellowish-brown with yellowish-brown mottling/staining, moist, very dense, low plastic fines, fine- to medium-grained sand, trace coarse sand, buiturbated, no odor	SM ML SP			3.5 2.0	
-	X	S-11	14 20 27	100		SAND WITH SILT; light yellowish-brown, moist, dense to very dense, fine-grained sand, micaceous, non-stratified, no odor	SP/SM			3.5 2.5	
30-		D-12	50/6"	67		- As above -	SP/SM			3.5 1.5	
			<u> </u>								

بالمروافية بالارتبار والمراجع والمرور وروران والموقوقين والمرور

.

a and a second second

Log of Boring C-2 Sheet 2 of 4

and the second second second

AES Advanced Earth Sciences, Inc. Geotechnical and Environmental Consultants

Log of Boring C-2

Sheet 3 of 4

Depth (feet)	Sample Type	Sample Number	Blow Count	Recovery (%)	Lithologic Log	Material Description	Unified Soil Classification	Dry Density (pcf)	Moisture Content (%)	OVA Reading	Remarks
35-		S-13	11 20 24	100		- As above, laminated, no odor	SP/SM			3.5 0.5	
- 40	X	D-14	50/6"	67		As above, no odor	SP/SM			4.0 3.5	
- 45 -		S-15	18 24 31	100		- As above, light olive-brown, fossiliferous, no - odor	SP/SM			4.5 3.5	
- - 50-											

roject: ocation: lient:	:	Carso	n, C	alifo	rnia	d Environmental Assessments and Districts of Los Angeles County	t the J\	WPC)P		Project Numbe 98-104
ດ Depth ດ (feet)	Sample Type	-C Sample 10 Number	Blow Count	Recovery (%)	Lithologic Log	Material Description	Unified Soil Classification	Dry Density (pcf)	Moisture Content (%)	OVA Reading	Remarks
-		D-16	50/5*	60		As above, light olive gray, fossiliferous, no odor	SP/SM			3.3 0.8	
55	X	S-17	5 12 17	100		As above, fossiliferous, partly cemented, no odor	SP/SM			2.8	
60	X	D-18	50/6"	100		As above, no fossils, no odor Boring terminated at 60 feet. Backfilled with bentonite chips to the ground surface.	SP/SM			4.5 3.5	
65-	والموالية المحافظة والمحافظة والمحاف					- - - -					
[- 					RE A-6

ן ו ו

ł

1

(Contraction)

I

7

]

1

1

1

1

and the second
APPENDIX B GEOTECHNICAL LABORATORY TESTING

General

The laboratory testing performed for this investigation included determination of Moisture Content and Dry Unit Weight, Percent Passing No. 200 Sieve, Maximum Dry Density, Shear Strength, Corrosion Test, Consolidation Test, and Resistance Value. Descriptions of these tests are given below.

Moisture and Dry Unit Weight

The field moisture and dry unit weight of each relatively undisturbed sample was determined in general accordance with ASTM D2216. Results of these tests are presented in the Log of Test Borings.

Maximum Dry Density

The maximum dry density and optimum water content for compacted soils were determined in accordance with ASTM D1557-91. Results of the tests are listed in Table B-1, Maximum Dry Density.

Shear Strength

Selected samples were remolded to 90 percent relative compaction based on results of Maximum Dry Density tests to determine the shear strength by performing Direct Shear Tests in general accordance with ASTM D3080-90. Results of the tests are listed in Figure B-2 through B-3, Direct Shear Test.

Corrosion Testing

The soluble Sulfate and Chloride content, the Minimum Resistivity, and pH values were determined in accordance with ASTM D512-89, CTM 417, and CTM 643, respectively. The test data are presented in Table B-2, Corrosion.

Consolidation Test

The consolidation characteristics of the foundation soils were determined by performing in general accordance with ASTM D 2435-90, using a floating ring consolidometer and dead weight system. Results of the tests are listed in Figures B-4 and B-5, Consolidation vs. Pressure.

Resistance Value

A Resistance Value (R-Value) test was performed on the representative subgrade soil sample in accordance with the CTM 301

procedure. Results of the test are presented in Table B-3, Resistance Values.

Expansion Index

Selected soil samples were tested to evaluate the Expansion Index (EI) in accordance with ASTM D4829. Results are present in Table B-4, Expansion Index.

Specific Gravity

Selected soil samples were tested to evaluate the Specific Gravity in accordance with ASTM D854. Results are present in Table B-6, Specific Gravity.

-200 Sieve Wash

Selected soil samples were tested to evaluate the amount particle finer than 75 μ m in the soils in accordance with ASTM D1140. Results are present in Table B-5, -200 Sieve Wash.

Atterberg Limits

Selected soil samples were tested to evaluate their plasticity in accordance with ASTM D4318. Results are present in Figure B-1.

TABLE B-1 - MAXIMUM DRY DENSITY

Location	Depth (feet)	Maximum Dry Density (pcf)	Optimum Moisture Content (%)
B-3	30-35	125.0	12.0
B-4	25-30	120.0	11.5

TABLE B-2 - CORROSION

Location	Depth (feet)	Soluble Sulfate (mg/kg)	Soluble Chloride (mg/kg)	Ph
B-1	0-3.5	13	<10	7.6
B-2	0-4	<10	<10	8.0
B-3	20-25	26	<10	8.7
B-4	25-30	17	<10	8.9

TABLE B-3 - RESISTANCE VALUE

Boring No.	Depth (feet)	R-Value
B-2	0-4	15
B-2	7-12	17

TABLE B-4 – EXPANSIVE INDEX (EI)

Γ	Boring No.	Depth (feet)	EI
	B-1	0-35	8

TABLE B-5 - - 200 SIEVE WASH

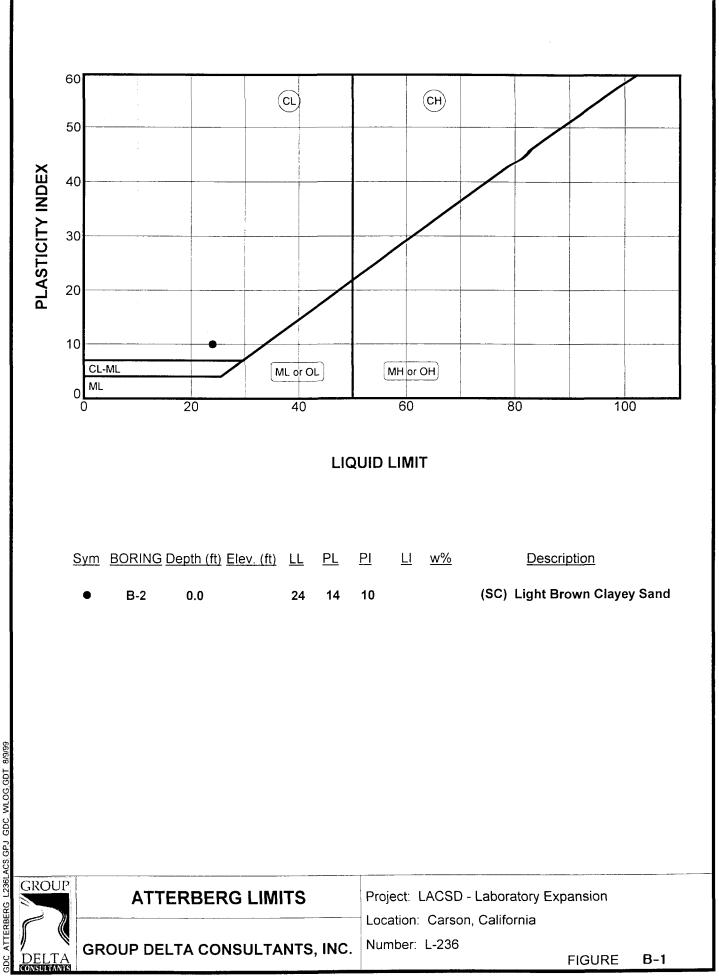
Location	Depth (feet)	Description	% Passing
B-1	22	(SP) Tan fine Silty Sand	3
B-2	40	(SM) Tan fine Silty Sand	16
B-3	22	(SP) Brown medium Sand	3
B-4	50	(SP) Brown medium Sand	3

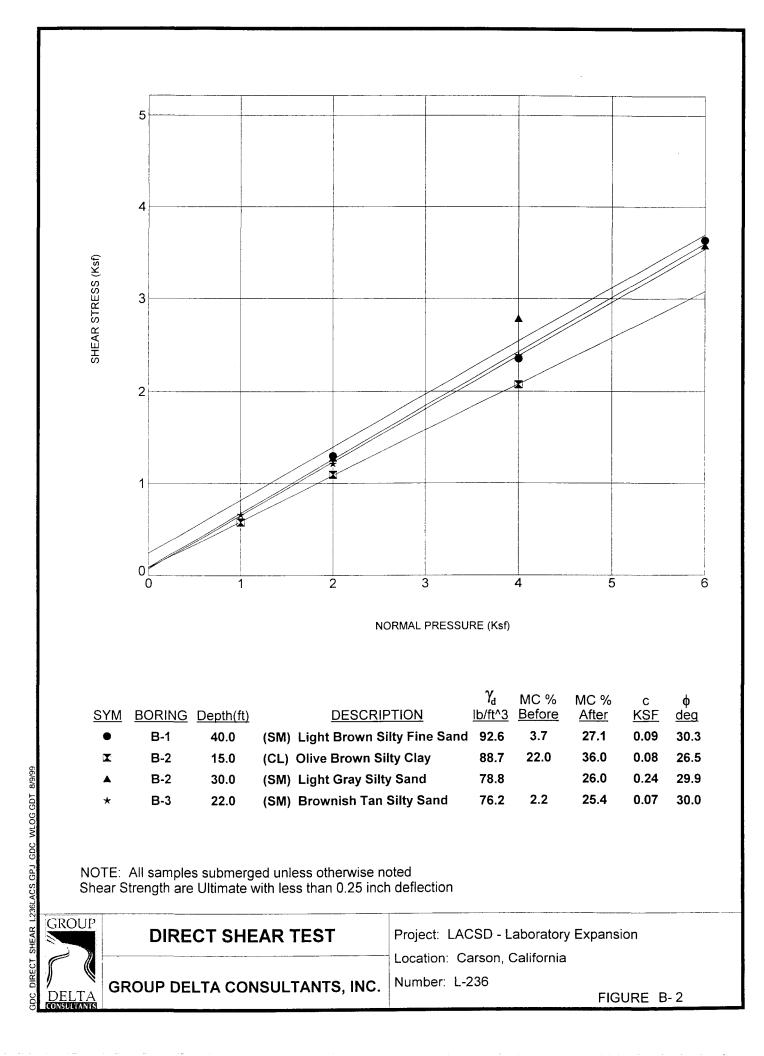
TABLE B-6 - SPECIFIC GRAVITY

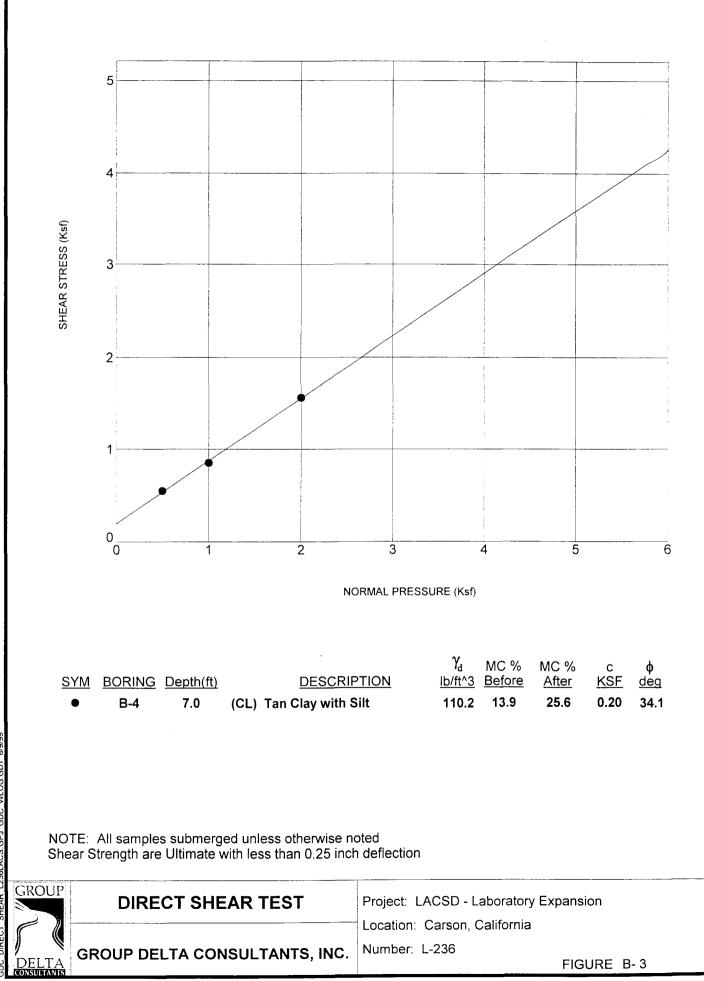
Location	Depth (feet)	Description	Specific Gravity
B-1	22	(SP) Tan fine Silty Sand	2.63
B-2	40	(SM) Tan fine Silty Sand	2.65

