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Abstract: Today, there are not many good measures for detecting influential observations in 

case of fitting a logistic regression model. So, the purpose of this article is to extrapolate from 

the pre-existing deletion diagnostics defined for detecting influential points for multiple linear 

regression, i.e. the DFFITS, DFBETAS and Cook's Distance to the scenario of a binary logistic 

regression model and then view the multinomial model as a special case of the same. The 

threshold for determining whether an observation is an influential observation or not is judged 

using the asymptotic distribution of the Cook's Distance in the multinomial setting, both for the 

single and the group deleted case. The results are examined under various simulation scenarios 

as well as over the modified Kyphosis data-set. 
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1. Introduction 

In fitting the regression model 𝑌𝑖 = 𝑥𝑖
′𝛽 + 𝜖𝑖 where 𝑖 = 1,2, … , 𝑛 , where 𝑥𝑖 is the 𝑖𝑡ℎ row of the design matrix 𝑋 , 𝛽  

being the vector of parameters and 𝜀𝑖 being the random error component, we can think of the data point (𝑥𝑖 , 𝑌𝑖)′ as a point in 

the 𝑝 -dimensional space. Some of these points may arouse suspicions as they are ‘discordant' with the other points. Such points 

are usually referred to vaguely as outliers, and they may or may not have an effect on estimation and inference using the pre-

scribed regression model (Seber & Lee, 2003). If too many outliers remain undetected, they can really hamper the analysis. Thus, 

we must scrutinize these points closely and decide whether they should be eliminated from our sample. In the context of linear 

regression models, we mainly speak about two types of outliers: leverage points, or points that are remote in the 𝑋 - coordinate 

space, and influential observations, being points with high leverage as well as having unusual 𝑌 -coordinate values. They are 

quite distant from the cloud of data points. With a view to discuss about outliers in logistic regression, it is purposeful to state 

the model of a binary logistic regression.  

The general form of a binary logistic regression model is  

𝑦𝑖 = 𝐸(𝑦𝑖) + 𝜖𝑖 

where the observations 𝑦𝑖  are independent Bernoulli random variables with expected values: 

 𝐸(𝑦𝑖) = 𝜋𝑖 =
𝑒{𝑥𝑖

′𝛽}

1 + 𝑒{𝑥𝑖
′𝛽}

,   𝑖 = 1,2, … , 𝑛 

Here 𝑥𝑖
′ = (1,  𝑥𝑖1,  𝑥𝑖2, … ,  𝑥𝑖𝑘)′ is the vector of explanatory variables and 𝛽′ = (𝛽0,  𝛽1, … ,  𝛽𝑘)′ is the vector of parameters.  

In a logistic regression model, outliers generally refer to mis-classified observations. Drawing analogy from the linear 

regression model, we can define residuals in the case of a binary logistic regression model. The standardized residuals for logistic 

regression are given by:  

𝑒𝑖 =
𝑦𝑖−𝜋𝑖̂

√𝜋𝑖̂(1−𝜋𝑖̂)
 ,  𝑖 = 1,  2,   … ,  𝑛 

where 𝜋𝑖̂ is the estimated probability for the 𝑖𝑡ℎ observation (Agresti, 2012). 

As a matter of fact, the standardized residuals of the outlying observations deviate quite significantly from the expected 

range. According to (Christensen, 1997), in binary logistic regression, the standardized residuals are expected to be within ±2 . 
He has identified the points for which the residuals fall outside this range as potential outliers. However, analysis of residuals 

and identification of outliers or influential points are not studied frequently in case of logistic regression models. This might lead 
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to serious consequences as we traditionally fit a logistic regression model with maximum likelihood estimates of the parameters, 

which are extremely sensitive to outlying observations. As a result, it is worthwhile to study the problem of outlier detection in 

logistic regression models. For the purpose of our study, we confine ourselves to the detection of influential observations in 

binary and multinomial logistic regression. In both traditional and modern literature pertaining to this topic, some prominent 

diagnostic measures of influence have emerged with (Pregibon, 1981) using Pearsonian residuals and deviance residuals corre-

sponding to each individual model observation; large values of these indicate that the observation is an outlier. However, he 

argues that these quantities cannot adequately measure the effect of the outlier on the many components of the fitted model and 

hence resorts to the perturbation technique (Pregibon, 1980). Moreover, there is the mean-shift outlier model (Williams, 1987) 

with the maximum likelihood estimate of the parameters based on the full set of observations as an initial solution. Then taking 

a single step of weighted least squares, he obtains an approximate relation between the estimates based on the deleted set and 

the full set of observations. Unlike the multiple linear regression model, deletion diagnostics like 𝐷𝐹𝐹𝐼𝑇𝑆, 𝐷𝐹𝐵𝐸𝑇𝐴𝑆, and 

Cook's Distance are not popular in logistic regression, in the sense that they require iterative procedures and are deemed too 

complicated for application. However, our focus is to study the performance of these deletion diagnostics mainly 𝐷𝐹𝐹𝐼𝑇𝑆 and 

Cook's Distance. From the study and simulations, they seem to perform well in all the setups involving one regressor, multiple 

regressors, and also in the case of multiclass logistic regression. However, they seem to underperform in presence of multiple 

outliers due to the effects of masking and swamping, which we have addressed in this section. 

In section 3, we have derived the explicit expressions of 𝐷𝐹𝐹𝐼𝑇𝑆 and Cook's Distance using one-step approximations, 

highlighting the fact that we can reduce much computation labor by just updating the residuals instead of fitting the entire 

regression model in each iteration after deletion of one observation. For the sake of improving our single deletion statistics to 

perform well in presence of multiple outliers, d-deletion statistics namely Generalized 𝐷𝐹𝐹𝐼𝑇𝑆 (𝐺𝐷𝐹𝐹𝐼𝑇𝑆) and Generalized 

Cook's Distance have been proposed. Section 4 demonstrates how well these diagnostics have fared in real-life modified datasets 

as well as simulated ones. In section 5, some further advanced research problems in this field have been mentioned along with 

the scope of improvement of the measures discussed in the previous sections.  

Masking and swamping effects 

Datasets with multiple outliers or clusters of outliers are subject to two phenomena called masking and swamping. For an 

intuitive understanding of these effects, we cite the following definitions from (Acuna & Rodriguez, 2004).  

Masking effect: It is said that one outlier masks a second outlier if the second outlier can be considered as an outlier only 

by itself, but not in the presence of the first outlier. Thus, after the deletion of the first outlier, the second instance emerges as 

an outlier. Masking occurs when a cluster of outlying observations skews the mean and covariance estimates towards it, and the 

resulting distance of the outlying point from the mean is small.  

Swamping effect: It is said that one outlier swamps a second observation if the latter can be considered as an outlier only 

under the presence of the first one. In other words, after the deletion of the first outlier, the second observation becomes a non-

outlying observation. Swamping occurs when a group of outlying instances skews the mean and the covariance estimates to-

wards it and away from other non-outlying instances, and the resulting distance from these instances to the mean is large, 

making them look like outliers. 

In general, masking can occur when we specify too few outliers in the test, that is, for example, if we are testing for a single 

outlier when there are in fact two (or more) outliers, these additional outliers may influence the value of the test statistic enough 

so that no points are declared as outliers and on the other hand swamping can occur when too many outliers are specified. It is 

because of these effects that trying to apply a sequential single deletion diagnostic like 𝐷𝐹𝐹𝐼𝑇𝑆 or Cook's Distance can fail. 

