

WNG01: ACTUATOR CONTROLS
Firmware Software Design
Description (SDD)

For Michael Malcolm

Last Updated: September 11, 2019, Revision 1.7

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 2 of 47

Approvals for Rev 1.7

Michael Malcolm Nuvation

_________________________________ _________________________________
Name Name
_________________________________ _________________________________
Signed Signed
_________________________________ _________________________________
Title Title
_________________________________ _________________________________
Date Date

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 3 of 47

Revision History

Revision Date Description By

0.1 2017 – 12 – 15 Initial Draft R. Chung - Nuvation

1.0 2018 – 01 – 29 Updates from client feedback R. Chung - Nuvation

1.1 2018 – 03 – 26 Added system function overview table R. Chung - Nuvation

1.2 2018 – 06 – 26 Updated document based on current state of
the firmware

R. Chung - Nuvation

1.3 2018 – 12 – 03 Added value defines for de-energized coils
Added defines for actuator error and output
control parameters
Added defines for MCU UID
Added temperature ADC filter window, control
loop interval, and flight registration parameters
to the configuration sector
Added new events to support changes

J. Teng - Nuvation

1.4 2019 – 01 – 31 Added WOW logging support J. Teng – Nuvation

1.5 2019 – 05 – 22 Added Pre-bias defines J. Teng – Nuvation

1.6 2019 – 06 – 18 Added offset defines J. Teng – Nuvation

1.7 2019 – 09 – 10 Update description of control algorithm, add
references to WOW in actuator responsibilities