TABLE B-7 -- ESTIMATED LAYER RESISTIVITY

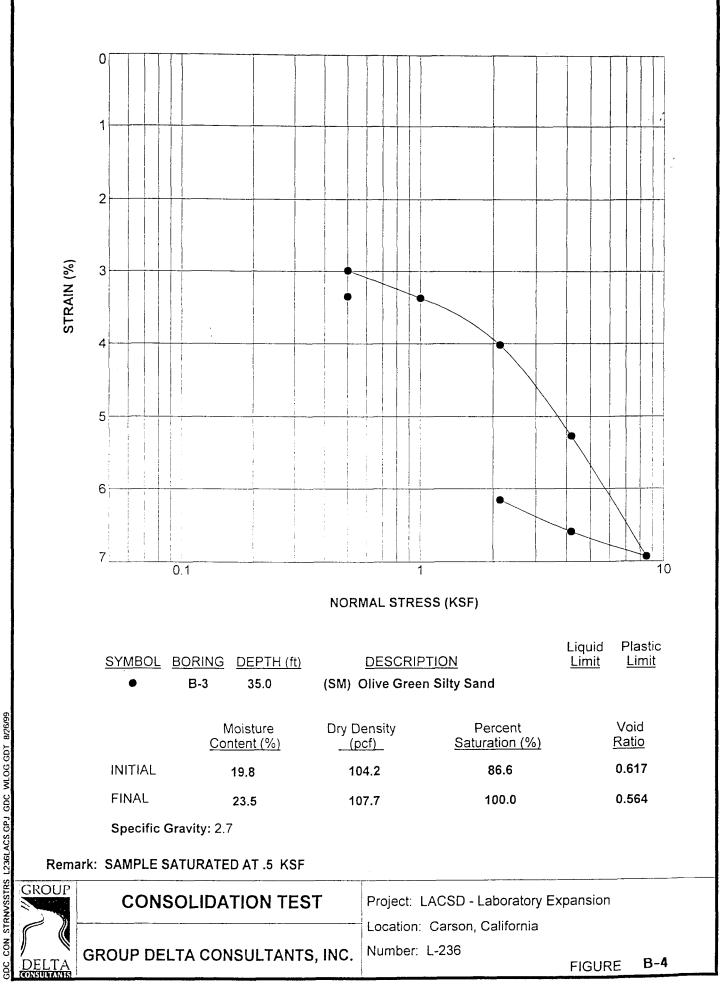
Electrode Spacing "A-Spacing" (ft)	Measured "Average Resistance" (Ohms)	Estimated Layer Resistance (Ohms)	Estimated Layer Resistivity (Ohm-meters)
2.5	4.11	4.11	19.68
5.00	2.38	5.65	22.79
7.5	1.46	3.78	20.97
10.00	1	3.17	19.15
12.5	0.85	5.67	20.35
15.00	0.63	2.43	18.10

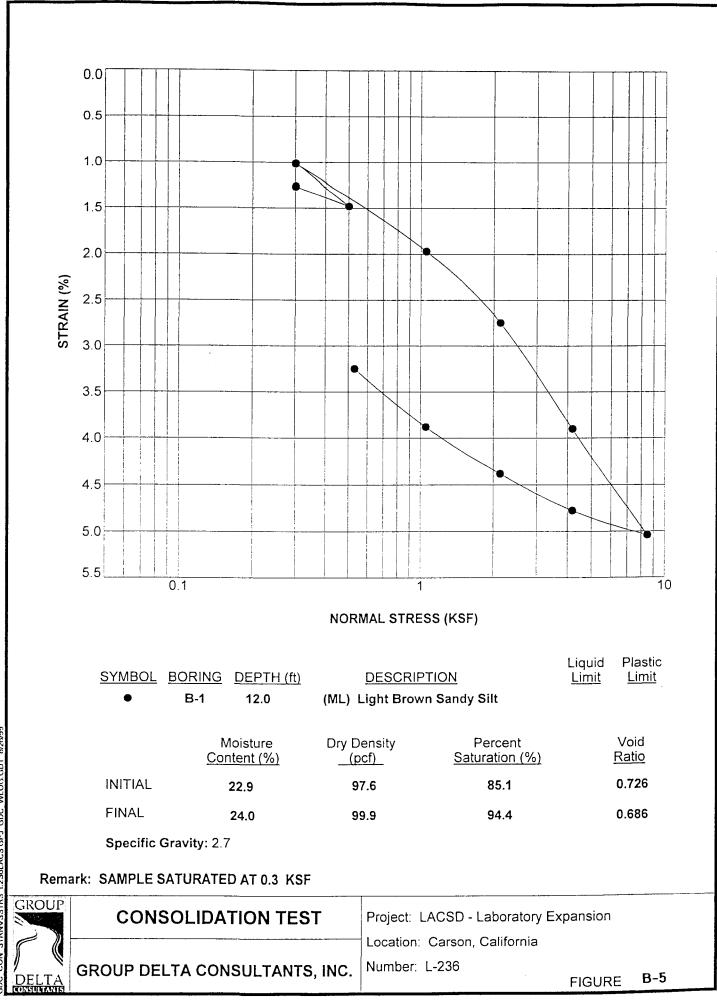


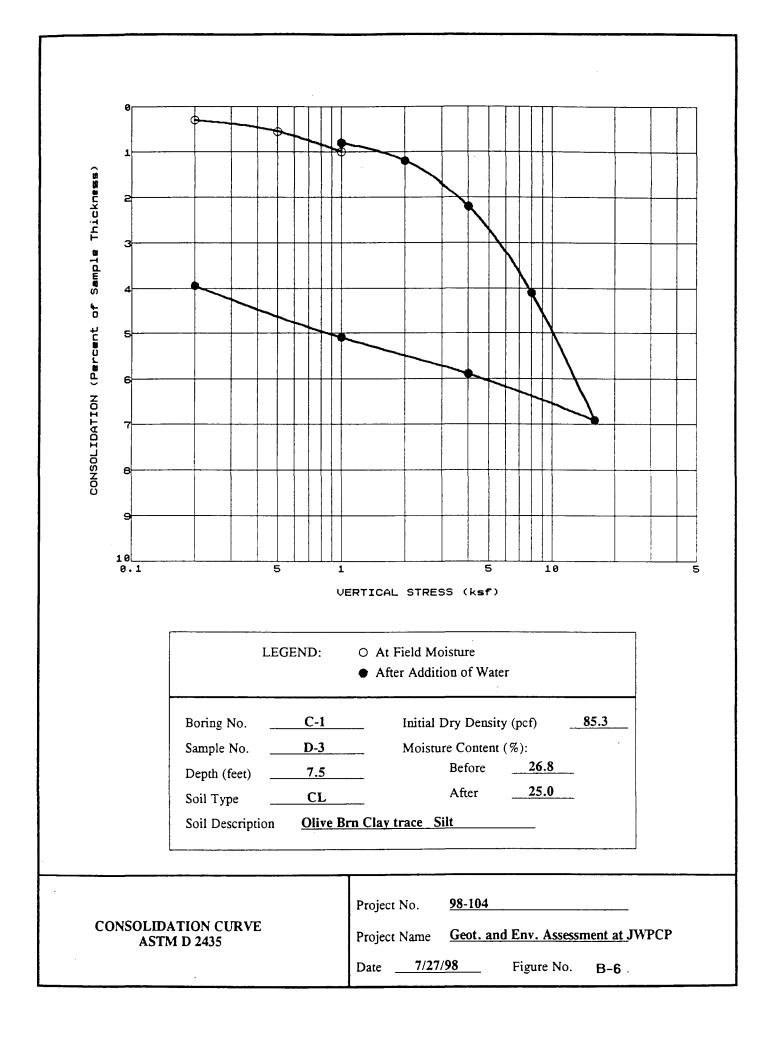

Electrode Spacing "A-Spacing" (ft)	Measured "Average Resistance" (Ohms)	Estimated Layer Resistance (Ohms)	Estimated Layer Resistivity (Ohm-meters)
2.5	17.34	17.34	83.02
5.00	3.92	5.07	37.54
7.5	1.92	3.76	27.58
10.00	1.15	2.87	22.02
12.5	0.82	2.86	19.63
15.00	0.67	3.66	19.25


Electrode Spacing "A-Spacing" (ft)	Measured "Average Resistance" (Ohms)	Estimated Layer Resistance (Ohms)	Estimated Layer Resistivity (Ohm-meters)
2.5	11.39	11.39	54.53
5.00	4.38	7.12	41.94
7.5	1.91	3.39	27.43
10.00	1.03	2.24	19.73
12.5	0.77	3.05	18.43
15.00	0.66	4.62	18.96