For example, masking may cause the outlier test for the first outlier to return a conclusion of no outliers and so the testing for 

any additional outliers is not performed. This gives rise to a fundamental problem and therefore, we require detection techniques 

that are free from these problems. In an effort to tackle this problem, it is necessary to introduce a group deleted version of the 

deletion diagnostics discussed previously. We assume that d observations among a set of 𝑛 observations are deleted. Hence, we 

have two cases, observations remaining in the analysis (denoted by 𝑅) and observations which have been deleted (denoted by 

the set 𝐷). We then modify our traditional 𝐷𝐹𝐹𝐼𝑇𝑆 and Cook's Distance measures for each observation lying either in 𝑅 or in 

𝐷. Correspondingly, the cutoff points for these measures will also change. However, the choice of 𝑑 is a much deep-rooted 

theoretical problem that extends beyond the scope of this article. We have discussed a rough outline of an algorithm elaborating 

on how to choose the deletion set 𝐷 for implementing 𝐺𝐷𝐹𝐹𝐼𝑇𝑆 or Generalized Cook's Distance. We have also demonstrated 

how implementing this generalized statistic can help us detect the outliers correctly on the modified Kyphosis data set 

(Nurunnabi & Rahmatullah Imon, 2010) in Section 4. We now move on to the components defining each of these statistics. 

2. Theoretical Background 

We define the various deletion diagnostics of our interest in the context of linear regression. It is worthy to note that these 

are single point deletion diagnostics or also known as leave-one-out diagnostics. We shall discuss more generalized versions of 

these measures by deleting 𝑑  observations instead of a single observation in the next section. For our purpose we assume that 

the design matrix 𝑋  is of full rank. 
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Cook's Distance 

Cook R. D. (1977) suggested a measure of influence of a point by using the squared distance between the least squares 

estimate based on all 𝑛  points, 𝛽̂ and the estimate obtained by deleting the 𝑖𝑡ℎ point, 𝛽(𝑖)̂. It can be expressed in the form:  

𝐷𝑖 =
(𝛽(𝑖)̂ −𝛽̂)

′
(𝑋′𝑋)(𝛽(𝑖)̂ −𝛽̂)

𝑝𝑀𝑆𝑟𝑒𝑠
                                                    (1) 

where 𝑝  is the number of predictors and 𝑀𝑆𝑟𝑒𝑠 is the residual error variance for the full data-set. 

Removing the 𝑖𝑡ℎ observation should keep 𝛽(𝑖)̂ close to 𝛽̂ unless the 𝑖𝑡ℎ observation is an outlier. (Cook & Weisberg, 

1982) indicate that the magnitude of 𝐷𝑖  is usually assessed by comparing it to 𝐹𝛼,𝑝,𝑛−𝑝. If 𝐷𝑖 = 𝐹0.5,𝑝,𝑛−𝑝, then deleting the 

point 𝑖  would move 𝛽(𝑖)̂to the boundary of an approximate 50 % confidence region for 𝛽  based on the complete dataset. 

Since 𝐹0.5,𝑝,𝑛−𝑝 ≈ 1, we usually consider points for which 𝐷𝑖 > 1 to be influential. This cutoff of unity seems to work well in 

practice. Similarly, (Bollen & Jackman, 1985) suggested Cook’s distance for observations is more than a cut-off of  
4

𝑛
− 𝑝  

which is treated as the traditional approach to evaluating the influential observations. Again, the 𝐷𝑖  statistic can be re-written 

as:  

𝐷𝑖 =
𝑟𝑖

2

𝑝
.

ℎ𝑖𝑖

1−ℎ𝑖𝑖
   for    𝑖 ∈ {1,  2,   …  ,  𝑛}                                          (2) 

where 𝑟𝑖  is the 𝑖𝑡ℎ  studentized residual given by 
𝑒𝑖

√𝑀𝑆𝑟𝑒𝑠(1−ℎ𝑖𝑖)
 and ℎ𝑖𝑖  is the 𝑖𝑡ℎ  diagonal element of the hat matrix 

𝑋(𝑋′𝑋)−1𝑋′. 
The alternate form in (2) is useful to visualize the fact that Cook's Distance, being the product of a function of ℎ𝑖𝑖  (which 

is a measure of leverage of a point) and the square of the studentized residual (that reflects how well the model fits the 𝑖𝑡ℎ 

observation 𝑦𝑖), it measures the joint influence on the observation being an outlier on 𝑌 -space and in the space of the predictors 

(𝑋 -space). 

DFFITS 

In order to investigate the deletion influence of the𝑖𝑡ℎ observation on the predicted or fitted value gives rise to this diag-

nostic proposed by (A., Kuh, & Welsch, 1980).  

𝐷𝐹𝐹𝐼𝑇𝑆𝑖 =
𝑦𝑖̂−𝑦(𝑖)̂

√𝑆(𝑖)
2 ℎ𝑖𝑖

  for 𝑖  ∈  {1,2, … , 𝑛}                                          (3) 

Where  

𝑦(𝑖)̂  :  Fitted values of 𝑦𝑖  obtained without the use of the 𝑖𝑡ℎ observation 

𝑆(𝑖)
2  :   Residual Sum of Squares without the 𝑖𝑡ℎ observation 

The mathematical formulation of 𝑆(𝑖)
2  is given by 

(𝑛−𝑝)𝑀𝑆𝑟𝑒𝑠−
𝑒𝑖

2

1−ℎ𝑖𝑖

𝑛−𝑝−1
, where 𝑒𝑖 is the 𝑖𝑡ℎ residual 𝑦𝑖 − 𝑦𝑖̂. The denominator 

of 𝐷𝐹𝐹𝐼𝑇𝑆 is just a standardization and measures the number of standard deviation units the fitted value 𝑦𝑖̂ changes if the 

observation i is removed. There is an empirical cutoff for 𝐷𝐹𝐹𝐼𝑇𝑆 that any observation with |𝐷𝐹𝐹𝐼𝑇𝑆| > 2√
𝑝

𝑛
  (A., Kuh, & 

Welsch, 1980) warrants attention and may be labelled as an influential point. 

DFBETAS 

Like 𝐷𝐹𝐹𝐼𝑇𝑆 , 𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑗𝑖 is a statistic that indicates how much the regression coefficient 𝛽𝑗̂ changes in standard devi-

ation units, if the 𝑖𝑡ℎ observation is deleted. It is expressed as follows: 

𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑗𝑖 =
𝛽𝑗̂−𝛽𝑗

(𝑖)̂

√𝑆(𝑖)
2 𝐶𝑗𝑗

 for  𝑗  ∈ {1,2, … , 𝑝} and 𝑖  ∈ {1,2, … , 𝑛}                              (4) 

Where  

𝛽𝑗̂ :  Estimated  𝑗𝑡ℎ regression coefficient 

𝛽𝑗
(𝑖)̂

: Estimated 𝑗𝑡ℎ regression coefficient with the𝑖𝑡ℎ observation deleted. 

𝐶𝑗𝑗 :  𝑗𝑡ℎ diagonal element of  (𝑋′𝑋)−1  

Thus, a large magnitude of 𝐷𝐹𝐵𝐸𝑇𝐴𝑆  indicates that the observation 𝑖 has considerable influence on the estimates of 𝛽𝑗. 

It is evident from the expression that 𝐷𝐹𝐵𝐸𝑇𝐴𝑆  is a𝑛 × 𝑝 matrix. Empirically, if |𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑗𝑖| > √
2

𝑛
 (A., Kuh, & Welsch, 

1980), then the 𝑖𝑡ℎ observation warrants examination. In the next section we will define analogous measures of influence for a 

binary logistic regression model. Moreover, rather than relying on empirical cutoffs, we can get an idea about the approximate 

cutoffs for these measures by considering the critical points of their asymptotic distributions. 

3. Developments 

If we look at the expression in (1), (3) and (4), their distributions depend on a single quantity 𝛽̂ − 𝛽(𝑖)̂ and the rest are all 

standardization terms. So, if we can find the asymptotic distribution of 𝛽̂ − 𝛽(𝑖)̂ , it can be utilized to find the asymptotic 
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distribution of all three measures for a binary logistic regression model. However, 𝐷𝐹𝐵𝐸𝑇𝐴𝑆  being a matrix, it is computa-

tionally expensive to calculate the cutoff values for each of its elements and less interpretable during comparisons. Hence, we 

focus only on the two measures 𝐷𝐹𝐹𝐼𝑇𝑆  and Cook's Distance. We first derive their expressions explicitly and then comment 

about their asymptotic distributions.        