J. Chinnick –
Nuvation

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 4 of 47

Table of Contents

Approvals for Rev 1.7 .. 2

Revision History ... 3

List of Figures ... 6

List of Tables .. 7

1 Introduction .. 9

1.1 Purpose .. 9

1.2 Scope ... 9

1.3 Assumptions .. 9

1.4 Reference Documentation .. 10

1.5 Related Documentation .. 10

2 System Overview .. 11

2.1 Controller Overview .. 12

2.2 Hardware Components ... 12

2.3 System Function Overview .. 12

3 Software Architecture... 15

3.1 Application Layer ... 15

3.1.1 Software Services .. 16

3.1.2 System Manager .. 18

3.1.3 Communication Manager .. 19

3.1.4 Coolant and Oil Actuator Controller .. 21

3.1.5 Event Logger .. 28

3.1.6 Watchdog Manager ... 30

3.1.7 Command Line Interface ... 30

3.1.8 Debug Logger ... 31

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 5 of 47

3.2 Middleware Layer .. 31

3.2.1 CMSIS-RTOS and Free-RTOS .. 31

3.2.2 STM32Cube USB Host Library Module .. 31

3.3 Hardware Abstraction Layer (HAL) .. 32

3.4 STM32 Driver Layer and STM32Fx Startup and Configuration Code 33

4 System-Level Considerations .. 34

4.1 Internal Flash Partitioning ... 34

4.2 External Flash Partitioning ... 35

4.2.1 Event Log Format ... 36

5 System Operation ... 42

5.1 Maintenance Mode ... 42

5.2 Bootloader ... 42

5.3 Over-The-Air (OTA) Firmware Update Process ... 43

5.3.1 Firmware Versioning ... 44

5.4 Door Position Calibration .. 44

5.5 Controller Fault and Alert Behavior ... 45

5.6 Mobile Application Communication .. 45

6 Tools .. 46

6.1 STM32CubeMX .. 46

6.2 System Workbench for STM32 .. 46

6.3 Software Development Environment .. 46

6.4 STM32F412G Evaluation Board ... 46

7 Licenses ... 47

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 6 of 47

List of Figures

Figure 1: System diagram .. 11

Figure 2: Control box overview ... 12

Figure 3: High-level software architecture stack ... 15

Figure 4: Thread hierarchy .. 16

Figure 5: Inter-service communication (simplified) .. 17

Figure 6: Inter-service communication (complete) ... 18

Figure 7: Controller block diagram .. 26

Figure 8: USB host library architecture ... 32

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 7 of 47

List of Tables

Table 1: System function overview ... 14

Table 2: System Manager event messages ... 19

Table 3: Communication Manager event messages ... 21

Table 4: Actuator Library interface description .. 21

Table 5 - Coolant Thermal Control Table .. 23

Table 6 - Oil Thermal Control Table ... 24

Table 7: Actuator Controller event messages ... 28

Table 8: Event Logger event messages .. 29

Table 9: Watchdog Manager check-in table .. 30

Table 10: Peripheral operation mode ... 33

Table 11: Internal flash partition ... 34

Table 12: Configuration data ... 35

Table 13: Generic event log structure ... 35

Table 14: List of event log structure .. 41

Table 15: Control block information ... 43

Table 16: FW application control header .. 43

Table 17: Controller fault and alert responses .. 45

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 8 of 47

Glossary

Term Description

ADC Analog to Digital Converter

API Application Programming Interface

BLE Bluetooth Low Energy

CDC Communication Device Class

DMA Direct Memory Access

GPIO General Purpose Input Output

FW Firmware

HAL Hardware Abstraction Layer

HDD Hardware Design Description

ISR Interrupt Service Routine

OS Operating System

OTA Over-The-Air

PI Proportional-Integral

QSPI Quad (4 lane) Serial Peripheral Interface

RTOS Real Time Operating System

SDD Software Design Description

TBO Time Before Overhaul

TLV Time-Length-Value

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

VM Virtual Machine

WOW Weight-On-Wheels

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 9 of 47

1 Introduction

The North American P51 Mustang has two thermostatic actuators that open and close the air

outlet doors of the coolant and oil radiators. Adjusting the positions of these doors controls the

amount of air flowing through the radiator and thus the operating temperatures of the engine

coolant and oil.

Each thermostatic actuator is operated automatically using an electro-mechanical control

system which is comprised of relays, switches and a diatstat. The diastat is used to sense the

temperature of the coolant or oil. It is becoming increasingly difficult to find diastats that still

function properly.

1.1 Purpose

The purpose of this project is to modify the existing thermostatic actuators with a digital

controller that replaces the existing electro-mechanical controller. This document describes the

architecture and design of the firmware for this digital controller. It provides an overview of the

firmware implementation, the control algorithm used to control the coolant and oil

temperatures, and the communication protocol to an iOS application. The iOS application will be

referred to as the mobile application from here on in this document.

1.2 Scope

This document primarily describes the firmware on the controller itself. It does not describe any

software design related to the mobile application. The mobile application design can be found

in the Mobile SDD. In this document, the use of the term software refers to the firmware

described in this document and does not refer to the mobile device software unless otherwise

stated.

1.3 Assumptions

The following is a list of assumptions made about the system and its requirements during the

writing of this document:

 No security provisions made over the BLE interface

 Coolant and oil actuator doors are assumed to be in the same position as the last

recorded value on controller startup

 The coolant and oil cooling systems have negligible effects on each other

 Changes in the plant (the physical system in control terminology), are a lot slower (at

least x10) than the update rate of the controller

 Hold and sample time in the control loop can be ignored because the temperature

sensor device and controller react a lot faster (at least x10) than the changes in the plant

 DO-278C for Level D shall apply

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 10 of 47

1.4 Reference Documentation

The following documentations are referenced by this document:

 Digital Coolant and Oil Actuator Controller v.3

 STM32F412 advanced ARM®-based 32-bit MCUs RM0402

 STM32Cube USB Host library User Manual UM1720

1.5 Related Documentation

The following documentations are related to this document:

 WNG01_Mobile_SDD

 WNG01_HDD

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 11 of 47

2 System Overview

This section gives an overview of the system and highlights the role of the firmware in relation

to other components. In Figure 1 below, the overall system diagram is given.

Cockpit

Controller

Coolant Actuator

Oil Actuator

Mobile
App

Coolant Temperature
Sensor

Oil Temperature
Sensor

Coolant
Switch

Oil
Switch

Coolant indicator

Oil Indicator

USB

BLE
*Position of the USB to BLE

dongle is installation
dependent

Figure 1: System diagram

There are two main digital components in the system: the controller and the mobile application.

The controller is located in the hell hole of the P-51 fuselage and contains a microcontroller with

the firmware described by this document. The mobile app lives on a mobile device located

inside the cockpit. The mobile application is not required during flight; the controller manages

the system control independently of the mobile application.

The controller controls the coolant and oil actuators depending on the coolant and oil

temperatures. These values are measured by the coolant and oil temperature sensors. In

addition, the controller interfaces with the coolant and oil control mode switches, light

indicators, and a USB to BLE dongle.

The USB to BLE dongle enables the controller to communicate over Bluetooth to the mobile app

for maintenance operations. The location of the USB to BLE dongle may differ from one

installation to another.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 12 of 47

2.1 Controller Overview

The controller comprises a microcontroller and an external flash storage used to store flight

logs. Figure 2 below shows a more detailed view of the controller including the type of inputs

and outputs connected to it.