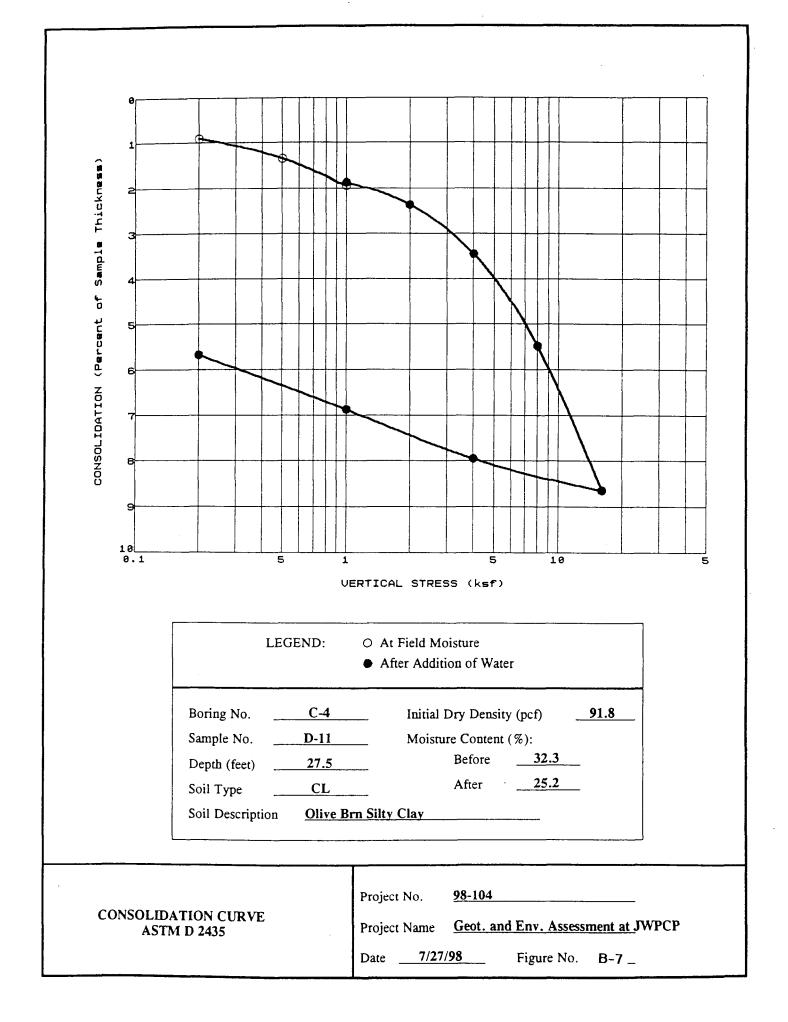
Barns Method assumes that Nth "A-Spacing" measures "Average Resistance" to the bottom of the Nth "Layer". The following calculations were used: Nth Layer Resistance = 1(1/Nth Average Resistance- 1/N-1th Average Resistance) Nth Layer Resistivity = 2*Pi*Eletrode Spacing*Nth Layer Resistance/3.28

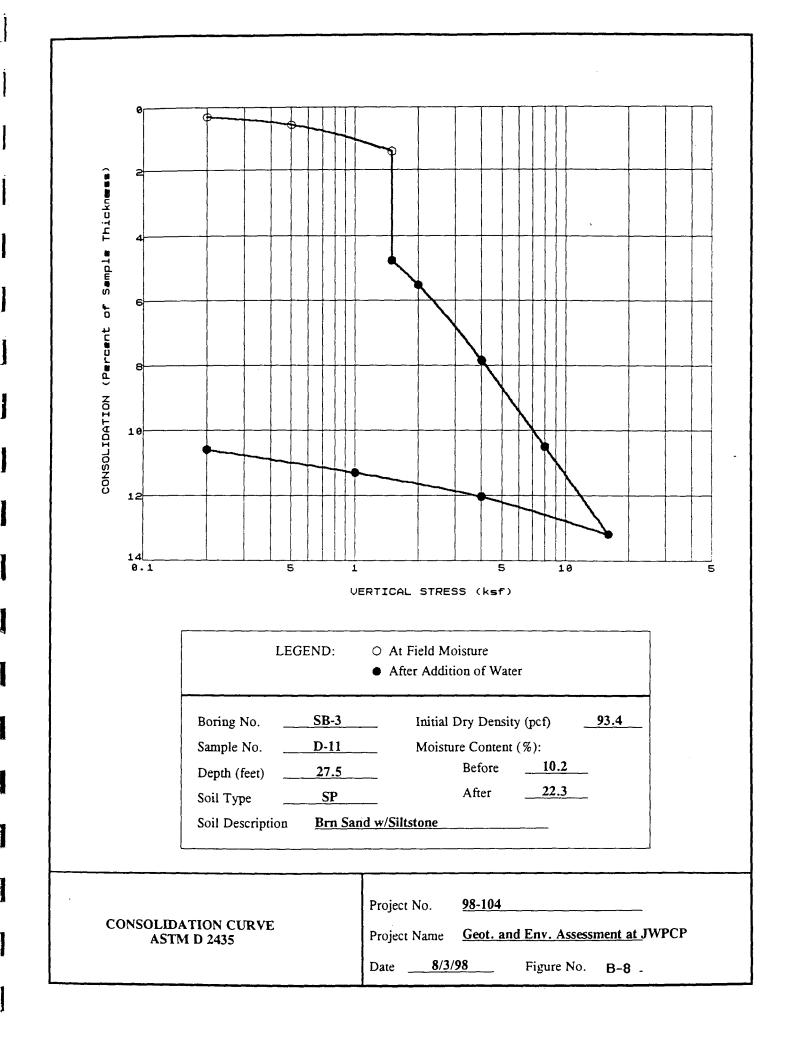




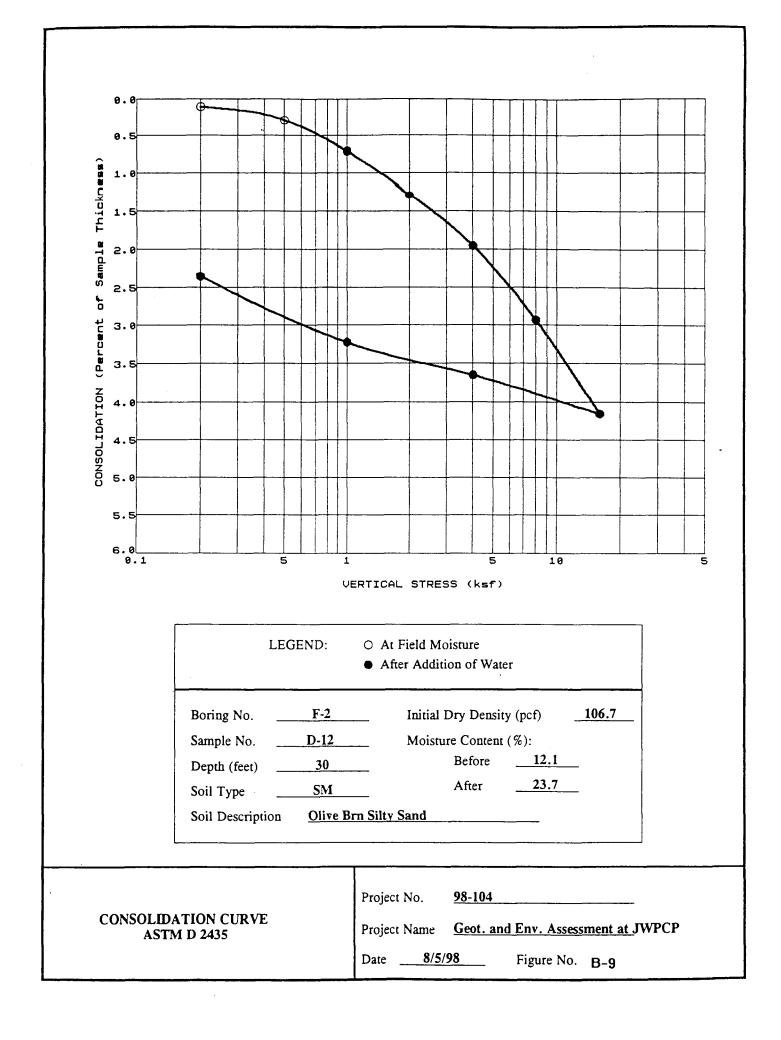


DIRECT SHEAR L236LACS.GPJ GDC WLOG GDT 8/9/99





CON STRNVSSTRS 1,236LACS GPJ GDC WLOG GDT 8/26/99



.....

the spectrum of the second design of the spectrum of the spect

APPENDIX C ANALYTICAL LABORATORY TESTING

630 Maple Ave. Torrance, CA 90503 Telephone: (310) 618-8889 (310) 618-0818 Fax: Date: 08-17-1999 EMAX Batch No.: 99G072 Attn: Steven Kolthoff Group Delta Consultants 2341 W. 205th. Street Torrance CA 90501-1459 Subject: Laboratory Report Project: LACSD Lab _____ Enclosed is the Laboratory report for samples received on 07/23/99. The data reported include : Sample ID Control # Col Date Matrix Analysis B1@10-25'(COMP.1) G072-01 07/22/99 Soil EPA 8081A (Pesticides) EPA M8015 EPA 5030A/M8015 B2@10'-25'(COMP.2)G072-05 07/21/99 Soil EPA M8015 EPA 5030A/M8015 EPA 8081A (Pesticides) B3@10'-25'(COMP.3)G072-09 EPA 5030A/M8015 07/21/99 Soil EPA M8015 (Pesticides) (Pesticides) EPA 8081A B4@10'-25'(COMP.4)G072-13 07/22/99 Soil EPA 8081A EPA M8015 EPA 5030A/M8015 B5@7'-25'(COMP.5) G072-17 07/21/99 Soil EPA 8081A (Pesticides) EPA 418.1

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

EPA 5030A/M8015 EPA M8015

Sincerely yours,

Kam Y. Pang, Ph.D. Laboratory Director

	ple Ave., Torrance, CA		<u> </u>			СН		I OF	CUSTC	DY RE	ECORE)	
	10-618-8889 Fax # 310-618 maxlabs@ix.netcom.com		ole Sto	rage	0.11			Lab B	atch Conti	rol# 2	2007-	2	
	Onsultete		Matrix	Codes		Preser				Analysis Red	nuired		ТАТ
JENT Group Docta C ROJECT LACSD Lab) TEL	DW = Dri	nking Water	1	/Sediments	IC =							
ORDINATOR	FAX	GW = Gr	ound Water	SD = Soli	d Waste	HC =	нсі]					
ND REPORT TO Staven Kor	4hoff	WW = W	aste Water	SL = Sluc	lge	HS =	H₂SO₄						D 7 days
AIL Store-Kin Group	Delle, Com	AR = Air		PP = Pur	e Products	HN =	HNO,	80	10				14 days
DAPANY G- FOW D HOLLE 1 DORESS 2341 LU-20512	CARCHE, TEL 3/0-320.	57ac WP=WI	xes	OT = Oth	ers	SH ≈	NaOH		N				21 days
DDRESS 2341 12.20512	St. FAX 3/0320	-2418				ST =	Na ₂ S ₂ O ₃	Pà	0				30 days
Torrand,	· · · · · · · · · · · · · · · · · · ·					ZA = -	ZnAc	2	Clo				
MAX PM			γ	<u> </u>							Code		
Sample ID		pling	1	Contain	1	Matrix	QC			Preservative	9008 		Comments
ab Client	Date	Time	No.	Size	Type	Code			<u>``</u>				4
1 BI @ 10'	7/22/99	\$:03	/	65 X/"	BR.	SS	·	ં	-12				
2 BI @ 15'		8:16	İ		BR	SS		12.	255				- P
3 BI @ 20'		8:23	1		BR.	35		۲۰ ۲۰ ۲۰	<u>د</u>				- N ^N
4 BI @ 25'		8:40	1		BR	SS		3	Î				
s B2 @ 10'	7/21/99	17:23	1		BR	<u>S</u> S	,	-3	2				
6 BZ @ 15'		12:57	1		BR.	SS		905	5				
7 BZ@20'		13:13	1		BR	SC		10					- ADY
8 BZ @ 25'		13:20	1		BR.	52		\odot	2				
• B3 @ 10'		8:49	1		3R	35		Cher O	2				Compositul
10 B3 @ 15'		9:02			BR	22		100	SI				830 20 32
structions		1						~	· · · · ·		<i></i>		t
Composite B-1	Composito &	· z. , C	0 ml)o 5.	122	<u>B-3</u>	("Om	posite	<u>B-4</u>	Cor	posi	4 <u>5</u> ,3
ampler	······	No. of Coolers			Courier/	Airbill					Cooler ⁻		2.C.C. samples sent out)
Relinquishe	d By	Date		ime				Receiv	ed By				
<u> </u>		7 <u>1</u> 27 - 123	1	، ^ر مور ^ک	ļ		······································						
	14V 18		ļ			<u>.</u>							