3.1 Single deletion case 

Model: Let 𝑦𝑖  be a binary response variable taking values {0,1} and 𝑥𝑖 be the corresponding vector containing 𝑝  co-

variates for the 𝑖𝑡ℎ observation, 𝑖 = 1,2, … , 𝑛.   Let 𝛽 = (𝛽1, … , 𝛽𝑝)
′
 be the parameter vector associated with the covariate 𝑥𝑖 

and 𝑋  be the design matrix of the order 𝑛 × 𝑝  formed by augmenting the covariates 𝑥𝑖 as columns. The model is specified 

by:  

𝑦𝑖 = {
1  with probability  𝜋𝑖

   0 with probability 1 − 𝜋𝑖
 

Where  

πi = P[yi = 1|xi] =
exi

′β

1 + exi
′β

. 

The likelihood function for estimation of β is given by:  

L(β) = ∏ πi
yi(1 − πi)

1−yi

n

i=1

 

The log-likelihood function is given by:  

l(β) = ∑ (yixi
′β − ln (1 + exi

′β))n
i=1                                           (5) 

The likelihood equations 
𝜕𝑙(𝛽)

𝜕𝛽
= 0 implies,  

∑ (xiyi − xi

exi
′β

1 + exi
′β

)

n

i=1

= 0 

Define si = yi − πi, vi = πi(1 − πi), S = (s1, . . , sn)′, V = diag((vi)) and Z = V
1

2X.  

Thus we can rewrite the likelihood equations as:  
∑ xi(yi − πi)

n
i=1 = 0                                                   (6) 

Hence, we have  
𝜕𝑙(𝛽)

𝜕𝛽
= 𝑋′𝑆 

and  

𝜕2𝑙(𝛽)

𝜕𝛽𝜕𝛽′
= − ∑

𝑒𝑥𝑖
′β

(1 + 𝑒𝑥𝑖
′β)

2

𝑛

𝑖=1

𝑥𝑖𝑥𝑖
′ = −(𝑋′𝑉𝑋) = −𝑍′𝑍 

We use the Newton Raphson method with an initial solution β∗ of 𝛽, in order to obtain  

the first order approximation of β̂. Thus, we have  

β̂ = β∗ − (
𝜕2𝑙(𝛽)

𝜕𝛽𝜕𝛽′
)

−1
𝜕𝑙(𝛽)

𝜕𝛽
   

 = β∗ + (𝑍′𝑍)−1(𝑋′𝑆) 

     = β∗ + (𝑍′𝑍)−1 (𝑍′𝑉−
1

2𝑆) 

Where all the equalities are evaluated at β = β∗. 

In order to find the expression for β(j)̂, we consider the deleted log-likelihood:  

l(β) = ∑ (yixi
′β − ln (1 + exi

′β))

n

i=1,i≠j

 

Then,  
𝜕𝑙(𝛽)

𝜕𝛽
= ∑ 𝑥𝑖(𝑦𝑖 − π𝑖)

𝑖=1,𝑖≠𝑗

= 𝑋′𝑆 − 𝑥𝑗𝑠𝑗 

and  

𝜕2𝑙(𝛽)

𝜕𝛽𝜕𝛽′
= − ∑

exi
′β

(1+e
xi

′β
)

2
n
i=1,i≠j xixi

′ = Z′Z − zjzj
′  

where  zj = √vjxj 

Here let the initial point be β0
(j)

, so my first order approximation of β(j)̂ becomes:  

β(j)̂ = β0
(j)

+ (Z′Z − zjzj
′)

−1
(X′S − xjsj)                                         (7) 

    We now address the issue of the choice of the initial solutions β∗ and β0
(𝑗)

. A clever choice of β∗ would be the estimator 

obtained from a linear model, implying β∗ = (𝑋′𝑋)−1𝑋′𝑦.  
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For the deleted case, we start with β0
(𝑗)

= (𝑋′𝑋 − 𝑥𝑗𝑥𝑗
′)

−1
(𝑋′𝑦 − 𝑥𝑗𝑦𝑗). However, it is quite well known that:  

β0
(𝑗)

= β∗ − (1 − ℎ𝑗𝑗)
−1

(𝑋′𝑋)−1𝑥𝑗𝑒𝑗                                           (8) 

where 𝑒𝑗 = 𝑦𝑗 − 𝑥𝑗
′β∗ and ℎ𝑗𝑗 = 𝑥𝑗

′(𝑋′𝑋)𝑥𝑗. 

From here, the difference between β(𝑗)̂ and β̂ can be obtained as:  

β̂ − β(𝑗)̂ = β∗ + (𝑍′𝑍)−1 (𝑍′𝑉−
1
2𝑆) − [β0

(𝑗)
+ (𝑍′𝑍 − 𝑧𝑗𝑧𝑗

′)
−1

(𝑋′𝑆 − 𝑥𝑗𝑠𝑗)] 

Strictly, the second term on the RHS should have been evaluated at β0
(𝑗)̂

, but since it is not necessary to obtain β0
(𝑗)̂

 otherwise, 

the correction term can be evaluated at β∗ instead (Sen Roy & Guria, 2008). 

If we use the result:  

(𝑍′𝑍 − 𝑧𝑗𝑧𝑗
′)

−1
= (𝑍′𝑍)−1 + (1 − 𝑧𝑗

′(𝑍′𝑍)−1𝑧𝑗)
−1

((𝑍′𝑍)−1𝑧𝑗𝑧𝑗
′(𝑍′𝑍)−1) 

then it follows, 

β(j)̂ = β̂ − (1 − wjj)
−1

(Z′𝑍)−1zj kj  −  (1 − hjj)
−1

(X′𝑋)−1xj ej                            (9)    

where 𝑘𝑗 = (
𝑠𝑗

√𝑣𝑗
− 𝑧𝑗

′(𝑍′𝑍)−1𝑍′𝑉−
1

2𝑆), evaluated at β = β∗ and 𝑤𝑗𝑗 = 𝑧𝑗
′(𝑍′𝑍)−1𝑧𝑗.  

    The expression in (9) is useful in the sense that it allows us to calculate the difference β(𝑗)̂ − β̂ without fitting the model on 

the deleted dataset repeatedly, rather calculating the residual terms 𝑤𝑗𝑗 , 𝑘𝑗 and ℎ𝑗𝑗 will suffice for each deleted 𝑗.  

3.2 Closed form of DFFITS 

    We know that 𝐷𝐹𝐹𝐼𝑇𝑆𝑖 is actually calculated by taking the difference of the predicted probabilities with and without delet-

ing the 𝑖𝑡ℎ observation i.e. π𝑖̂ − π𝑖
(𝑗)̂

 which is same as computing logistic(𝑥𝑖
′β̂) − logistic(𝑥𝑖

′β(𝑗)̂). If this difference is large, 

then we investigate the point 𝑗. However, the logistic function 𝑓(𝑧) =
𝑒𝑧

1+𝑒𝑧 is Lipschitz continuous, and hence it is equivalent 

to recognize the difference 𝑥𝑖
′β̂ − 𝑥𝑖

′β(𝑗)̂. Thus, a simpler version of 𝐷𝐹𝐹𝐼𝑇𝑆 is given by: 

𝐷𝐹𝐹𝐼𝑇𝑆(𝑗) = 𝑥𝑗
′β̂ − 𝑥𝑗

′β(𝑗)̂ 

= (1 − 𝑤𝑗𝑗)
−1

𝑥𝑗
′(𝑍′𝑍)−1𝑧𝑗𝑘𝑗 + (1 − ℎ𝑗𝑗)

−1
𝑥𝑗

′(𝑋′𝑋)−1𝑥𝑗𝑒𝑗  

= (1 − 𝑤𝑗𝑗)
−1

𝑣
𝑗

−
1

2𝑤𝑗𝑗𝑘𝑗 + (1 − ℎ𝑗𝑗)
−1

ℎ𝑗𝑗𝑒𝑗  

A large absolute value of 𝐷𝐹𝐹𝐼𝑇𝑆 would mean that the 𝑗𝑡ℎ observation has a considerable impact on the fit, and hence 

can be declared as an outlier. 