Controller

MCU

Flash

Open/Close,
Open/Close Limit,

Interrupter,
ID

Open/Close,
Open/Close Limit,

Interrupter,
 ID

USB

Coolant and Oil
Indicators

(Coolant)
 Manual Open/Close,

Auto

(Oil)
Manual Open/Close,

Auto

Engine On

Oil
Actuator

Coolant
Actuator

Coolant
Temperature

Sensor

Coolant Temperature

Oil
Temperature

Sensor

Oil Temperature

Cockpit

Engine

QSPI

USB to BLE
dongle

Figure 2: Control box overview

The microcontroller has interfaces to control the oil and coolant actuators and the temperature

sensors. There is also a USB connection from the microcontroller which is connected to the USB

to BLE dongle.

2.2 Hardware Components

The follow hardware components are used for the controller:

 STM32F412 processor

 Cypress Semiconductor S25FL256LAGMFN000 External Flash

 Bluegiga BLED112 BLE Dongle

2.3 System Function Overview

The functional overview of the system is shown below in Table 1.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 13 of 47

System Components Functions Function Description

System Manager Reads the engine on/off state

Reads the controller temperature

Reports a controller reset

Reports oil/coolant/system warnings Powers the oil and coolant indicators if a warning has

occurred

Oil Actuator Determines if the actuator is connected

Monitors WOW sensor Affects behavior of Auto mode

Monitors oil temperature

Monitors actuator operation mode Auto, manual neutral, manual close, manual open

Monitors interrupter counts

Monitors open limit switch

Monitors close limit switch

Energizes the open coil to open the actuator doors

Energizes the close coil to close the actuator doors

Regulates the temperature of the oil Uses a control loop to regulate the temperature to a set

temperature point. Only active in “auto” mode

Coolant Actuator Determines if the actuator is connected

Monitors WOW sensor Affects behavior of Auto mode

Monitors coolant temperature

Monitors actuator operation mode Auto, manual neutral, manual close, manual open

Monitors interrupter counts

Monitors open limit switch

Monitors close limit switch

Energizes the open coil to open the actuator doors

Energizes the close coil to close the actuator doors

Regulates the temperature of the oil Uses a control loop to regulate the temperature to a set

temperature point. Only active in “auto” mode

Logging Log messages into non-volatile storage Refer to Table 14 for messages logged.

Watchdog Resets the system if any software service is unresponsive

Kicks the external HW watchdog

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 14 of 47

Mobile Communication Communicates system and actuator information to a mobile

application

Communicates over BLE to the mobile application

Performs maintenance operations

 Maintenance
1
 Calibrate oil actuator door Executes calibration procedure described in Section 5.4

Set oil temperature set point

Set oil actuator control loop parameters

Calibrate coolant actuator door Executes calibration procedure described in Section 5.4

Set coolant temperature set point

Set coolant actuator control loop parameters

Update firmware

Retrieve log data from non-volatile flash
Table 1: System function overview

1
 Maintenance functions are accessible only in maintenance mode. Refer to Section 5.1 for more information.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 15 of 47

3 Software Architecture

This section explains the software architecture of the controller firmware. Figure 3 below shows

the high-level organization of the software.

STM Driver Layer

STM32Fx Startup and Configuration Code

Hardware Abstraction Layer

Free-RTOS

WDT

ADC QSPI

GPIO USB

UART

RTC

Timer

USB Host

CMSIS-RTOS API

Internal
Flash

Actuator
BGApi
BGLib

STM Driver
Layer

Middleware
Layer

Application
Layer

Middleware
Layer

Ev
en

t
Lo

gg
e

r

C
o

m
m

un
ic

at
io

n

M
an

ag
e

r

C
o

m
m

an
d

 L
in

e

In
te

rf
ac

e

C
o

o
la

n
t

A
ct

u
at

o
r

C
o

n
tr

o
lle

r

W
at

ch
do

g
M

an
ag

er

Log Flash

Flash

D
e

b
ug

 M
an

ag
er

Sy
st

em
 M

an
ag

e
r

O
il

A
ct

u
at

o
r

C
o

n
tr

o
lle

r

GPIO ADC

Firmware
Upgrade

Figure 3: High-level software architecture stack

The majority of the software design effort is concentrated on the application layer. This is

because the layers of software below it are auto-generated using a tool provided by

STMicroelectronics called STM32CubeMX.

3.1 Application Layer

The application layer consists of multiple software services that handle the program logic of the

software. Each service is responsible for managing a specific high-level function of the software.