									<u> </u>			····		. 1				
.1.					- 22	• •				•								
	Relinquish	ed By		Date	Т	ime		;		Receiv	ed By						· · · · · · · · · · · · · · · · · · ·	pies sent out)
m	bler			No. of Coole	ns.		Courier	/Airbill						1	Cooler ⁻	Temp.(°C) - 7	n'C
		211-3 13-3	<u> </u>					*	<u>```</u>				,					<u></u>
	The state of sec. Have		(In	,ar Dira -	- 1×.	e sk ji	N X	-2.	(ν 1 π. 0 ¹	o < i		5.3	- (OM.	305	der .	R-7
	uctions		<u></u>		<u>/ !</u>	1 197	v	<u>IV</u>	I	<u>. I</u> l	L	L]						
^	E. E. C. E.			1514	?			; 4										
9	85 @ 15'			15:41)	1												
8	<u>B5@10'</u>			15:3					ļ	 								<u>.</u>
			197															
	85 871		7/2/199	15:35	- i													
6	64 (25'			12:21														
5	64 @ 201			12:09														
	10-1-60-15		1	12:00			1											
3			7/20/94															
4	13310 /0 ¹		Dinotro		;		-											
	R3@25			9:36		1	1	1		Por	P.0.							B300 101 +
1	B3 6 20'	-	7/21/99	9:12	1	6"×1	BR	55		4	ġ.							Composit :
b	Client		Date	Time	No.	Size	Туре	Code										
	Sample ID	Т	Sam	L pling		Contai	ner	Matrix	QC	<u>j Aleba</u>		Pr	eservatin	e Code				Comments
AX	<u> </u>					-		2A =	21140									
DR			AX					ST = ZA =	Na ₂ S ₂ O ₃	50								30 days
WP	ANY Sector Deal (A. C.	Sections T	EL 3/0-32.04		Mipes	OT = Ot	hers		NaOH	8	~							21 days
AIL	Start (Q L (O)) (Coust	10116 . 10	P.~.	AR = 4		+	re Products	HN =		0	Ĵ						2	14 days
_	DINATOR REPORT TO TRUCH KG		AX		Ground Water Waste Water	SD = Sc SL = Slu		HC = HS =										□ RUSH
	CT CACEN		EL		Drinking Water			IC =										
	r Group Delta	Consulfa	45		Matri	Codes	·		rvative des			Ai	nalysis R	equire	t (TAT
		emaxlabs@ix.ne		San	nple Sto	rage	11			Lab B	Batch	Contro	l# 🤗	19 - 1 		•		
	Tel#3	10-618-8889 Fa	ax # 310-618-	-0818														
•	NN NN 630 M	aple Ave., Torra		0503				CL			CH	STO	ם ער	EC		ר		
-	· · · · · · · · · · · · · · · · · · ·																	

									22 2 mm 2													
TOKRA PHONE NO. 61032	РЕ СПА (6+250C (1). 205 LA 5T ACE (A <u>6-5700</u> FAX NO. (3) ACSD- (ARSO)	40)-320-2	2118		N OF CU UEST F date: <u>'7-</u> 2 page_/	OR A! 22-9	NALYS		RD			C		4	E 3' P Ta	KY nvirc 942 V leasa el: 5 ax: 5	onme: /alley nton, (10-84	ntal S Avent CA 94 6-318	Servi ue, Su 4566 88	uite F		
SAMPLER NAME/SIGNA					TURN AI NORM RUSH	ROUND T AL E	3		2	8020/602	608					JIRE	o		<u> </u>			
SAMPLE NUMBER	SAMPLING DATE/TIME		RESER-	CONTAINER SIZE/TYPE	R SAMPLE WATER	DESCR		418.1	M801	8020) 8020)	8080/	8240/	8270/	CAM	0							
B5@ 25'	7/21/99 15:54							+			X				4							
										1										·		
						1														_	******	
								1											-			
	-	1		<u></u>							1									_		
						1		+														
<u> </u>						<u> </u>		1						 								
																	+	+	\neg			
				<u></u>		1		1			1		-									
· · · · · · · · · · · · · · · · · · ·																						
						1		1			-			<u> </u>								
COMMENTS: (07	nposide le'	计分类	2-(ر ب م	1 of :	8-5										7-	1	1	,			
Relinguished by: (Signa	ature) Date:	Received	by: (Sign	nature)	Date:	Relingui	shed by: (S	Signat	ure)	Date:	391	Re ↓	eceiv	ed p	iy: (Sip	riatu	ire).		Dat	te: 7	21	374
Company:	Time: 17:30	Company			Time: Company:					Time:			ompa	anv:	TT_i	ر ا			Tim		•	

Storage/Disposal of Samples: Sample will be stored at CKY for 30 days at no charge and at \$10/sample/month thereafter. Disposal of sample by the Laboratory will be charged at \$10/sample.

mit .

.

d.

ANALYSIS REQUEST FORM

(Additional/Cancellation)

Name: EMAX Control: Date Requested:

row Я 'O () 7-26-89

Requested by:

	ANALYSIS REQUESTED	TAT	COMMENTS
6012-05	80/5E/8015P	5	
	·····		
·	·		
	AA		
	4	_	
Doct		add of	
in an	open an a	Aur	mial plays

EMAX LABORATORIES, INC., 630 Maple Ave., Torrance, CA 90503 TEL: (310) 618-8889 FAX: (310) 618-0818

BCN:	996072	Date	7-23.99		Reviews
Client	GROLP DELTA.	Time	13:30	Sample Labeling	Sitniker.
Project	LACSD LAB	Recipient	PHIL HATCHER	SRF	
				CRO	12-54 116/

	Type of Sample Delivery	to EMAX.	
EMAX Courier	Client Delivery	🗇 Third Party/Airbill No.	
Ву :			
Date :	SEECCC		
Time :			
Comments			

COC Inspection (Check for presence)											
-Elient Name		Sampler Name/Signature	-Sampling Date/Time								
Address		Courier Signature w/ Date & Time	Analysis Required								
ETel#/FAX#		C+TAT	-Sample Container								
Pri Name/Contac	n Person	I Sample D	E Matix								
	D None	□ High concentrations expected □ St	uperfund Site Samples								
Comments:											

	Packaging Inspection												
Container :	Ecole: me	D Box											
i i i i i i i i i i i i i i i i i i i	Castody Seci None		🗌 Damaged										
	🗌 Bubble Pask		EPLASTICAN	C Sufficient									
·	E 2.0 C												
Comments:													

[Sample Inspection											
Container:	Custody Seal NewC		🗆 Damaged 🛛 🗖 Ag	propriate								
Identity:	E-Citer: Sample D	Sampling Date/Time	🛛 Sampler Initial 🖾 Ant	alysis								
	□ NaOH [pH≥12]	□ HNO, [pH≤2]	□ H ₂ SO ₄ [pH≤2] □ H o	lding Time OK								
Sampie: ESu	fficien: 🗌 Not enough(s	see comment) EApp	ropriate									
Comment:												

Sampie Control #	Client D	Discrepancy	Corrective Action
	1		
<u></u>	1		
	1		
	1		
]		
	1		
	1		

1

EMAX LABORATORIES, INC., 630 Maple Ave., Torrance, CA 90503 TEL: (310) 618-8889 FAX: (310) 618-0818

-LABORATORY REPORT FOR

GROUP DELTA CONSULTANTS

LACSD LAB

METHOD 5030A/M8015 TOTAL PETROLEUM HYDROCARBONS BY PURGE & TRAP

SDG#: 99G072

CASE NARRATIVE

CLIENT : GROUP DELTA CONSULTANTS

PROJECT : LACSD LAB

SDG : 99G072

Method 5030A/M8015 Gasoline

Samples received on 07/23/99 include five(5) soil for Gasoline Analysis by USEPA SW846 and Leaking Underground Fuel Tank (LUFT) Field Manual, SWRCB, Dept. of Health Services, CA(1988).

- 1. Holding Time Analytical holding time was met.
- 2. Calibration

A five-point Initial Calibration curve was performed. All QC requirements were met. Continuing Calibrations were carried out at 10-sample interval. All QC requirements were met.

- Method Blank
 The method blank was free of contamination.
- 4. Surrogate Recovery All surrogates were within the QC limit.
- 5. Laboratory Control Sample And Laboratory Control Sample Duplicate All recoveries were within QC limits.
- Matrix Spike And Matrix Spike Duplicate
 Sample 99G072-01 was analyzed for MS/MSD. All recoveries were within the QC limits, except its surrogates.

7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All requirements were met.

METHOD 5030A/M8015 TOTAL PETROLEUM HYDROCARBONS BY PURGE & TRAP

Project : LACSD	iect : LACSD LAB													01L CT039
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)	SURR (%)	DLF	MOIST	RL (mg/kg)	MDL (mg/kg)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1S	VAG1639B	ND	86	1	NA	.5	.088	07/26/9914:01	07/26/9914:01		EG12-2	VAG1639	NA	NA
_CS1S	VAG1639L	5.88	98	1	NA	.5	.088	07/26/9914:36	07/26/9914:36	EG12-4	EG12-2	VAG1639	NA	NA
.CD1S	VAG1639C	6.03	99	1	NA	.5	.088	07/26/9915:11	07/26/9915:11	EG12-5	EG12-2	VAG1639	NA	NA
1a10'(COMP.1)	G072-01	ND	83	1	11.4	.564	.0993	07/26/9915:46	07/26/9915:46	EG12-6	EG12-2	VAG1639	07/22/99	07/23/99
1a10 (COMP . 1)MS	G072-01M	6.46	97	1	11.4	.564	.0993	07/26/9918:41	07/26/9918:41	EG12-11	EG12-2	VAG1639	07/22/99	07/23/99
1a10 (COMP. 1)MSD	G072-01S	6.88	98	1	11.4	.564	.0993	07/26/9919:16	07/26/9919:16	EG12-12	EG12-2	VAG1639	07/22/99	07/23/99
2a10'(COMP.2)	G072-05	ND	84	1	13.7	.579	.102	07/26/9916:56	07/26/9916:56	EG12-8	EG12-2	VAG1639	07/21/99	07/23/99
3a10'(COMP.3)	G072-09	ND	85	1	5.4	.529	.093	07/26/9916:21	07/26/9916:21	EG12-7	EG12-2	VAG1639	07/21/99	07/23/99
4a10'(COMP.4)	G072-13	ND	85	1	12.4	.571	.1	07/26/9917:31	07/26/9917:31	EG12-9	EG12-2	VAG1639	07/22/99	07/23/99
3507'(COMP.5)	G072-17	ND	86	1	9.7	.554	.0975	07/26/9918:06	07/26/9918:06	EG12-10	EG12-2	VAG1639	07/21/99	07/23/99

RL : Reporting Limit QC LIMIT : BFB(%SURR) SOIL 50-136%; WATER 55-144%

7

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

	CLIENT: PROJECT: BATCH NO.: METHOD:	GROUP DELTA (LACSD LAB 99G072 METHOD 5030A	CONSULTANT	s 								
~	MATRIX: DILUTION FACTOR: SAMPLE ID: LAB SAMP ID:	SOIL 1 81a10'(COMP.1 G072-01	1) 6072-01	1 M G	072-01s		IOISTURE:	11.4				-
	LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	G072-01 EG12-6 07/26/9915:46 07/26/9915:46 VAG1639 EG12-2	EG12-11 6 07/26/9 5 07/26/9 VAG1639 EG12-2	918:41 0 918:41 0 V E	6072-015 612-12 07/26/9919 07/26/9919 07/26/9919 612-2	16 DAT 16 DAT	E COLLECTED E RECEIVED:	: 07/22/9 07/23/9	2			·
	ACCESSION:				*							
	PARAMETER	s -	SMPL RSLT (mg/kg)	SPIKE AM (mg/kg)			SPIKE AMT (mg/kg)	MSD RSLT (mg/kg)	MSD % REC	RPD (%)	QC LIMIT	MAX RPD (%)
	Gasoline		ND	6.2	1 6.4	6 104	6.21	6.88	111	6	57-146	50
	****************				#22222222							======
	SURROGATE PARAMET Bromofluorobenzer	ER	SPIKE AMT (mg/kg) .282	MS RSLT (mg/kg) .274	% REC	SPIKE AMT (mg/kg) .282	MSD RSLT (mg/kg) .275	% REC (LIMIT %))-136			