3.3 Closed form for Cook's Distance 

For a binary logistic regression model, Cook's Distance is given by:  

                     𝐷(𝑗)(β̂) = (β(𝑗)̂ − β̂)
′
(𝑋′𝑉𝑋)(β(𝑗)̂ − β̂)                                         (10) 

If we plug in the expressions obtained 𝑓𝑜𝑟β(𝑗)̂ − β̂, we get: 

𝐷(𝑗)(β̂) = (
𝑘𝑗

1 − 𝑤𝑗𝑗

𝑧𝑗
′(𝑍′𝑍)−1 −

𝑒𝑗

1 − ℎ𝑗𝑗

𝑥𝑗
′(𝑋′𝑋)−1) 𝑍′𝑍 (

𝑘𝑗

1 − 𝑤𝑗𝑗

(𝑍′𝑍)−1𝑧𝑗 −
𝑒𝑗

1 − ℎ𝑗𝑗

(𝑋′𝑋)−1𝑥𝑗) 

which then reduces to:  

𝐷(𝑗)(β̂) =
𝑘𝑗

2𝑤𝑗𝑗

(1−𝑤𝑗𝑗)
2 − 2

𝑘𝑗𝑒𝑗

(1−ℎ𝑗𝑗)(1−𝑤𝑗𝑗)
𝑧𝑗

′(𝑋′𝑋)−1𝑥𝑗 +
𝑒𝑗

2

(1−ℎ𝑗𝑗)
2 𝑥𝑗

′(𝑋′𝑋)−1(𝑍′𝑍)(𝑋′𝑋)−1𝑥𝑗             (11)      

Remarks: 

⚫ 𝑤𝑗𝑗’s can be looked upon as residuals obtained by regressing (𝑣𝑗)
−

1

2𝑠𝑗 on 𝑧𝑗. This makes their computation for each 

iteration much easier. 

⚫ The most important role of this derivation is that it reduces the complexity of computation a lot, as we need not carry 

out the whole estimation afresh by fitting the regression model every time on the deleted dataset. Rather, it is sufficient 

to modify the residual terms 𝑒𝑗 , 𝑤𝑗𝑗 and ℎ𝑗𝑗 after each iteration. 

3.4 Asymptotic distributions 

We need to deduce the asymptotic distributions of these statistics in order to use their 95% critical points as reasonable 

cutoff values. In order to explicitly get the asymptotic distribution of  β̂ − β(𝑗)̂ and consequently the Cook's Distance which is 

a mere quadratic form of the same, we state the following theorem.  

3.4.1 Theorem 3.0.1 (Martín & Pardo, 2009) 

Let 𝛽̂and 𝛽(𝑗)̂  be the MLE of the parameters 𝛽 based on the full set of observations and MLE based on the full set 

of observations minus the 𝑗𝑡ℎ observation. Then,  

                          √N(β̂ − β(j)̂) 
L
→ N(0(k+1)×1, Σ(j))                                            (12) 
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where 𝑁 is the total number of observations in the data-set, 𝛴(𝑗) =
𝑣𝑗

1−𝑤𝑗𝑗
(𝑋′𝑊𝑋)−1𝑥𝑗𝑥𝑗

′(𝑋′𝑊𝑋)−1, 

𝑤𝑗𝑗 = 𝑣
𝑗

1

2𝑥𝑗
′(𝑋′𝑊𝑋)−1𝑥𝑗𝑣

𝑗

1

2 and 𝑣𝑗 is the 𝑗𝑡ℎ diagonal entry of 𝑊 which is the limiting variance-covariance matrix. All these 

quantities are evaluated at 𝛽0, the true value of 𝛽. 

 

Knowing this result, it is not difficult to establish the asymptotic distribution of Cook's Distance.  

3.4.2 Theorem 3.0.2 (Proof in Appendix A) 

Let 𝛽̂ and 𝛽(𝑗)̂  be the MLE of the parameters 𝛽 based on the full set of observations and MLE based on the full set 

of observations minus the 𝑗𝑡ℎ observation. Then, 

                             𝐷(𝑗)(β̂)
𝐿
→

𝑤𝑗𝑗

1−𝑤𝑗𝑗
χ1

2                                                  (13) 

where 𝑤𝑗𝑗  is evaluated at 𝛽0, the true value of 𝛽. 

 

Thus, we can define the approximate cutoffs for our Cook's Distance statistic as the upper α point of χ1
2 distribution.  

Generally, we take α = 0.95. For an observation 𝑗, if 𝐷(𝑗)(β̂) comes out to be significantly greater than χ1,0.95
2 𝑤𝑗𝑗

1−𝑤𝑗𝑗
, then 

we term the point 𝑗 to be an influential point. 

For 𝐷𝐹𝐹𝐼𝑇𝑆, we can derive a similar approximate cutoff by exploiting the relation between 𝐷𝐹𝐹𝐼𝑇𝑆2 and Cook's Distance. 

(Nurunnabi & Rahmatullah Imon, 2010) 

                           𝐷𝐹𝐹𝐼𝑇𝑆𝑖
2 ≈ 𝑝𝑣𝑖

2𝐷𝑖                                                  (14) 

where Cook's Distance is given by 𝐷𝑖 , 𝑣𝑖 = π𝑖(1 − π𝑖) and 𝑝 is the number of predictors. 

Thus, the distribution of |𝐷𝐹𝐹𝐼𝑇𝑆| is approximately 𝑘𝑖χ1 where 𝑘𝑖 is a specified constant. The cutoff values for 𝐷𝐹𝐹𝐼𝑇𝑆 

would be inflated each point by a factor of 𝑘𝑖 and can be compared easily. 

3.5 Group deleted case 

The diagnostics discussed till now are mainly proposed for the identification of a single influential observation and are 

ineffective when masking/swamping occur. Thus, we need measures which are free from these effects leading to the idea of 

group deleted observations. We assume that 𝑑 observations among a set of 𝑛 observations are deleted. Let us denote the set of 

observations remaining in the analysis by 𝑅 and the set of deleted observations as 𝐷. Hence 𝑅 contains 𝑛 − 𝑑 observations. 

We state the generalized 𝑑-deleted measures 𝐺𝐷𝐹𝐹𝐼𝑇𝑆 and Cook's Distance as follows:  

𝐺𝐷𝐹𝐹𝐼𝑇𝑆𝑖 = {
πi

(D)̂
− πi

(D+i)̂
 for i in R

π𝑖
(𝐷−𝑖)̂

− π𝑖
(𝐷)̂

 for i in D
 

where π𝑖
(𝐷)̂

 is the predicted probability of the 𝑖𝑡ℎ observation when the set 𝐷 has been deleted. 

π𝑖
(𝐷+𝑖)̂

 is the predicted probability of the 𝑖𝑡ℎ observation when the 𝑖𝑡ℎ observation from 𝑅 is incorporated into the deletion set 

𝐷. That is, the deletion set now consists of 𝐷 ∪ {𝑖}. 

π𝑖
(𝐷−𝑖)̂

 is the predicted probability of the 𝑖𝑡ℎ observation when the 𝑖𝑡ℎ observation which is already in the deletion set 𝐷 is 

removed from 𝐷 in order to avoid deduction twice. That is, now the deletion set 𝐷 becomes 𝐷 ∖ {𝑖}.  

Similarly, the generalized Cook's Distance is given by :  

                             𝐶𝐷(𝐷) = (β(𝐷)̂ − β̂ )
′
(𝑋′𝑉𝑋)(β(𝐷)̂ − β̂ )                                     (15) 

where β(𝐷)̂  is the estimate of β when 𝑑 observations have been deleted. 