The services are:

 System Manager

 Communication Manager

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 16 of 47

 Coolant Actuator Controller

 Oil Actuator Controller

 Event Logger

 Watchdog Manager

 Command Line Interface

 Debug Manager

In terms of implementation, each software service is implemented as a separate thread

managed by the underlying operating system. In addition to the mentioned software services,

the application layer also contains software libraries that provide functionality convenient to a

service. These libraries include interfaces to the following:

 Internal flash

 BlueGiga BGAPI™ and BGLib™ (BLE Dongle API) for the Communication Manager

 Actuators for the Coolant Actuator Controller and Oil Actuator Controller

 External flash for the Event Logger

 GPIO and ADC libraries for the Actuator Library and other services

 Firmware Upgrade to handle firmware upgrade related tasks

3.1.1 Software Services

The implementation of services is created as separate threads. Figure 5 below shows the

hierarchy and creation of threads.

Coolant Actuator

Controller
Event Logger

Command Line

Interface

Communication

Manager
USB Host

Application Layer

Middleware Layer

Watchdog

Idle Thread
(Main)

Oil Actuator

Controller
System Manager

Figure 4: Thread hierarchy

These services mostly communicate with each other through messaging queues with most

services exposing one messaging queue. Messaging queues are used so that communication

from multiple services to a common service can be serialized. Event messages are placed into

messaging queues to indicate to a specific service to act on an event. The only exception to this

is the Watchdog Manager which does not have a messaging queue. This is further explained in

Section 3.1.6. Figure 5 below shows the simplified communication between the services that are

necessary for the system.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 17 of 47

Coolant Actuator Controller

Coolant Actuator
Message Queue

Event Logger

Event Logger Message
Queue Watchdog Manager

Communication Manager

Communication Manager
Message Queue

Application Layer

Middleware Layer

Event Response
Send Event

USB Host

USB Message Queue

System Manager

System Manager Message
Queue

Oil Actuator Controller

Oil Actuator Message
Queue

Figure 5: Inter-service communication (simplified)

Communication between services to initiate a request or respond to a request is done directly

as opposed to through a central message dispatching service. This approach was chosen

because there are only a small number of services in the system, as such adding an extra central

messaging service would have overcomplicated the design.

The blue arrows in Figure 5 above indicate the direction of communication for requests from

one service to another. These requests occur as event messages to the target service. The green

arrows indicate the direction of a corresponding response message to a received event. The

corresponding response messages are also sent as event message.

Event messages should not be missed by any service. If an event message is missed and

therefore dropped, this indicates a software fault which will be logged for debugging purposes.

In addition, the controller will reset to hopefully restore the controller to a working state. The

only exception is the Debug Manager messaging queue. A dropped message is not considered a

critical error to the rest of the system. However a provision for missed messages exists and is

described in Section 0 .

The full communication diagram is shown below in Figure 6.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 18 of 47

Coolant Actuator Controller

Coolant Actuator
Message Queue

Event Logger

Event Logger Message
Queue Watchdog Manager

Communication Manager

Communication Manager
Message Queue

Application Layer

Middleware Layer

Event Response
Send Event

USB Host

USB Message Queue

System Manager

System Manager Message
Queue

Command Line Interface

CLI Message Queue

Debug Logger

Debug Logger Message
Queue

Oil Actuator Controller

Oil Actuator Message
Queue

Figure 6: Inter-service communication (complete)

The Command Line Interface and the Debug Logger components are added in this figure. Both of

these services are important during the development process and testing but do not affect the

functionality of the controller.

3.1.2 System Manager

The role of the System Manager is to handle system state changes. The System Manager does

the following:

 Reads the engine state

 Keeps track of the current flight number

 Reads the controller temperature

 Reports a controller reset

 Reports a controller malfunction

 Performs firmware upgrade operations

 Resets the system

 Checks in with the Watchdog Manager

3.1.2.1 Internal Flash Library

The internal flash library interfaces with the processors internal flash memory. All accesses to

the internal flash are synchronized through the System Manager. The internal flash library is

used to write configurations into flash as mentioned in Section 4.1 as well as to write new

firmware.