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

	CLIENT: PROJECT: BATCH NO.: METHOD:	GROUP DELTA LACSD LAB 99G072 METHOD 5030A		S ===========				=======					
	MATRIX: DILUTION FACTOR: SAMPLE ID:	SOIL 1 MBLK1S	1	1		Х М	OISTURE:	NA					
	LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	VAG16398 EG12-3 07/26/9914:0 07/26/9914:0 VAG1639 EG12-2	VAG1639 EG12-4 1 07/26/9 1 07/26/9 VAG1639 EG12-2	EG1 914:36 07/ 914:36 07/ VAG	1639C 2-5 26/9915:1 26/9915:1 1639 2-2	1 DAT 1 DAT	E COLLECTED E RECEIVED:	: NA					
	ACCESSION:												+
aug - 1 au	PARAMETER Gasoline	i	BLNK RSLT (mg/kg) ND	SPIKE AMT (mg/kg) 5.5	BS RSLT (mg/kg) 5.88	8S % REC 107	SPIKE AMT (mg/kg) 5.5	BSD RSI (mg/kg 6.0	g) % REC	(%) (%)	QC LIMIT (%) 57-146	MAX RPD (%) 50	
						*********		=======		=======	=======================================	/~~~~~	
	SURROGATE PARAMET Bromofluorobenzer	TER	SPIKE AMT (mg/kg) .25	BS RSLT (mg/kg) .246		PIKE AMT (mg/kg) .25	BSD RSLT (mg/kg) .249	8SD REC 99	QC LIMIT (%) 50-136				

LABORATORY REPORT FOR

GROUP DELTA CONSULTANTS

LACSD LAB

METHOD M8015 TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

SDG#: 99G072

CASE NARRATIVE

CLIENT: GROUP DELTA CONSULTANTS

PROJECT: LACSD LAB

SDG: 99G072

METHOD M8015 TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

Five (5) composite soil samples were received on 7/23/99 to be analyzed for Total Petroleum Hydrocarbons by M8015 in accordance with USEPA SW846.

1. Holding Time

Analytical holding time was met.

2. Method Blank

There was no contamination detected in the Method Blank above the reporting limit.

3. Surrogate Recovery

All surrogates were within the QC limit.

4. Matrix Spike and Matrix Spike Duplicate

Sample 99G072-01 was analyzed for MS/MSD. All recoveries were within the QC limits.

5. Laboratory Control Sample and Laboratory Control Sample Duplicate

All recoveries were within QC limits.

6. Calibration

There was an initial five-point calibration. Continuing calibrations were carried out at 10 sample intervals. All QC requirements were met.

7. Sample Analysis

All sample analyses were performed within QC requirements except as aforementioned.

METHOD M8015 TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

Client : GROUP Project : LACSD Batch No. : 99G07	DELTA CONSULT LAB 22	ANTS					=======================================						Matr Inst		01L CT035
SAMPLE ID	EMAX SAMPLE ID	RESULTS (mg/kg)	SUR 1 (%)	SUR2 (%)	DLF	MOIST	RL (mg/kg)	MDL (mg/kg)	Analysis DATETIME	Extraction DATETIME	LFID	CAL REF	PREP BATCH	Collection DATETIME	Received DATETIME
MBLK1S LCS1S LCD1S B1a10-25'(COMP.1) B1a10-25'(COMP.1)M B1a10'-25'(COMP.3)M B2a10'-25'(COMP.3) B3a10'-25'(COMP.3) B4a10'-25'(COMP.4) B5a7'-25'(COMP.5)	DSG018SB DSG018SL DSG018SC G072-01 IS G072-01M ISDG072-01S G072-05 G072-05	ND 463 430 ND 640 600 ND ND ND ND	100 97 90 110 118 113 105 105 109 107	102 96 90 108 114 109 105 106 106		NA NA 11.4 11.4 13.7 5.4 12.4 9.7	10 10 11.3 11.3 11.3 11.6 10.6 11.4 11.1	.834 .834 .941 .941 .941 .941 .966 .882 .952 .924	07/30/9906:01 07/30/9906:41 07/30/9908:01 07/30/9908:01 07/30/9908:41 07/30/9909:22 07/30/9910:02 07/30/9910:43 07/30/9911:23 07/30/9912:04	07/27/9910:30 N07/27/9910:30 07/27/9910:30 07/27/9910:30 07/27/9910:30 07/27/9910:30 07/27/9910:30 07/27/9910:30 07/27/9910:30 07/27/9910:30) DG19-16) DG19-17) DG19-18) DG19-20) DG19-20) DG19-21) DG19-22) DG19-23) DG19-24	DG19-15 DG19-15 DG19-15 DG19-15 DG19-15 DG19-15 DG19-15 DG19-15 DG19-15 DG19-15	DSG018S DSG018S DSG018S DSG018S DSG018S DSG018S DSG018S DSG018S DSG018S DSG018S	NA NA NA 07/22/99 07/22/99 07/22/99 07/21/99 07/21/99 07/22/99 07/22/99	07/27/99 07/27/99 07/27/99 07/23/99 07/23/99 07/23/99 07/23/99 07/23/99 07/23/99 07/23/99
JP5 C7 Diesel C1 Motor Oil C1	nzene ine •C Range														

7

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

por s	CLIENT: PROJECT: BATCH NO.: METHOD:	GROUP DELTA LACSD LAB 99G072 METHOD M8015		S	.======================================				=======	2222385355			
#*****	MATRIX: DILUTION FACTOR: SAMPLE ID: LAB SAMP ID:	SOIL 1 B1@10-25'(CC G072-01	G072-01		1 G072-01S		% M	OISTURE:	11.4				
.	LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF:	DG19-19 07/27/9910:3 07/30/9908:0 DSG018S DG19-15	DG19-20 30 07/27/9 01 07/30/9 DSG018s DG19-15	910:30 908:41	DG19-21 07/27/9910 07/30/9909 DSG018S DG19-15):30):22		E COLLECTED E RECEIVED;					
	ACCESSION:												
	PARAMETER Diesel		SMPL RSLT (mg/kg) ND	SPIKE / (mg/kg	;) (mg/		MS % REC 113	SPIKE AMT (mg/kg) 564	MSD RS (mg/kg 6		(%) (%)	QC LIMIT (%) 51-153	MAX RPD (%) 50
.	****************	**********					======		======	o=====================================	======		
	SURROGATE PARAME Bromobenzene Hexacosane	TER	SPIKE AMT (mg/kg) 113 113	MS RSL (mg/kg 13	3) % REC		E AMT /kg) 113 113	MSD RSLT (mg/kg) 128 123	MSD % REC 113 109	QC LIMIT (%) 60-140 55-150			

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

PROJECT: L BATCH NO.: 9	ROUP DELTA CONS ACSD LAB 9G072 ETHOD M8015	SULTANTS								
DILUTION FACTOR: 1	OIL 1	1	1	% МО	ISTURE:	NA				
LAB SAMP ID: D LAB FILE ID: D DATE EXTRACTED: O DATE ANALYZED: O PREP. BATCH: D	G19-16 D 7/27/9910:30 N 7/30/9906:01 G sg018s D)7/30/9906:41	DSG018SC DG19-18 07/27/9910:3 07/30/9907:2 DSG018S DG19-15		COLLECTED: RECEIVED:	na 07/27/99				
ACCESSION:										
PARAMETER		(RSLT SPIKE A g/kg) (mg/kg			SPIKE AMT E (mg/kg)	SD RSLT (mg/kg)	BSD % REC	RPD (%)	QC LIMIT	MAX RPD (%)
Diesel		ND 5	600 463	5 93	500	430	86	7	51-153	50
SURROGATE PARAMETE		(EAMT BSRSL (Kg) (mg/kg			BSD RSLT		======= ,imit			22222
				(mg/kg)		REC (
Bromobenzene Hexacosane		100 96.	97 97 1 96	100 100	90.3 90.5		- 140 - 150			

- - -

LABORATORY REPORT FOR

GROUP DELTA CONSULTANTS

LACSD LAB

METHOD 418.1 TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

SDG#: 99G072

CASE NARRATIVE

CLIENT: GROUP DELTA CONSULTANTS

PROJECT: LACSD LAB

SDG: 99G072

METHOD 418.1 TRPH

One (1) soil sample was received on 07/23/99 for total recoverable petroleum hydrocarbon analysis by Method 418.1 in accordance with "Methods for Chemical Analysis of Water and Wastewater", USEPA 600-79-020, 1993.

1. Holding Time

Analytical holding time was met.

2. Method Blank

Method blank was free of contamination.

3. Matrix Spike/Matrix Spike Duplicate

All MS/MSD recoveries were within QC limit.

4. Lab Control Sample

Lab control result was within QC limit.

5. Calibration

Initial calibration was at six-point and continuing calibration were carried out at 10-samples interval. All QC requirements were met.

6. Sample Analysis

Sample analysis was done within QC requirements.

METHOD 418.1 TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

CLIENT:	Group Delta Consult	ants	DATE COLLECTED:	07/21/99
PROJECT:	LACSD Lab		DATE RECEIVED:	07/23/99
BATCH NO.:	99G072		DATE EXTRACTED:	07/27/99
MATRIX:	SOIL		DATE ANALYZED:	07/27/99
SAMPLE ID B5@7'-25'(CO MBLK1S	CONTROL NO G072-17 TRG003SB	RESULT (mg/kg) ND ND	DL MOIST FACTOR (%) 1 9.7 1 NA	RL (mg/kg) 11.1

	CLIENT:	Group Delta Consultants
	PROJECT:	LACSD Lab
	METHOD:	METHOD 418.1
	MATRIX:	SOIL
2002.0	% MOISTURE:	9.7
	=======================================	

BATCH NO.:	99G072		DATE RECEIVED:	07/23/99
SAMPLE ID:	85071-251(COMP.5)	۲	DATE EXTRACTED:	07/27/99
Control No.:	G072-17		DATE ANALYZED:	07/27/99

ACCESSION:

PARAMETER	SMPL RSLT	SPIKE AMT	MS RSLT	MS	SPIKE AMT	MSD RSLT	MSD	RPD	QC LIMIT	RPD LIMIT
	(mg/kg)	(mg/kg)	(mg/kg)	% REC	(mg/kg)	(mg/kg)	% REC	%	%	%
тгрн	ND	166.00	169.00	102	166.00	166.00	100	2	65-135	30

EMAX QUALITY CONTROL DATA LCS ANALYSIS

*****	CLIENT:	Group Delta Consult	ants	•	
	PROJECT:	LACSD Lab			
	METHOD:	METHOD 418.1			
	MATRIX:	SOIL			
	% MOISTURE:	NA			
	===============================	***********************	**=====================================	============	=======================================
		000070			

BATCH NO.:	99G072	DATE	RECEIVED:	NA
 SAMPLE ID: CONTROL NO.:	LCS1S trg003sl		EXTRACTED: ANALYZED:	

ACCESSION:

	BLNK RSLT	SPIKE AMT	LCS RSLT	LCS	QC LIMIT
PARAMETER	(mg/kg)	(mg/kg)	(mg/kg)	% REC	(%)
TRPH	ND	150.00	148.00	98	75-125

LABORATORY REPORT FOR

GROUP DELTA CONSULTANTS

LACSD LAB

METHOD 8081A PESTICIDES

SDG#: 99G072

CASE NARRATIVE

CLIENT: GROUP DELTA CONSULTANTS

PROJECT: LACSD LAB

SDG: 99G072

METHOD 8081A PESTICIDES

Five (5) soil samples were received on 07/23/99 to be analyzed for Pesticides by method 8081A in accordance with USEPA SW846.