Although these expressions may seem compact, they are computationally quite intensive and hence we require expressions 

which are less tedious to compute. 

We continue our quest after (6), and move on to derive the expression for β(𝐷)̂ − β̂ and then obtain a closed form for 

𝐺𝐷𝐹𝐹𝐼𝑇𝑆 and Cook's Distance. 

From (6) we can write:  

β̂ = β∗ + (𝑍′𝑍)−1 (𝑍′𝑉−
1
2𝑠) 

Now, we derive deletion statistics when the observations corresponding to an index set 𝐷 with length 𝑚 of {1,2, … , 𝑛} 

are omitted. The deleted log likelihood becomes:  

𝑙(𝐷)(β̂) = ∑ {𝑦𝑖𝑥𝑖
′β

𝑛

𝑖=1,𝑖∉𝐷

− ln (1 + 𝑒𝑥𝑖
′β)} 

Then  
𝜕𝑙(𝐷)(β)

𝜕𝛽
= X′s − ∑ xjsjj∉D   

and  
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𝜕2𝑙(𝛽)

𝜕𝛽𝜕𝛽′
= Z′Z − ∑ zjzj

′

j∉D

 

where 𝑧𝑖 = √𝑣𝑖𝑥𝑖. First order Taylor approximation for the deletion of the index set 𝐷 yields:  

                           β(𝐷)̂ = β0
(𝐷)

+ (𝑍′𝑍 − ∑ 𝑧𝑗𝑧𝑗
′

𝑗∉𝐷 )
−1

(𝑋′𝑠 − ∑ 𝑥𝑗𝑠𝑗𝑗∉𝐷 )                            (16) 

Taking β0
(𝐷)

= β∗ − (𝑋′𝑋)−1𝑋𝐷
′ (𝐼 − 𝐻𝐷)−1𝑒𝐷, where 𝑋𝐷 being the the covariates of the set 𝐷 clubbed together, 𝑦𝐷  are 

their corresponding m responses, 𝐻𝐷 is the 𝑚 × 𝑚 minor of 𝐻 = 𝑋(𝑋′𝑋)−1𝑋′, 𝑒𝐷 = 𝑦𝐷 − 𝑋𝐷
′ β∗. 

Then it follows that:  

β(𝐷)̂ = β̂ − (𝑍′𝑍)−1𝑍𝐷
′ (𝐼 − 𝐻𝐷

∗ )−1𝑒𝐷
∗ − (𝑋′𝑋)−1𝑋𝐷

′ (𝐼 − 𝐻𝐷)−1𝑒𝐷 

𝑒𝐷
∗  being 𝑉𝐷

−
1

2𝑠𝐷 − 𝑍𝐷(𝑍′𝑍)−1𝑍′𝑉−
1

2𝑠 and 𝐻𝐷
∗ = 𝑍𝐷(𝑍′𝑍)−1𝑍𝐷

′ . (Jung, 2009)    

3.6 Closed form of GDFFITS and Cook's Distance (Generalized) 

The group deletion statistic GDFFITS is given by:  

   𝐺𝐷𝐹𝐹𝐼𝑇𝑆𝑖
(𝐷)

= 𝑣
𝑖

−
1

2𝑧𝑖
′(𝑍′𝑍)−1𝑍𝐷

′ (𝐼 − 𝐻𝐷
∗ )−1𝑒𝐷

∗ + 𝑥𝑖
′(𝑋′𝑋)−1𝑋𝐷

′ (𝐼 − 𝐻𝐷)−1𝑒𝐷                 (17) 

The explicit expression for Cook's Distance according to (Pregibon, 1981) can be obtained by noticing the change in like-

lihood. That is,  

                         𝐶𝐷(𝐷) = 2{𝑙(𝐷)(β(𝐷)̂ ) − 𝑙(β̂)}                                              (18) 

Where 

𝑙(𝐷)(β(𝐷)̂ ) = ∑ {𝑦𝑖𝑥𝑖
′β(𝐷)̂𝑛

𝑖=1,𝑖∉𝐷 − ln (1 + 𝑒𝑥𝑖
′β̂)}. 

We stop our discussion on the theoretical aspects of these measures here. It is to be noted that the asymptotic distribution 

of 𝐺𝐷𝐹𝐹𝐼𝑇𝑆 and Cook's Distance is quite far-fetched and is not covered in this article. We would refer to the empirical bound 

of |𝐺𝐷𝐹𝐹𝐼𝑇𝑆| given as 3√
𝑘

𝑛−𝑑
 , where 𝑘 is the number of predictors and 𝑑 is the number of deleted observations (Nurunnabi 

& Rahmatullah Imon, 2010). Although the expressions for this diagnostic are available for any arbitrary set of deleted cases, 𝐷, 

the choice of such a set is very important as the omission of this group determines the 𝐺𝐷𝐹𝐹𝐼𝑇𝑆 diagnostics for the whole set. 

It is quite intriguing if we consider the problem of deletion of a fraction of observations from the entire data set, that is if 

we delete 𝑘𝑁 observations where 𝑘 ∈ (0,1). In that case, what we can foresee is that the asymptotic confidence intervals for 

𝐷𝐹𝐹𝐼𝑇𝑆 and Cook's Distance would change depending upon how large 𝑘 is. This is basically due to the fact that on deletion of 

𝑘𝑁 observations, the asymptotic normality in (12) will be affected by a constant as we no longer have the normalization factor 

to be √𝑁 but rather 𝑐√𝑁, where 𝑐 is a constant which is a function of 𝑘. On changing this factor, the variance-covariance 

matrix Σ(𝑗) will also change, that is all its entries would be scaled accordingly. 

3.7 Generalization to the multinomial logistic model 

Our statistics for binary logistic regression can be generalized to a multi-class logistic regression model, since we are inter-

ested in taking the difference in fitted values or estimates of β for two classes, so we use the philosophy that an observation 

either belongs to the 𝑖𝑡ℎ class or does not belong to the 𝑖𝑡ℎ class, which is analogous to binary logistic regression predicting 

either 1 if it is in the desired class, 0 otherwise. We first state the model of a multinomial logistic regression.  

Model: For a 𝑘 −class logistic regression problem, suppose our response 𝑌𝑖 can take values in the set { 1,2, … , 𝑘}, where 

each index indicates a separate class. 

We choose a pivot (base - class), say 𝑘, and we regress the log-odds, i.e. ln
π𝑖

π𝑘
 against the set of regressors 𝑋𝑖. Here 

π𝑗 = 𝑃(𝑌 = 𝑗), where 𝑗 = 1,2, … , 𝑘   

So, we have: 

ln
π𝑗

π𝑘
= β𝑗

′ 𝑋𝑖 ,  for j ∈ {1,2, . . , 𝑘 − 1}  

So, as we can see we have different sets of weights β𝑗 's for each equation and can have (𝑝 + 1). (𝑘 − 1) coefficients in total 

if we consider an intercept term for each regression equation, that is we have 𝑝 features in all. Thus, we need to estimate 𝑝. (𝑘 −
1) parameters while fitting the model. 

We have  

π𝑗̂ =
exp(β𝑗

′ 𝑋𝑖)

1 + ∑ exp(β𝑗
′ 𝑋𝑖)

𝑘−1
𝑗=1

,  for 𝑗 ∈ {1,2, . . 𝑘 − 1} 

Also, using ∑ π𝑖
𝑘
𝑖=1 = 1, we get,  

π𝑘̂ =
1

1 + ∑ exp(β𝑗
′ 𝑋𝑖)

𝑘−1
𝑗=1

 

The 𝐷𝐹𝐹𝐼𝑇𝑆 for this model is defined similarly. It is given by the difference of the probability of any observation belong-

ing to the 𝑗𝑡ℎ class and the predicted probability of that particular observation belonging to the 𝑗𝑡ℎ class when any observation 

(say 𝑖) has been deleted from the dataset. If this difference is large, it implies that the observation is actually mis-classified and 

does not actually belong to the 𝑗𝑡ℎ class. It is given by: 
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𝐷𝐹𝐹𝐼𝑇𝑆𝑖 = π𝑖̂ − π(𝑖)̂                                                  (19) 

where π(𝑖) is the predicted probability for the 𝑖𝑡ℎ observation when it has been deleted from the data-set. 