3.1.2.2 Event Messages

The System Manager responds to the event messages listed in Table 2 below.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 19 of 47

Event Name Event Generation Source

ENGINE_ON GPIO library

ENGINE_OFF GPIO library

CLEAR_FLIGHT_NUM Event Logger

BLE_CONNECTED Communication Manager

BLE_DISCONNECTED Communication Manager

SET_OIL_CTRL_PARAM Oil Actuator Controller

SET_OIL_ALARM Oil Actuator Controller

CLEAR_OIL_ALARM Oil Actuator Controller

SET_COOLANT_CTRL_PARAM Coolant Actuator Controller

SET_ COOLANT _ALARM Coolant Actuator Controller

CLEAR_ COOLANT _ALARM Coolant Actuator Controller

SET_EPOCH_TIME Communication Manager

START_FW_TRANSFER Communication Manager

FINISH_FW_TRANSFER Communication Manager

ABORT_FW_TRANSFER Communication Manager

FW_PACKET Communication Manager

START_CTRL_TEMP_BLE_UPDATE CLI

STOP_CTRL_TEMP_BLE_UPDATE CLI

Table 2: System Manager event messages

3.1.3 Communication Manager

The role of the Communication Manager is to handle communication between the mobile

application and the controller. The Communication Manager communicates with other services

to act upon the commands received from the mobile application. Specifically, the

Communication Manager does the following:

 Parse and generate USB packets

 Parse and generate Bluegiga API packets

 Parse and generate messages from the mobile device

 Request information from the Actuator Controller

 Initiate writing firmware upgrades to the internal flash

 Checks in with the Watchdog Manager

3.1.3.1 Bluegiga BGAPI™ and BGLib™

The BLED112 USB BLE dongle is used by the controller to communicate to the mobile application

via Bluetooth. The BLED112 dongle implements a full Bluetooth stack removing the firmware

from having to implement it. However, the firmware needs to communicate with the dongle

through the Bluegiga API (BGAPI™) and library (BGLib™). The BGAPI™ provides an API to

communicate with the dongle while the BGLib™ provides functionality to parse the information

received from the dongle. The software for this is included in the SDK from Silicon Labs, the

vendor for the Bluegiga chips. Version 1.6 of the SDK is used for this project.

3.1.3.2 Event Messages

The Communication Manager responds to the event messages listed in Table 3 below.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 20 of 47

Event Name Event Generation Source

UPDATE_SYSTEM_ENGINE_POWER System Manager

UPDATE_SYSTEM _FLIGHT_NUM System Manager

UPDATE_SYSTEM_CTRL_TEMP System Manager

UPDATE_SYSTEM_ALARM System Manager

UPDATE_OIL_OP_MODE Oil Actuator Controller

UPDATE_OIL_TEMP Oil Actuator Controller

UPDATE_OIL_DOOR_POS Oil Actuator Controller

UPDATE_OIL_ALARM Oil Actuator Controller

UPDATE_COOLANT_OP_MODE Coolant Actuator Controller

UPDATE_COOLANT _TEMP Coolant Actuator Controller

UPDATE_COOLANT _DOOR_POS Coolant Actuator Controller

UPDATE_COOLANT _ALARM Coolant Actuator Controller

UPDATE_CONFIG_OIL_SET_TEMP Oil Actuator Controller

UPDATE_CONFIG_COOLANT_SET_TEMP Coolant Actuator Controller

UPDATE_CONFIG_OIL_P_GAIN Oil Actuator Controller

UPDATE_CONFIG_OIL_I_GAIN Oil Actuator Controller

UPDATE_CONFIG_OIL_D_GAIN Oil Actuator Controller

UPDATE_CONFIG_OIL_HYSTERESIS Oil Actuator Controller

UPDATE_CONFIG_COOLANT_P_GAIN Coolant Actuator Controller

UPDATE_CONFIG_COOLANT _I_GAIN Coolant Actuator Controller

UPDATE_CONFIG_COOLANT _D_GAIN Coolant Actuator Controller

UPDATE_CONFIG_COOLANT _HYSTERESIS Coolant Actuator Controller

UPDATE_CONFIG_CTRL_LOOP_INTERVAL Oil/Coolant Actuator Controller

UPDATE_FW_VERSION Communication Manager

READ_SYSTEM_ENGINE_POWER CLI

READ_SYSTEM _FLIGHT_NUM CLI
READ _SYSTEM_CTRL_TEMP CLI
READ _SYSTEM_ALARM CLI
READ _OIL_OP_MODE CLI
READ _OIL_TEMP CLI
READ _OIL_DOOR_POS CLI
READ _OIL_ALARM CLI
READ _COOLANT_OP_MODE CLI
READ _COOLANT _TEMP CLI
READ _COOLANT _DOOR_POS CLI
READ _COOLANT _ALARM CLI
READ _CONFIG_OIL_SET_TEMP CLI
READ _CONFIG_COOLANT_SET_TEMP CLI
READ _CONFIG_OIL_P_GAIN CLI
READ _CONFIG_OIL_I_GAIN CLI
READ _CONFIG_OIL_D_GAIN CLI
READ _CONFIG_OIL_HYSTERESIS CLI
READ _CONFIG_COOLANT_P_GAIN CLI
READ _CONFIG_COOLANT _I_GAIN CLI
READ _CONFIG_COOLANT _D_GAIN CLI
READ _CONFIG_COOLANT _HYSTERESIS CLI
READ_CONFIG_CTRL_LOOP_INTERVAL Oil/Coolant Actuator Controller