1. Holding Time

Samples were extracted and analyzed within holding time.

2. Surrogate Recovery

All surrogate recoveries were within QC limit.

3. Matrix Spike/Matrix Spike Duplicate

Recoveries were within QC limit.

4. Lab Control Sample

All recoveries were within QC limit.

5. Method Blank

Method blank was free of contamination.

6. Instrument Performance and Calibration

Initial calibration was at five-point for Pesticides, the RSD were all within QC limits. Continue calibration was done at 10 samples interval. All %D were within QC limit.

7. Sample Analysis

Sample analyses were done within QC requirements.

CLIENT: Group Delta Cons	ultants DATE COLLECTED: 07,	/22/99
PROJECT: LACSD Lab	DATE RECEIVED: 07/	23/99
BATCH NO.: 99G072		27/99
SAMPLE ID: B1@10-25'(COMP.1	DATE ANALYZED: 07/	30/99
CONTROL NO.: G072-01	MATRIX: SOI	Ľ
% MOISTURE: 11.4	DILUTION FACTOR: 1	
	RESULTS RL	
PARAMETERS	(ug/kg) (ug/kg)	1
alpha-BHC	ND 1.88	
gamma-BHC (Lindane)	ND 1.88	
beta-BHC	ND 1.88	
Heptachlor	ND 1.88	
delta-BHC	ND 1.88	
Aldrin	ND 1.88	
Heptachlor Epoxide	ND 1.88	
gamma-Chlordane alpha-Chlordane	ND 1.88	
Endosulfan I	ND 1.88 ND 1.88	
4,4'-DDE		
Dieldrin	ND 1.88 ND 3.76	
Endrin	ND 3.76 ND 3.76	
4,4'-DDD	ND 3.76	
Endosulfan II	ND 3.76	
4,4'-DDT	ND 3.76	
Endrin aldehyde	ND 3.76	
Endosulfan Sulfate	ND 3.76	
Methoxychlor	ND 18.8	
Toxaphene	ND 181	
SURROGATE PARAMETER	% RECOVERY QC LIMI	τ
		-
Tetrachloro-m-xylene	66 35-135	
Decachlorobiphenyl	78 25-143	

2222222222222		*********************	========
CLIENT:	Group Delta Consultants	DATE COLLECTED:	07/21/99
PROJECT:	LACSD Lab	DATE RECEIVED:	07/23/99
BATCH NO.:	99G072	DATE EXTRACTED:	07/27/99
SAMPLE ID:	B2@10'-25'(COMP.2)	DATE ANALYZED:	07/30/99
CONTROL NO .:	G072-05	MATRIX:	SOIL
% MOISTURE:	13.7	DILUTION FACTOR:	1

		RESULTS	► RL
PAR	RAMETERS	(ug/kg)	(ug/kg)
alp	oha-BHC	ND	1.94
gan	mma-BHC (Lindane)	ND	1.94
bet	ta-BHC	ND	1.94
Нер	otachlor	ND	1.94
del	ta-BHC	ND	1.94
Alc	Irin	ND	1.94
Hep	stachlor Epoxide	ND	1.94
gan	ma-Chlordane	ND	1.94
alp	bha-Chlordane	ND	1.94
- Enc	losulfan I	ND	1.94
4,4	-DDE	ND	1.94
Die	eldrin	ND	3.86
Enc	irin	ND	3.86
4,4	-DDD	ND	3.86
Enc	losulfan II	ND	3.86
4,4	DDT	ND	3.86
Enc	Irin aldehyde	ND	3.86
Enc	losulfan Sulfate	ND	3.86
Met	hoxychlor	ND	19.4
Тох	aphene	ND	185
SUR	ROGATE PARAMETER	% RECOVERY	QC LIMIT
Tet	rachloro-m-xylene	76	35-135
	achlorobiphenyl	77	25-143

CLIENT: Group Delta Cons	ultants DATE COLL	ECTED: 07/21
PROJECT: LACSD Lab	DATE RECE	
BATCH NO.: 99G072	DATE EXTR	ACTED: 07/27
SAMPLE ID: B3@10'-25'(COMP.	 DATE ANAL 	YZED: 07/30
CONTROL NO.: G072-09	MATRIX:	SOIL
% MOISTURE: 5.4	DILUTION	
+	RESULTS	RL
PARAMETERS	(ug/kg)	(ug/kg)
alpha-BHC	ND	1.77
gamma-BHC (Lindane)	ND	1.77
beta-BHC	ND	1.77
Heptachlor delta-BHC	ND	1.77
Aldrin	ND	1.77
	ND	1.77
Heptachlor Epoxide	ND	1.77
gamma-Chlordane alpha-Chlordane	ND	1.77
Endosulfan I	ND	1.77
4,4'-DDE	ND	1.77 1.77
4,4°-002 Dieldrin	ND	3.52
Endrin	ND	3.52
4,4'-DDD	ND	3.52
Endosulfan II	ND	3.52
4,4'-DDT	ND	3.52
Endrin aldehyde	ND	3.52
Endosulfan Sulfate	ND	3.52
Methoxychlor	ND	17.7
Toxaphene	ND	169
SURROGATE PARAMETER	% RECOVERY	QC LIMIT
Tetrachloro-m-xylene	72	35-135
Decachlorobiphenyl	77	25-143

		=======================================	220223228
CLIENT:	Group Delta Consultants	DATE COLLECTED:	07/22/99
PROJECT:	LACSD Lab	DATE RECEIVED:	07/23/99
BATCH NO.:	99G072	DATE EXTRACTED:	07/27/99
SAMPLE ID:	B4@10'-25'(COMP.4)	DATE ANALYZED:	07/30/99
CONTROL NO .:	G072-13	MATRIX:	SOIL
% MOISTURE:	12.4	DILUTION FACTOR:	1
222280222222			=======

PARAMETERS	RESULTS (Ug/kg)	RL (ug/kg)
		(09/kg)
alpha-BHC	ND	1.91
gamma-BHC (Lindane)	ND	1.91
beta-BHC	ND	1.91
Heptachlor	ND	1.91
delta-BHC	ND	1.91
Aldrin	ND	1.91
Heptachlor Epoxide	ND	1.91
gamma-Chlordane	ND	1.91
alpha-Chlordane	ND	1.91
Endosulfan I	ND	1.91
4,4'-DDE	ND	1.91
Dieldrin	ND	3.8
Endrin	ND	3.8
4,4'-DDD	ND	3.8
Endosulfan II	ND	3.8
4,4'-DDT	ND	3.8
Endrin aldehyde	ND	3.8
Endosulfan Sulfate	ND	3.8
Methoxychlor	ND	19.1
Toxaphene	ND	183
SURROGATE PARAMETER	% RECOVERY	QC LIMIT
Tetrachloro-m-xylene	80	35-135
Decachlorobiphenyl	80	25-143

RL: Reporting Limit

...

CLIENT:	Group Delta Consultants	DATE COLLECTED:	07/21/9
PROJECT:	LACSD Lab	DATE RECEIVED:	07/23/9
BATCH NO.:	996072	DATE EXTRACTED:	07/27/9
SAMPLE ID:	B5@7'-25'(COMP.5)	DATE ANALYZED:	07/30/9
CONTROL NO.:	G072-17	MATRIX:	SOIL
% MOISTURE:	9.7	DILUTION FACTOR:	1

	RESULTS-	RL
PARAMETERS	(ug/kg)	(ug/kg)
alpha-BHC	ND	1.85
gamma-BHC (Lindane)	ND	
beta-BHC	ND	1.85
	+	1.85
Heptachlor	ND	1.85
delta-BHC	ND	1.85
Aldrin	ND	1.85
Heptachlor Epoxide	ND	1.85
gamma-Chlordane	ND	1.85
alpha-Chlordane	ND	1.85
Endosulfan I	. ND	1.85
4,4'-DDE	ND	1.85
Dieldrin	ND	3.69
Endrin	ND	3.69
4,4'-DDD	ND	3.69
Endosulfan II	ND	3.69
4,4'-DDT	ND	3.69
Endrin aldehyde	ND	3.69
Endosulfan Sulfate	ND	3.69
Methoxychlor	ND	18.5
Toxaphene	ND	177
SURROGATE PARAMETER	% RECOVERY	QC LIMIT
Tetrachloro-m-xylene	74	35-135
Decachlorobiphenyl	79	25-143

CLIENT: Group Delta Consu	ultants DATE COLLECTED: NA	
PROJECT: LACSD Lab	DATE RECEIVED: NA	
BATCH NO.: 99G072	DATE EXTRACTED: 07/2	27
SAMPLE ID: MBLK1S	DATE ANALYZED: 07/3	
CONTROL NO.: CPG025SB	MATRIX: SOIL	
% MOISTURE: NA	DILUTION FACTOR: 1	
	***************************************	:2:
	RESULTS RL	
PARAMETERS	(ug/kg) (ug/kg)	
alpha-BHC	ND 1.67	
gamma-BHC (Lindane)	ND 1.67	
beta-BHC	ND 1.67	
Heptachlor	ND 1.67	
delta-BHC	ND 1.67	
Aldrin	ND 1.67	
Heptachlor Epoxide	ND 1.67	
gamma-Chlordane	ND 1.67	
alpha-Chlordane	ND . 1.67	
Endosulfan I	ND 1.67	
4,4'-DDE	ND 1.67	
Dieldrin	ND 3.33	
Endrin	ND 3.33	
4,4'-DDD	ND 3.33	
Endosulfan II	ND 3.33	
4,4'-DDT	ND 3.33	
Endrin aldehyde	ND 3.33	
Endosulfan Sulfate	ND 3.33	
Methoxychlor	ND 16.7	
Toxaphene	ND 160	
SURROGATE PARAMETER	% RECOVERY QC LIMIT	
Tetrachloro-m-xylene	70 35-135	
Decachlorobiphenyl	79 25-143	

 CLIENT:	Group Delta Consultants
PROJECT:	LACSD Lab
METHOD:	METHOD 3550A/8081A
MATRIX:	SOIL
% MOISTURE:	NA
=========================	***************************************

BATCH NO.:	996072	DATE	RECEIVED:	NA
 			EXTRACTED:	
CONTROL NO.:	CPG025SL	DATE	ANALYZED:	07/30/99

ACCESSION:

PARAMETER	BLNK RSLT (ug/kg)	SPIKE AMT (ug/kg)	LCS RSLT (ug/kg)	LCS % REC	QC LIMIT
gamma-BHC	ND	16.70	15.70	94	42-136
Heptachlor	ND	16.70	13.80	83	35-138
Aldrin	ND	16.70	15.10	91	33-146
Dieldrin	ND	33,30	34.00	102	32-142
Endrin	ND	33.30	31.50	95	33-144
4,4'-DDT	ND	33.30	31.30	94	25-153

SUR	ROGATE PARAMETER	SPIKE AMOUNT (ug/kg)	LCS RESULT (ug/kg)	LCS % REC	QC LIMIT %
	rachloro-m-xylene	13.30	11.20	84	35-135
	achlorobiphenyl	13.30	10.70	81	25-143