However, the expression for 𝐷𝐹𝐵𝐸𝑇𝐴𝑆 is somewhat complicated to view.  

𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑗𝑖 = β𝑗̂ − β𝑗(𝑖)
̂                                                 (20) 

which although might look similar to the multiple linear regression case, has a much higher order matrix (𝑛 × 𝑝(𝑘 − 1)). So, 

the number of columns has increased 𝑘 − 1 fold because of the 𝑘 − 1 classes. So, it is meaningless and tiresome to compare 

each and every value of this 𝐷𝐹𝐵𝐸𝑇𝐴𝑆  matrix with an individual cutoff, rather 𝐷𝐹𝐹𝐼𝑇𝑆  being a 𝑛 × 1 vector promises 

greater interpretability. The form of Cook's Distance is analogous to that of a binary logistic regression model so, it is not 

worthwhile to mention it in this case. 

Remark: 

It should be remembered that these expressions are valid only under the assumption that there are no misclassifications in 

the base class. Had there been a violation of this assumption, this problem is converted to a classification problem rather than a 

problem of outlier detection and is beyond the reach of our discussion. 

4. Simulation results 

First, we present an example to show how we design our experiment. Initially, we simulated 50 observations. 

For the explanatory variable 𝑋, the first 25 observations are generated from 𝑈 (10, 100) and the last 25 observa-

tions are generated from 𝑈 (50, 500). To generate the original 𝑌 values, we set the first 25 values of 𝑌 at 0 and 

the last 25 values at 1. So, we create a general trend that 𝑌 values corresponding to bigger 𝑋 values are 

more likely to have the value 1. To generate influential observations, we change the value of 𝑌 corresponding to 

the observations having large values of 𝑋 to 0. This changed point should be an influential point because it 

appears against the pattern of the majority of the data. We see how our DFFITS measure works in this case. The 

data is tabulated in Table 1. 

Table 1. Simulated dataset. 

S 
NO. 

X (Predictor) Y (Response) S 
NO. 

X (Predictor) Y (Response) 

1 33.895 0 26 223.751 1 

2 43.491 0 27 56.025 1 

3 61.557 0 28 222.074 1 

4 91.738 0 29 441.360 1 

5 28.151 0 30 203.157 1 

6 90.855 0 31 266.936 1 

7 95.020 0 32 319.804 1 

8 69.471 0 33 272.093 1 

9 66.620 0 34 133.797 1 

10 15.560 0 35 422.317 1 

11 28.537 0 36 350.810 1 

12 25.891 0 37 407.407 1 

13 71.832 0 38 98.574 1 

14 44.569 0 39 375.669 1 

15 79.285 0 40 235.073 1 

16 54.792 0 41 419.425 1 

17 74.585 0 42 341.177 1 

18 99.271 0 43 402.319 1 

19 44.203 0 44 298.866 1 

20 79.970 0 45 288.373 1 

21 94.123 0 46 405.210 0 

22 29.092 0 47 60.499 1 

23 68.650 0 48 264.753 1 

24 21.299 0 49 379.541 1 

25 34.049 0 50 361.729 1 

 

From Table 1, it is clear that the observations 27,38,46,47 are influential, as they are clearly going against the 

trend of X values and Y values. Now, we find the 𝐷𝐹𝐹𝐼𝑇𝑆 vector in order to validate our claim. It is indeed seen 

from Table 2 of 𝐷𝐹𝐹𝐼𝑇𝑆 that its values at these points are significantly large, especially at 47. So, our algorithm 

can successfully detect influential observations. 𝐷𝐹𝐹𝐼𝑇𝑆 is given in Table 2. 

 

 

 

https://doi.org/10.56388/as220715


Journal of Applied Statistics 2022, 1(1), 1-13. https://doi.org/10.56388/as220715                                                            9 

Table 2: 𝐷𝐹𝐹𝐼𝑻𝑺 

We present another interesting case this time with two predictors 𝑋1 and 𝑋2. We draw 25 observations out 

of which 20 of them come from 𝑁 (0, 1) population, that is, 𝑋1, 𝑋2 ∼ 𝑁(0,1) for the first 20 observations. For 

the remaining 5  observations, we draw 𝑋1, 𝑋2  from a 𝑁 (2, 1)  population. We label 𝑌𝑖 = 0  for 𝑖 =
 1, 2, . . . , 20 and 𝑌𝑖 = 1 for 𝑖 =  21, … , 25. The 𝐷𝐹𝐹𝐼𝑇𝑆 values for the 30 observations are presented in Ta-

ble 3. 

Table 3. DFFITS for 𝑁(0,1) and 𝑁(2,1). 

S 

NO. 

DFFITS S 

NO. 

DFFITS S 

NO. 

DFFITS 

1 0.0101 10 -0.0209 19 0.2705 

2 0.1098 11 -0.4985 20 0.0591 

3 -0.0188 12 0.4729 21 16.1173 

4 0.0738 13 0.0786 22 6.2627 

5 0.0986 14 0.1012 23 20.1691 

6 0.6605 15 0.0174 24 -0.0736 

7 0.0040 16 0.1085 25 12.1179 

8 -0.0117 17 -0.0134   

9 0.0466 18 0.2845   

 

As we had expected, the 𝐷𝐹𝐹𝐼𝑇𝑆 values for the observations 21 −  25 stand out from the others in terms 

of magnitude. The only exception being observation 24. This is because the covariates 𝑋1, 𝑋2 for the observations 

21, 22, 23, 25 are in (0, 1), which closely resemble draws from 𝑁 (0, 1), however they are labeled as 1. So, the 

algorithm detects these observations as outliers. On the other hand, the observation 24 having covariate values 

3.0865 and 2.8355 are less likely values for a 𝑁 (0, 1) distribution which has been rightly classified as 1. So, the 

𝐷𝐹𝐹𝐼𝑇𝑆 value of this observation is small. 

4.1 DFFITS for Multiclass logistic model 

We also implement the 𝐷𝐹𝐹𝐼𝑇𝑆 measure for a multi-class logistic regression problem. For this purpose, we 

use the famous Iris data set. The data set contains 3 classes of 50 instances each, where each class refers to a 

type of iris plant setosa, versicolor and virginica. There are four covariates namely Sepal Length, Sepal Width, Petal 

Length and Petal Width. For ease of notation, we consider setosa as Class 0 , versicolor as Class 1 and virginica as 

Class 2 with Class 0 as the base class. The first 50 observations have been classified as Class 0, the observations 

51 − 100 have been classified as Class 1 and the remaining from 100 − 150 as Class 2. We generate three mis- 

classifications by intentionally changing the observation 46 originally labeled as class 0, to Class 1, the observation 

57 originally labeled as Class 2, to Class 3 and the observation 107 originally labelled as Class 3, to Class 1. Now 

we calculate the 𝐷𝐹𝐹𝐼𝑇𝑆 values for all the observations. Out of them the 𝐷𝐹𝐹𝐼𝑇𝑆 values for these three observa-

tions are given in Table 4. 

S 

NO. 

DFFITS S 

NO. 

DFFITS S 

NO. 

DFFITS 

1 -1.453 18 -6.819 35 -1.989 

2 -2.057 19 -2.105 36 -4.396 

3 -3.427 20 -5.065 37 -2.380 

4 -6.153 21 -6.368 38 22.060 

5 -1.134 22 -1.184 39 -3.410 

6 -6.073 23 -4.087 40 -6.126 

7 -6.449 24 -0.794 41 -2.060 

8 -4.110 25 -1.462 42 -4.809 

9 -3.859 26 -5.102 43 -2.527 

10 -0.542 27 22.036 44 -6.573 

11 -1.154 28 -4.917 45 -6.900 

12 -1.017 29 -1.569 46 817.327 

13 -4.321 30 -2.207 47 22.643 

14 -2.130 31 -7.211 48 -7.205 

15 -5.002 32 -5.742 49 -3.270 

16 -2.881 33 -7.193 50 -3.946 

17 -4.570 34 14.806   

https://doi.org/10.56388/as220715
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Table 4. 𝐷𝐹𝐹𝐼𝑇𝑆 for Multiclass Logistic Model. 