READ _FW_VERSION CLI
BLE_CONNECT Communication Manager

BLE_DISCONNECT Communication Manager

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 21 of 47

Table 3: Communication Manager event messages

3.1.4 Coolant and Oil Actuator Controller

The Coolant Actuator Controller and the Oil Actuator Controller are responsible for interfacing

with the coolant and oil actuators respectively. The two services are identical in the functionality

and the event messages they expose. The only difference is that one is controlling the coolant

actuator while the other is controlling the oil actuator. The two services are not dependent on

each other and do not communicate with each other. Each actuator controller service performs

the following:

 Determines if the actuator is connected

 Determines if WOW is asserted

 Reads the coolant/oil temperature

 Reads the actuator operation mode

 Responds to the open and close limit switches and interrupter when triggered

 Calibrates the position of the actuator door

 Keeps track of the position of the coolant door

 Reports an actuator malfunction

 Writes temperature and operation events into the logs

 Responds to request for actuator information

 Checks in with the Watchdog Manager

3.1.4.1 Actuator Library

The Actuator Library provides an interface in the form of function handles for the Coolant and

Oil Actuator Controller services to implement. These function handles are called by the Actuator

Library when there is a change in the physical actuators. Table 4 below lists the interface

provided by the Actuator Library.

Function Handle Name Description

ActuatorConnectHandle Called when an actuator is connected

AcutatorDisconnectHandle Called when an actuator is disconnected

ActuatorOperationModeChangeHandle Called when there is a change in the operation mode

of the actuator (manual neutral, manual open,

manual close, auto)

ActuatorDoorActuationHandle Called when the open/close coil is energized

ActuatorInterrupterTriggerHandle Called when the interrupter is triggered

ActuatorLimitTriggerHandle Called when a limit switch is hit

ActuatorErrorHandle Called when an actuator malfunction occurs.

ActuatorMoveChangeHandle Called when an actuator has changed its movement

ActuatorWOWConnectHandle Called when an actuator has a new WOW connect

status

Table 4: Actuator Library interface description

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 22 of 47

3.1.4.2 Controller

Both the Oil and Coolant actuators are controlled by independent control algorithms that are

based on the same principles. They each have their own set of parameters and variables for

managing their actuators.

The software mimics the original control system designed for the P51 Mustang with an

additional feature to modulate the operating temperature to a chosen set point.

Here is described how the control system mimics the original control system.

For each door position there is an upper and lower temperature threshold. The controller keeps

track of which door position the door is currently at. Periodically, at the loop polling interval,

the controller compares the current temperature of the fluid to the thresholds for the current

door position. If the temperature of the fluid being controlled exceeds the upper threshold,

then the door is opened to the next door position. If the temperature is below the lower

threshold and the temperature is not rising quickly, then the door is closed to the previous

position.Note the check for temperature rising quickly is an additional software check that is not

present in the original design. This helps reduce the door movements and temperature spikes

during takeoff.

During flight the door will open / close to the point where the energy dumped by the radiator

approximately equals the energy input by the engine. Since the door positions are discrete,

most of the time this balance point will be between two door positions. The thresholds

associated with these two door positions will determine the control band for the temperature.

Changes to the operating conditions, such as engine power and ambient air temperature, will

impact the energy equation, which ultimately determines which door positions will balance the

equation. These operating conditions are dynamic during any particular flight and change

through the seasons and local climate conditions.