 CLIENT:	Group Delta Consultants
PROJECT:	LACSD Lab
METHOD:	METHOD 3550A/8081A
MATRIX:	SOIL

X MOISTURE: 11.4

BATCH NO.:	996072	DATE RECEIVED: 07/23/99
SAMPLE ID:	B1010-25'(COMP.1)	DATE EXTRACTED: 07/27/99
CONTROL NO.:	G072-01	DATE ANALYZED: 07/30/99

ACCESSION:

 PARAMETER	SMPL RSLT (ug/kg)	SPIKE AMT (ug/kg)	MS RSLT (ug/kg)	MS % REC	SPIKE AMT (ug/kg)	MSD RSLT (ug/kg)	MSD % REC	RPD %	QC LIMIT %	RPD LIMIT %
 gamma-BHC Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	ND ND ND ND ND ND	18.80 18.80 18.80 37.60 37.60 37.60	17.00 16.00 15.00 33.00 34.00 33.00	90 80 80 88 90 88	18.80 18.80 18.80 37.60 37.60 37.60	15.00 15.00 14.00 33.00 34.00 33.00	80 74 74 88 90 88	12 6 7 0 0 3	42-136 35-138 33-146 32-142 33-144 25-153	50 50 50 50 50 50 50
 SURROGATE PARAMETER	SPIKE AMT (ug/kg)		======================================	MS % REC	SPIKE A (ug/kg		RSLT g/kg)	MSD % REC	 QC LIM %	
 Tetrachloro-m-xylene Decachlorobiphenyl	15. 15.		12.00 12.00	82 80		5.00 5.00	11.00 13.00	77 84		 5-135 5-143

APPENDIX D GEOPHYSICAL SURVEY

Specializing in Engineering Geophysics and Geology Subsurface Exploration • Non-Destructive Evaluation

1711 Via El Prado, Suite 301 Redondo Beach, California 90277 USA (310) 316-8192 Telephone (310) 316-9441 Fax

July 21, 1999

RECEIVED JUL 26 1999

Group Delta Consultants 2341 West 205th Street Suite 103 Torrance, California 90501

Attention: Mr. Steven Kolthoff, C.E.G.

Summary Report Geophysical Surveys For Proposed Building Site Los Angeles County Sanitation Districts JWPCP Carson, California

This report summarizes the geophysical surveys recently completed by Advanced Geoscience at the LACSD's Carson Joint Water Pollution Control Plant (JWPCP). These surveys were performed as part of Group Delta Consultants' geotechnical investigation of the proposed building site, located near the existing Laboratory and Control Building (Figure 1).

The geophysical surveys were used to search for evidence of an abandoned oil well identified as the Hamilton Oil No. 2 well. The surveys were also used to investigate shallow subsurface utilities at the proposed locations of five test borings.

The following provides a summary of our survey procedures and the results of our search for the abandoned Hamilton Oil No. 2 well.

SURVEY PROCEDURES

Search for Abandoned Hamilton Oil No. 2 Well

A stake was placed south of the Laboratory & Control Building to mark the presumed location of the Hamilton Oil No. 2 well (Figure 1). This site was marked by the LACSD using the surveyed coordinates of the well provided at the time of its abandonment. According to the LACSD, a steel plate was welded to the top of the casing at 7 feet below the surface.

Group Delta Consultants July 21, 1999 Page 2

To search for evidence of the abandoned well at this location, a magnetometer survey was performed in the open area shown on Figure 1. This survey was used to investigate evidence of a vertical steel casing beneath the surface.

A GeoMetrics G856AX magnetometer was used to record measurements of the total magnetic field. These measurements were made on a 10-foot (north-south) by 5-foot (east-west) grid setup in the survey area. The magnetic measurements recorded across this grid were downloaded to a field computer to prepare a contour map showing the resulting magnetic field pattern. This contour map is shown in Figure 2.

Following the magnetometer survey, GPR profiles were recorded across the marked location of the well. These profiles were used to search for radar reflection patterns indicating evidence of an isolated steel object. The profiles were recorded using a Geo-Physical Survey Systems Inc. SIR-3, GPR unit equipped with 120 and 500 Mega-Hertz antennas. Copies of these GPR profiles are available in our project files.

Investigation of Shallow Subsurface Utilities

Geophysical surveys were also performed to investigate shallow utilities within a 25-foot square area surrounding each of the five drilling sites. Several GPR profiles (with 120 and 500 MHz antennas) were recorded across each area to search for metal pipelines and other subsurface features. A Geonics EM-31D terrain conductivity meter and Fischer Gemini-3 metal detector were also used to scan the areas for the presence of shallow metal pipelines.

New drilling locations were selected if evidence of subsurface utilities (or other obstacles) was detected near the proposed drilling location. These new locations were marked and positioned in areas where evidence of such objects was not detected.

SURVEY RESULTS

Search for Abandoned Hamilton Oil No. 2 Well

The magnetometer survey detected evidence of a vertical steel object near the marked location of the Hamilton Oil No. 2 well. The contour map of the magnetic field pattern shown in Figure 2 reveals a "circular magnetic anomaly", believed to be caused by a vertical steel object buried beneath the surface. The stake marking the location of the Hamilton Oil No. 3 well is at the center of this circular magnetic anomaly.

The GPR profiles recorded across the center of this circular anomaly did not detect reflection patterns indicating an isolated, vertical steel object. Several, closely-spaced,

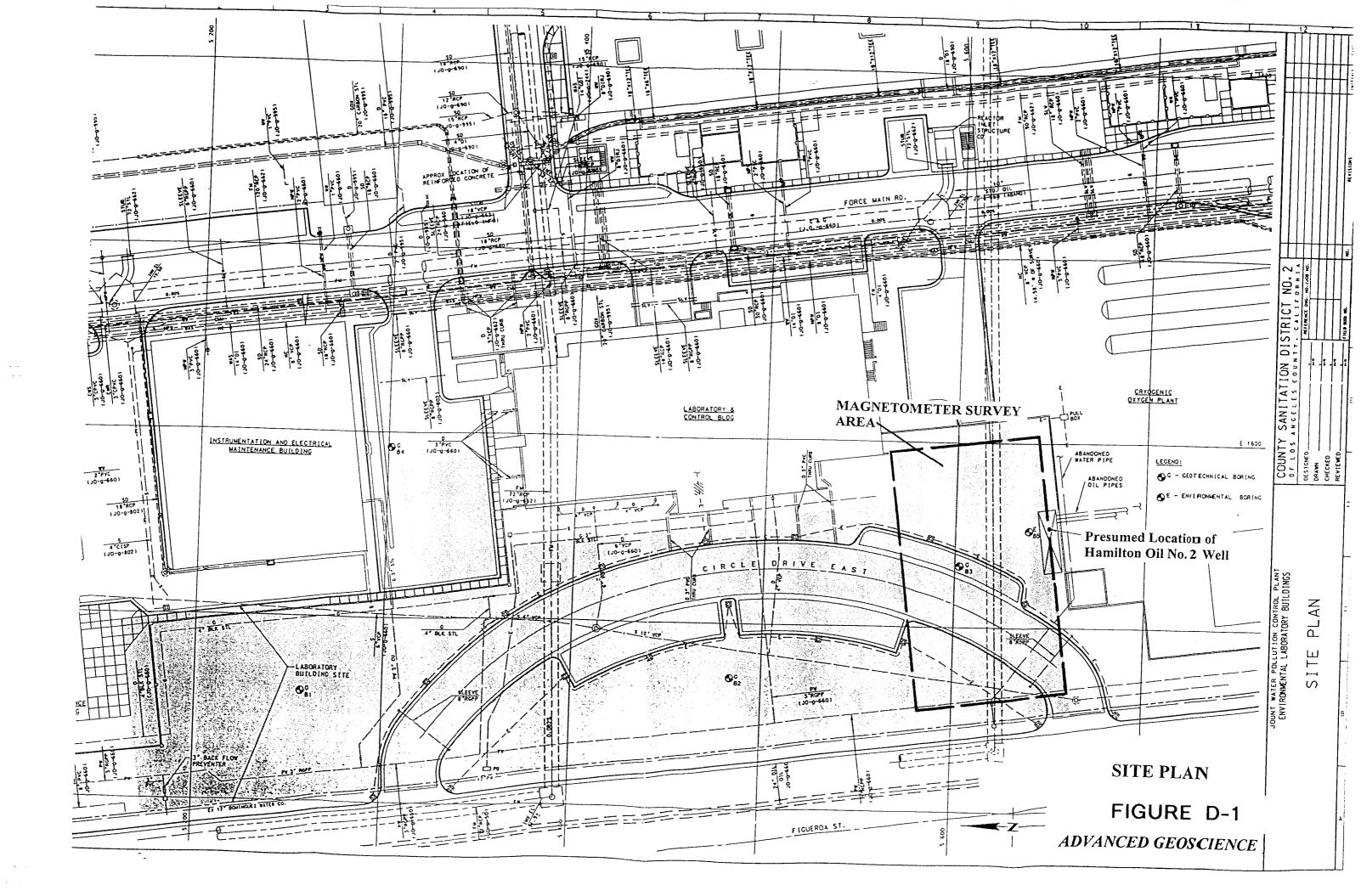
Group Delta Consultants July 21, 1999 Page 3

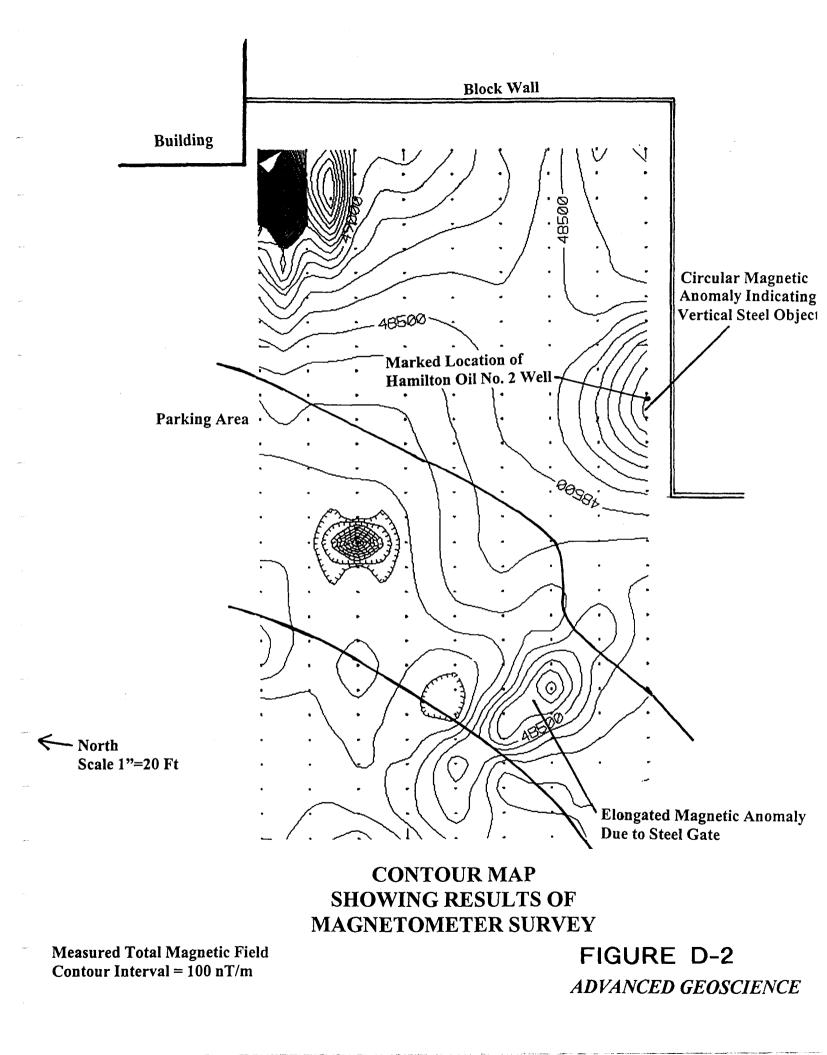
east-west, GPR profiles were recorded across the center of this anomaly. These profiles did not show "point-like reflection patterns" from a steel well cap buried 7 feet below the surface.