 

 

 

 

 

 

 

Thus, we see that all the three observations produce a high value of 𝐷𝐹𝐹𝐼𝑇𝑆 compared to the others having 

𝐷𝐹𝐹𝐼𝑇𝑆 value of the order of 10−2 or less. Thus, our measure 𝐷𝐹𝐹𝐼𝑇𝑆 can identify mis-classifications at the multi-

class level as the 𝐷𝐹𝐹𝐼𝑇𝑆 values get significantly inflated for these observations. 

4.2 GDFFITS and Cook’s Distance simulations 

We now move on to check how our measures Cook’s Distance and Generalized 𝐷𝐹𝐹𝐼𝑇𝑆 work on a standard data 

set- Kyphosis data (Nurunnabi & Rahmatullah Imon, 2010). But before we outline a general algorithm of finding 

𝐺𝐷𝐹𝐹𝐼𝑇𝑆, or more specifically how to choose the deletion set D and the remaining observations R. 

Step 1: In the first step, we try to find out all suspect influential cases. This can be done either by graphical displays 

like index plot or character plot of explanatory and response variables. But these plots are not always helpful for higher 

dimensions of regressors and depend heavily on the experimenter’s own investigation. So, it is sensible to first run a single 

deletion 𝐷𝐹𝐹𝐼𝑇𝑆 or Cook’s Distance algorithm on the dataset and look for unusual values of these statistics. Hence, 

we list all the suspect points to form the set D. Naturally the set R is formed by the remaining observations.  

Step 2: When we delete a group of observations, it is possible that some observations may be wrongly detected 

as suspect influential cases due to the swamping effects. So, it is to be checked for all possible subsets of D , whether 

our algorithm can detect all the influential points correctly or not. As a rule of thumb, the cardinality of D is usually 

less than 10 % of the size of the entire data set. 

4.3 Modified Kyphosis Data 

This data set contains information about 81 children who have had corrective spinal surgery. The response 

variable tells us whether a post-operative deformity (Kyphosis) is ‘present’ or ‘absent’ in the data. It is thought that Ky-

phosis depends on two variables, the number of vertebrae involved in the operation (number) and the beginning of 

the range of vertebrae involved in the operation (start). On first inspection of the original data, it seems to us that 

one observation (Case 43) might have a large influence in fitting the model. We now deliberately change eight 

observations 10,11,23,40,46,49,63,77 to make them influential and this modified data set is presented in Table 5. 

On implementing 𝐷𝐹𝐹𝐼𝑇𝑆 and Cook’s Distance algorithms (single deletion case) on the data, we see that it 

cannot identify all the influential observations correctly, rather it has mis-identified some points as influential points. 

This indicates the existence of masking and swamping effects in the data- set. Thus, we need to proceed with our 

𝐺𝐷𝐹𝐹𝐼𝑇𝑆 measure. In order to create our deletion set D, we choose 5 suspect cases 10,11,23,43,77. We compute the 

𝐺𝐷𝐹𝐹𝐼𝑇𝑆 values for the entire data set based on deletion of this set D. The results have been tabulated in Table 6. 

From the results it is clear that some observations like 46 and 63 were masked by the presence of other outliers, 

which are now identified. This measure now correctly identifies all the influential observations. We also checked for 

other values of 𝑑 =  |D|, and found that for d < 5, all outliers still could not be detected, and on taking d >5, it 

was found that there were many harmless observations identified as influential. This is due to the fact that as we 

go on increasing d, the cutoff points for Cook’s Distance varies a lot from the original cutoffs and hence it will be 

erroneous if we use the original single deletion cutoffs for these generalized values. 

Table 5. Modified Kyphosis Data. 

Index Kyphosis Number Start Index Kyphosis Number Start 

1 0 3 5 42 0 3 13 

2 0 3 14 43 0 9 3 

3 1 4 5 44 0 4 1 

4 0 5 1 45 0 3 16 

5 0 4 15 46 1 3 10 

6 0 2 16 47 0 4 15 

7 0 2 17 48 0 5 13 

8 0 3 16 49 1 3 3 

9 0 2 16 50 0 2 14 

10 1 6 12 51 0 5 10 

11 1 5 14 52 0 2 17 

12 0 3 16 53 1 10 6 

13 0 5 2 54 0 2 17 

S 

NO. 

DFFITS 

46 0.8311 

57 0.7174 

107 0.5520 

https://doi.org/10.56388/as220715
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Table 5. Continued. 

Index Kyphosis Number Start Index Kyphosis Number Start 

14 0 4 12 55 0 4 15 

15 0 3 18 56 0 5 15 

16 0 3 16 57 0 3 13 

17 0 6 15 58 1 5 8 

18 0 5 13 59 0 7 9 

19 0 5 16 60 0 3 13 

20 0 4 9 61 1 4 1 

21 0 2 16 62 1 7 8 

22 1 6 5 63 0 4 1 

23 1 3 12 64 0 3 16 

24 0 2 3 65 0 4 16 

25 1 7 2 66 0 4 10 

26 0 5 13 67 0 2 17 

27 0 3 6 68 0 4 13 

28 0 3 14 69 0 4 11 

29 0 3 16 70 0 5 16 

30 0 2 16 71 0 5 14 

31 0 3 16 72 0 4 12 

32 0 2 11 73 0 4 16 

33 0 5 13 74 0 4 10 

34 0 3 16 75 0 3 15 

35 0 5 11 76 0 4 15 

36 0 3 16 77 1 3 13 

37 0 3 9 78 0 7 13 

38 1 5 6 79 0 2 13 

39 0 6 9 80 1 7 6 

40 1 5 12 81 0 4 13 

41 1 5 1     

Table 6. GDFFITS, DFFITS, Cook’s D. 

Index Cook’s D DFFITS GDFFITS Index Cook’s D DFFITS GDFFITS 

1 0.2935 -0.1844 -0.2061 42 0.0024 0.0003 -0.0009 

2 0.0013 -0.0054 -0.0060 43 5.1944 -1.4948 -1.756 

3 0.5088 -0.1535 -0.2445 44 0.1358 0.1301 -0.5211 

4 0.5923 0.0351 0.0652 45 0.0006 -0.0132 -0.0030 

5 0.0032 -0.0269 -0.0102 46 0.7778 -0.1692 1.2250 

6 0.0010 -0.0065 -0.0002 47 0.0032 -0.0269 -0.1100 

7 0.0006 -0.0084 -0.0001 48 0.0234 -0.0590 -0.0035 

8 0.0006 -0.0132 -0.0003 49 0.5206 -0.2308 0.7498 

9 0.0010 -0.0065 -0.5203 50 0.0033 -0.0004 -0.0003 

10 1.2887 0.4538 0.9856 51 0.0121 -0.0366 -0.0085 

11 1.0008 0.4093 1.2298 52 0.0006 -0.0084 -0.0001 

12 0.0008 -0.0132 -0.0085 53 1.5894 0.4899 0.3491 

13 0.3617 0.0402 0.5605 54 0.0006 -0.0008 -0.0012 

14 0.0009 -0.0088 -0.0025 55 0.0032 -0.0269 -0.1100 

15 0.0006 -0.0170 -0.0032 56 0.0232 -0.0653 -0.0205 

16 0.0006 -0.0132 -0.0004 57 0.0024 0.0003 -0.0090 

17 0.1049 -0.1434 -0.0475 58 0.0085 0.0276 0.5680 

18 0.0234 -0.0590 -0.0041 59 0.6876 -0.3644 -0.5030 

19 0.0214 -0.0662 -.0015 60 0.0024 0.0003 -0.0009 

20 0.0087 0.0250 -0.0050 61 0.7567 -0.1091 0.3620 

21 0.0010 -0.0065 -0.0020 62 0.6423 0.3572 0.4195 

22 0.0432 0.0962 0.5785 63 0.3587 0.1301 0.8524 

23 1.4432 0.445 1.556 64 0.0006 -0.0132 -0.0036 

24 0.8535 0.1123 -0.1455 65 0.0035 -0.02999 -0.0085 

25 0.0405 0.1317 0.0081 66 0.0028 0.0119 -0.0045 

26 0.0234 -0.0590 -0.0035 67 0.0006 -0.0064 -0.0010 

https://doi.org/10.56388/as220715
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Table 6. GDFFITS, DFFITS, Cook’s D. 