In software, these thresholds are stored in tables specialized for coolant, Table 5, and oil, Table

6. The active tables are indexed by the door position. The values for the tables were derived

from data extracted from the service manual for the P51 relating to calibrating the actuators

combined with additional assumptions; that the threshold are equally spaced and that the

difference between the upper and lower thresholds for a particular door position is fixed at 1.59

C for coolant and 2.50 C for oil. This allows for a control band between two door positions of

about 1.2 C for coolant and 2.0 C for oil.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 23 of 47

Interrupter

Count

When

temperature

goes lower

than this

move to next

lower range

When

temperature

exceeds this

move to next

higher range

31 115.30 116.89

30 114.91 116.50

29 114.51 116.11

28 114.12 115.71

27 113.73 115.32

26 113.33 114.93

25 112.94 114.53

24 112.55 114.14

23 112.15 113.75

22 111.76 113.35

21 111.37 112.96

20 110.97 112.57

19 110.58 112.17

18 110.19 111.78

17 109.79 111.39

16 109.40 110.99

15 109.01 110.60

14 108.61 110.21

13 108.22 109.81

12 107.83 109.42

11 107.43 109.03

10 107.04 108.63

9 106.65 108.24

8 106.25 107.85

7 105.86 107.45

6 105.47 107.06

5 105.07 106.67

4 104.68 106.27

3 104.29 105.88

2 103.89 105.49

1 103.50 105.09

0 103.11 104.70
 Table 5 - Coolant Thermal Control Table

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 24 of 47

Interrupter

Count

When

temperature

goes lower

than this

move to next

lower range

When

temperature

exceeds this

move to next

higher range

23 83.00 85.50

22 82.50 85.00

21 82.00 84.50

20 81.50 84.00

19 81.00 83.50

18 80.50 83.00

17 80.00 82.50

16 79.50 82.00

15 79.00 81.50

14 78.50 81.00

13 78.00 80.50

12 77.50 80.00

11 77.00 79.50

10 76.50 79.00

9 76.00 78.50

8 75.50 78.00

7 75.00 77.50

6 74.50 77.00

5 74.00 76.50

4 73.50 76.00

3 73.00 75.50

2 72.50 75.00

1 72.00 74.50

0 71.50 74.00
 Table 6 - Oil Thermal Control Table

The primary benefit of using this control mechanism is that it minimizes the differences from the

original design. The original design takes into account the delays in the system and allows the

system to respond quickly to changes in the energy equation.

The energy equation is balanced based on the door position, but the temperature is controlled

by the thresholds in the table.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 25 of 47

In the original design the temperature thresholds could be adjusted by up to about 5 C by

adjusting a setscrew. In software this can be accomplished by adding an offset to the table. And

because it is software, this offset can be dynamically adjusted during the flight.

The offset applied to the table is limited to make sure that:

 the set point does not go beyond the table

 the door will be fully open if the temperature approaches the maximum operating

temperature (120 C for coolant, 95 C for oil)

The offset is set to the minimum value that can be applied while the WOW signal is asserted.

This pre-biases the offset for the takeoff condition when the energy input to the system is

typically running at or near maximum power. While WOW is asserted and Auto mode is active,

the doors will be commanded to open until the limit switch is reached.

When WOW is de-asserted the offset will start adjusting based on the PID loop starting at this

minimum value, initially calling for maximum cooling.The output of a discrete-time PID

controller monitoring the error between the current temperature and the set point is used to

adjust the offset that is applied to the table. A PID controller was chosen because of the

following reasons:

 Proportional gain to drive the system to the desired temperature

 Integral gain to eliminate steady-state error

 Differential gain to respond to quick changes in system

 Simple control system to implement in discrete-time

The following assumptions are made about the control system:

 The coolant and oil cooling systems have negligible effects on each other

 Changes in the plant (the physical system in control terminology), are a lot slower (at

least x10) than the update rate of the controller

 Hold and sample time can be ignored because the temperature sensor device and

controller react a lot faster (at least x10) than the changes in the plant

The reduced control system based on the above assumptions is shown below in Figure 7.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 26 of 47

P(s)C[z]
-

r[k] e[k] y(t)+

Continuous Time

Discrete Time

u(t)

r[k] = Discrete Reference Signal
e[k] = Discrete Error Signal
C[z] = Digital Controller
u[k] = Discrete Plant Input Signal
u(t) = Plant Input Signal (position in revolution)
P(s) = Plant
y(t) = Output Signal (temperature)

u[k]

Figure 7: Controller block diagram

The discrete PID controller is represented as a difference equation that is implemented in

software. The difference equation is show below in Equation 1:

𝑢[𝑘] = 𝐾𝑝 ∗ 𝑒[𝑘] + 𝐾𝑖 ∗ ∑ 𝑒[𝑘] + 𝐾𝑑 ∗𝑘
𝑖=0 (𝑒[𝑘] − 𝑒[𝑘 − 1])

where Kp = proportional gain

Ki = integral gain

Kd = integral gain

u[k] = input to the plant at time k

e[k] = error at time k

Equation 1: Discrete PID controller difference equation

In addition to applying the difference equation above, the output of the controller is also

applied through a hysteresis block which is used to prevent the controller from adjusting the

offset when the system is nearly stable and operating at a temperature near the set point.