The GPR profiles across this area did detect evidence of different soil conditions surrounding the marked location of the abandoned well. In this area, anomalous reflection patterns were detected that indicated more conductive, clayey soils. These reflections could be due to fill soils placed in the excavation at the time of the well's abandonment. Based on this finding, boring B-3 was positioned near the abandoned well location, in the area showing these differing soil conditions.

In summary, the results of this geophysical survey help to confirm the location of the Hamilton Oil No.2 well near the position marked by the LACSD. This conclusion is based on the detection of a circular magnetic anomaly near this location.

§


Advanced Geoscience appreciates the opportunity to be of service to Group Delta Consultants and the Los Angeles County Sanitation Districts. If you have any questions concerning this report please contact the undersigned. Thank you.


Sincerely,

Advanced Geoscience, Inc.

Mark G. Olson, R.Gp., R.G., C.H.G. Principal Geophysicist

Attachments: Figures 1 and 2

PROJECT ADDENDUM

To:Mrs. Alice Hou, Project EngineerDate: Nov. 20, 1999County Sanitation Districts of Los Angeles CoFAX 562.699.4515

10

From: Steven Kolthoff, CEG Group Delta Consultants, Inc.

L-236

Subject: Seismic Soil Parameters - Proposed Enviro. Laboratory Building

Certified DBE/MBE Project No:

Mrs. Hou.

Centechnical Engineering

Ceolugy

liyarogeolugy

Constal Engineering

i lydrology Hydreulus

Entaronmental Engineering As per my discussion with Mr. Paul Stoppelmann, it is our understanding that additional information has been requested by the Structural and Architectural Design Section. This letter is to provide the soil and seismic information that your group requested.

The site is located in Seismic Zone 4. For facilities, which are designed, to the seismic provisions of the Uniform Building Code (UBC, 1994), we recommend a site coefficient, S of 1.2 for the site. For seismic analysis in accordance with the provisions of the UBC, 1997 and using the Palos Verdes Fault that is 2.5 km from the site and with average N values between 15 and 50, we recommend the following seismic design parameters:

Paarameters	Values	UBC Reference
Seismic Zone Factor	0.4	Table 16 I
Soil Profile Type	Sp	Table 16 J
Seismic Source Type	В	Table 16 U
Seismic Coefficient, Na	1.25	Table 16 S
Seismic Coefficient, Nv	1.53	Table 16 T
Seismic Coefficient, Cv	0.98	Table 16 R
Selsmic Coefficient, Ca	0.55	Table 16 Q

This addendum shall only be used in conjunction with our geotechnical report dated November 5, 1999. Should you have any question or if there is further information needed, please do not hesitate to contact the GDC at (310) 320-5100.

Respectfully submitted, GROUP DELTA CONSULTANTS, INC.

Steven H. Kolthoff Senior Geologist

L236 Addendum1

2341 W 205th Street, Suite 103 ▲ Torrance, California 90501-1459 ▲ (310) 320-5100 voice ▲ (310) 320-2118 fax Aliso Viejo, California ▲ (949) 609-1020 San Diego, California ▲ (858) 573-1777 www.GroupDelta.com

Certified DBE/MBE

Gentechnical Engineering

Cectory Hudroscology Constal Engineering

Hyarology **Hydraulics** Environmental Engincering

Project Memo				
Paul Stoppleman – CSDLAC				
Tom Swantko				
Alice Hou – CSDLAC; Phillip Wong – CSDLAC; Dan Weingart – Martin & Martin				
1/27/00				
Supplemental Geotechnical Recommendations for Environmental Lab Building; GDC Project No. L-236B				
Addendum, Foundation Recommendations, Geotechnical Assessments Report, Proposed Environmental Laboratory Building, Joint Water Pollution Control Plant, Carson, California, Dated 1/05/00, GDC Project No. L-236B				

Following discussions with Paul Stoppleman and Dan Weingart, this memo provides supplemental analysis and discussion of foundation settlements and grading issues relative to the proposed environmental laboratory building.

Settlements

We understand that preliminary column loads for the new lab building range up to a maximum of 115 kips. Footings will be sized using an allowable bearing pressure of 3,500 psf. Therefore, the footing for a 115 k column load will be 5.7' x 5.7'. Based on our analyses, we anticipate that the settlement under a 115 k column load will be on the order of 1 inch. Differential settlement between similarly loaded footings should be less than 0.5 inch. The settlement under a 60 k column will be about 1/2-inch. Settlements will occur rapidly and should be essentially complete shortly after application of the full load.

Excavation of Existing Fill

The site for the new lab building is underlain at the surface with about 4 to 6 feet of existing uncertified fill. The uncertified fill will be removed and replaced with granular compacted fill. The new building will be connected to the existing Laboratory and Control Building, and the excavation to remove the fill may extend below the existing footings. We understand that the existing footings extend about 2.5 to 3 feet below the existing grade.

At this time we do not know how deep the removals will need to be adjacent to the existing building, but the excavation could extend 1 to 2 feet below the existing

23 🛠 🗫 🕫 5th Street, Suite 103 🔺 Torrance, California 90501-1459 🔺 (310) 320-5100 voice 🔺 (310) 320-2118 fax Aliso Viejo, California 🔺 (949) 609-1020 San Diego, California 🔺 (858) 573-1777 www.GroupDelta.com

footings. Based on the boring information we have, the existing fill and upper native soils are generally clayey and silty. It is our opinion that the removals can be made in slots up to 8 feet long. However, the removals should be made and the area backfilled within the same work shift. In addition, we recommend that GDC should inspect the excavation as it is made to evaluate the limits for the removals, and provide modifications to the grading recommendations, if applicable.

If you have any questions regarding this memo, please give us a call.

Sincerely, GROUP DELTA CONSULTS, INC.

Thomas D. Swantko, G.E. #813 Associate Geotechnical Engineer

L-236B - Memo

Project Memo #2

То:	Paul Stoppleman – CSDLAC
From:	Tom Swantko
CC:	Alice Hou – CSDLAC; Phillip Wong – CSDLAC; Dan Weingart – Martin & Martin
Date:	02/03/00
Re:	Supplemental Geotechnical Recommendations for Environmental Lab
	Building; GDC Project No. L-236B
Referenc	e: Addendum, Foundation Recommendations, Geotechnical Assessments
	Report, Proposed Environmental Laboratory Building, Joint Water
	Pollution Control Plant, Carson, California, Dated 1/05/00, GDC Project
	No. L-236B
	*
	From: CC: Date: Re:

This memo documents our discussions concerning grading and pavement design issues relative to the proposed environmental laboratory building.

Grading and Excavations

To remove the existing fill within the proposed building area will require an excavation extending to a depth of up to 4 to 6 feet. Our borings indicate that the excavation will generally encounter soils consisting of silty clay, clayey sand, and sandy clay. Excavations up to 6 feet deep in these soils can be made with a side slope of ³/₄ (horizontal) to 1 (vertical); with the exception that the lower 2 feet of the excavation can be made vertical. However, the excavation and maintenance of safe and stable slope angles are the responsibility of the contractor, and should consider the actual subsurface conditions encountered and the contractor's method of operation. No surcharge loads, including traffic loads, should be allowed within a 2 to 1 plane extending up from the toe of the excavation.

Pavement Areas

We understand it is desirable not to have to remove all of the existing fill within planned parking areas. From a practical standpoint, it should be possible do partial removal of the fill and minimize any potential maintenance problems. Within pavement areas, the existing fill may be excavated to a depth of 2 feet below the finished subgrade elevation. The exposed surface should then be wheel rolled using heavy equipment. Any loose or soft soils, or any areas of "pumping" subgrade should be excavated and recompacted to at least 95 percent. Following wheel rolling, the area should be scarified to a depth of at least 8 inches; moisture conditioned to near optimum moisture, and recompacted to at least 95 percent. The excavation should then be backfilled with granular, non-expansive soils, which should be compacted to at least 95 percent. Acceptable backfill is not available on-site and will need to be imported. The recommended pavement sections are provided on page 15 of our initial report dated November 5.

If you have any questions regarding this memo, please give us a call.

Sincerely, GROUP DELTA CONSULTS, INC.

Thomas D. Swantko, G.E. #813 Associate Geotechnical Engineer

L-236B - Memo

GROUP DELTA CONSULTANTS, INC.

2291 W. 205th Street, Suite 105 Torrance, California 90501-1459 Phone: (310) 320-5100 Fax: (310) 320-2118

FACSIMILE TRANSMITTAL

If you do not receive the number of pages indicated, please contact us at the number above.

To: 1	PAUL STOPPELMANN) Sent By:	TOOD ARMSTRONG
Company:		Project:	· · · · · · · · · · · · · · · · · · ·
Fax No.:	562 6922941	Project No.:	L-236
No. of Pages : MESSAGE:	(including this page)	Date:	1/15/03
	ATTACHED LA ELAB BUILDIN	6 ON	SUBGRADE
			·

92 Argonaut, Suite 120, Aliso Viejo, CA 92656-4121 ♦ (949) 609-1020 voice ♦ (949) 609-1030 fax 11545 W. Bernardo Court, Suite 200, San Diego, CA 92127 ♦ (858) 524-1500 voice ♦ (858) 524-1599 fax

January 9, 2003

County Sanitation District of Los Angeles 1955 Workman Mill Road Whittier, CA 90601

Attention: Mr. Paul Stoppelmann

Insitu Moisture and Density Test Results Subject: Proposed Environmental Laboratory Building **Geotechnical Engineering** Joint Water Pollution Control Plant Carson, California

Dear Mr. Stoppelmann:

Forensic Services

Certified MBE

Geology

Hydrogeology Earthquebr Engineering Materials Testing &

Inspection

As requested, we are providing results of the field density tests conducted at four test locations on April 17, 2002. The tests were performed to evaluate insitu moisture content and dry density of exposed native subgrade following removal of unsuitable soils and proof rolling. The results are presented in the following table:

Test No:	Date	Test Elevation (ft)	Moisture (%)	Density (pcf)
1 ·	4/17/02	37	21.0	94.4
2	4/17/02	33	10.7	118.9
3	4/17/02	33	15.7	107.0
4	4/17/02	33	13.7	109.9

At the time of the test, our field technician noted the poor condition of the subgrade, especially at El. +37 feet.

We also performed a compaction test (ASTM D-1557) on a sample of the subgrade material provided to us by the general contractor, Amoroso Construction. The compaction test results indicated a maximum dry density of 122 lb/ft³ at 10.5% moisture content. However, the nature of the subgrade was observed to be variable and we do not consider these values representative of all subgrade soils exposed.

Environmental Laboratory Building CSDLA GDC Project No. L-236 January 9, 2003 Page 2

If you have any questions pertaining to the letter, or if we can be of further service to you, please do not hesitate to contact the undersigned at (310) 320-5100.

Respectfully submitted, GROUP DELTA CONSULTANTS, INC.

Todd Armstrong P.E. Project Engineer

Distribution: (1) Addressee

L-236B Test Results