Index Cook’s D DFFITS GDFFITS Index Cook’s D DFFITS GDFFITS 

27 0.1799 0.0847 -0.0076 68 0.0016 -0.0165 -0.0175 

28 0.0013 -0.0054 -0.0040 69 0.0008 0.0006 -0.0300 

29 0.0006 -0.0132 -0.0003 70 0.02144 -0.0662 -0.0152 

30 0.0010 -0.0065 0.0018 71 0.0239 -0.0630 -0.0027 

31 0.0006 -0.0132 -0.0033 72 0.0009 -0.0088 -0.0235 

32 0.0179 0.0164 -0.0009 73 0.0035 -0.0299 -0.0074 

33 0.0234 -0.590 -0.0357 74 0.0028 0.0119 -0.0395 

34 0.0006 -0.0132 -0.0030 75 0.0008 -0.0009 -0.0053 

35 0.0174 -0.0458 -0.0578 76 0.0032 -0.0269 -0.0012 

36 0.0006 -0.0132 -0.0053 77 1.329 1.2937 1.862 

37 0.0350 0.0391 0.3582 78 0.5091 -0.3254 -0.2130 

38 0.0304 -0.0187 -0.1998 79 0.0059 0.0040 -0.0045 

39 0.1366 -0.1416 -0.3280 80 0.2768 0.2516 0.2658 

40 0.4188 0.2373 0.8952 81 0.0012 -0.0165 -0.0147 

41 0.1922 -0.0240 0.1590     

 

Thus, we see that although Cook’s Distance and 𝐷𝐹𝐹𝐼𝑇𝑆 could not identify the observations 40, 46 

and 63 as outliers, 𝐺𝐷𝐹𝐹𝐼𝑇𝑆 values for these observations are quite large compared to the cutoff 0.6, and hence are 

detected easily. The observation 53 was declared an outlier by 𝐷𝐹𝐹𝐼𝑇𝑆 and Cook’s Distance, however, the value of 

GDFFITS shows that it is not. So, we have an instance of swamping. 

5. Scope of Improvement and Conclusions 

Although we discussed largely about how to obtain the form of 𝐷𝐹𝐹𝐼𝑇𝑆 and Cook's Distance for a logistic regression 

model throughout this article, there are many issues which we could not address due to the paucity of time. Some of these are as 

follows: 

➢ We have obtained the asymptotic cutoffs of Cook's Distance and 𝐷𝐹𝐹𝐼𝑇𝑆 which varies with each deleted observation 

𝑗. Though it is intuitively clear that the cutoffs should vary with the influence of the 𝑗𝑡ℎ point, however many authors 

including (Halfon, et al., 1977) have argued against this notion and has sought cutoffs which would provide a uniform 

bound for the Cook's Distance of all the observations using the theory of Confidence Interval Displacement (Martín 

& Pardo, 2009). 

➢ In the extension of the binary logistic outlier detection techniques to the multinomial case, we assumed that 

there are no misclassifications in the base class. On dropping that assumption, the problem could have 

been more interesting and challenging. 

➢ We are yet to find the asymptotic cutoffs for GDFFITS and Generalized d deleted Cook’s Distance. 

➢ We are yet to theoretically judge what should be the optimal value of d such that even after deleting those 

many observations, the values of the generalized measures are within the tolerance limits of the cutoffs in 

the single deletion case. For instance, in our example the cutoff of 0.6 for the single deletion case was valid 

till d = 5. 

➢ We also have not investigated other techniques or procedures to detect masking or swamping outliers. Fit-

ting a single deletion algorithm over a data set of large size just to get an idea of the suspected set of 

points will be quite laborious. 

In this article, we have investigated how the various deletion diagnostics defined in the case of a multiple 

linear regression model can be generalized to the logistic regression model. The 𝐷𝐹𝐹𝐼𝑇𝑆 and Cook’s Distance with 

single deletion appears to be quite useful for a dataset having very few outliers (generally one or two). However, in 

presence of multiple outliers, these measures under perform and thus they should be replaced by group deletion 

statistics 𝐺𝐷𝐹𝐹𝐼𝑇𝑆 and Generalized Cook’s Distance. Their performance on the Kyphosis data set with more than 

one outlier seems to be good enough once the optimal deletion set is chosen. 
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Appendix A 

Proof of Theorem 2.0.2: 

Following the lines of Matin & Pardo (2009), We shall use the following result: Suppose (𝑊1, … , 𝑊𝑞)
′
 be a 𝑞 × 1 random vector 

and is distributed as 𝑁(0𝑞×1, Σ𝑊) and 𝑀 is any real symmetric matrix of order 𝑞. Let 𝑟 = rank(Σ𝑊𝑀Σ𝑊) ≥ 1 and let λ1, … , λ𝑟be non-

zero eigenvalues of 𝑀Σ𝑊 (𝑟 ≤ 𝑞). Then (𝑊1, … . , 𝑊𝑞)𝑀(𝑊1, … , 𝑊𝑞)
′

∼ ∑ λ𝑖𝑍𝑖
2𝑟

𝑖=1  where {𝑍𝑖}𝑖=1
𝑟  are independent random variables so 

that 𝑍𝑖 ∼ 𝑁(0,1). Based on Theorem 2.0.1, we need to calculate:  

𝑟𝑎𝑛𝑘(Σ(𝑗)𝑉−1Σ(𝑗)) = 𝑟𝑎𝑛𝑘((𝑋′𝑊𝑋)−1𝑥𝑗𝑥𝑗
′(𝑋′𝑊𝑋)−1𝑥𝑗𝑥𝑗

′(𝑋′𝑊𝑋)−1) 

Let 𝑅 = (𝑋′𝑊𝑋)−
1

2𝑥𝑗 . Since rank(𝑅𝑅′𝑅𝑅′)=rank(𝑅𝑅')=rank(𝑅) and 𝑅 is a (𝑘 + 1) × 1 matrix, the rank of Σ(𝑗)Σ−1Σ(𝑗) is 1. On the other 

hand, since the nonzero eigenvalues of 𝐹𝐺 are equal to the non zero eigenvalues of 𝐺𝐹, when the dimensions of 𝐹 and 𝐺' matrices are 

equal, we have that the nonzero eigenvalue of  

Σ(𝑗)𝑉−1 =
𝑣𝑗

1 − 𝑤𝑗𝑗

(𝑋′𝑊𝑋)−1𝑥𝑗𝑥𝑗
′ = 𝐹𝐺 

where 𝐹 =
𝑣𝑗

1−𝑤𝑗𝑗
(𝑋′𝑊𝑋)−1𝑥𝑗  and 𝐺 = 𝑥𝑗

′, coincides with the eigen value of  

𝐺𝐹 =
1

1−𝑤𝑗𝑗
𝑣𝑗𝑥𝑗

′(𝑋′𝑊𝑋)−1𝑥𝑗 =
1

1−𝑤𝑗𝑗
𝑤𝑗𝑗      

Therefore, 
𝑤𝑗𝑗

1−𝑤𝑗𝑗
 is the nonzero eigenvalue of Σ(𝑗)𝑉−1 and we obtain the desired result. 
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