The update frequency was chosen to be a little faster than the fastest door movement rate to

allow the controller to move the doors at the maximum rate. The maximum theoretical rate of

door movements is approximately 2 Hz. Setting the loop update rate to 3 Hz ensures that the

control loop has been evaluated at least once before the door movement completes so that a

determination can be made whether the door should continue to move or not when the

interrupter pulse is received.

The controller parameters are determined first by using a simulation of the system and further

tuned during test flights.

The integral term (I) is limited so that its contribution will be less than or equal to half the

magnitude of the hysteresis block.

When operating near equilibrium we can assume that the contribution for the differential term

(D) is close to zero.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 27 of 47

Therefore, assuming the system is near equilibrium, as long as the contribution from the

proportional term (P) remains less than half the magnitude of the hysteresis block (H), then the

offset will not be adjusted.

Through experimentation and analysis we determined that maintaining a relationship, described

below, between the P and H settings based on the control table control band size helps to

prevent extra door movements and provide a very predictable temperature control band during

flight.

For coolant, the table control band is 1.2 C between two adjacent door positions. Setting the

hysteresis band to be 0.8 C bigger will create a 2.0 C band of temperatures where the offset is

not adjusted. The door will move when the measured temperature exceeds 0.6 C from the set

point. The temperature can continue to move up to 1.0 C away from the set point before the

table offset will start to be adjusted. This allows time for the system to respond to the door

position change, so that it can stabilize between two door positions.

For oil, the table control band is 2.0 C between two adjacent door positions. Setting the

hysteresis band to be 0.8 C bigger will create a 2.8 C band of temperatures where the offset is

not adjusted.

Equation relating H and P for coolant:

𝐻 = (1.2 + 0.8) ∗ 𝑃

Equation relating H and P for oil:

𝐻 = (2.0 + 0.8) ∗ 𝑃

The P, I, and D gains may need to be adjusted to account for differences between airplane

configurations, such as radiator efficiency, engine power, or other physical properties that affect

system responsiveness. Therefore these parameters are configurable through the maintenance

interface.

Setting the proportional term to 0 will activate the classic algorithm that will use a fixed table

that approximates the original electro-mechanical control system.

3.1.4.3 Event Messages

The Coolant and Oil Actuator Controller services responds to the event messages listed in Table

7 below.

Event Name Event Generation Source

READ_STATE CLI

READ_TEMP CLI

READ_DOOR_POS CLI

READ_OP_MODE CLI

READ_LIMIT_DIR CLI

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 28 of 47

READ_CTRL_PARAM CLI

WRITE_CTRL_PARAM_P_GAIN Communication Manager

WRITE_CTRL_PARAM_I_GAIN Communication Manager

WRITE_CTRL_PARAM_D_GAIN Communication Manager

WRITE_CTRL_PARAM_HYSTERESIS Communication Manager

WRITE_CTRL_PARAM_SET_POINT Communication Manager

WRITE_CTRL_PARAM_PRE_BIAS Communicaton Manager

WRITE_CTRL_LOOP_INTERVAL Communication Manager

START_BLE_UPDATE CLI

STOP_BLE_UPDATE CLI

START_CTRL_LOOP System Manager

STOP_CTRL_LOOP System Manager

MOVE CLI

ACTUATOR_CONNECT Actuator Library Callback

ACTUATOR_DISCONNECT Actuator Library Callback

OP_MODE_CHANGE Actuator Library Callback

DOOR_ACTUATION Actuator Library Callback

INTERRUPTER_TRIG Actuator Library Callback

SET_ACTUATOR_ALARM Actuator Library Callback

CLEAR_ACTUATOR_ALARM Actuator Library Callback

START_CALIBRATION System Manager

Table 7: Actuator Controller event messages

3.1.5 Event Logger

The event logger service is in charge of the following:

 Write system events to external flash

 Read logs from the external flash

 Formats and un-formats the logs to and from the external flash

 Keeps track of the next location to write the logs

 Checks in with the Watchdog Manager

The event logger uses the log flash library to perform the reads and writes to the flash.

3.1.5.1 Log Flash Library

The log flash library provides the functionality to read and write to the external flash. It

abstracts the underlying logic of interacting with the specific flash device. It provides the

following functions:

 Write byte(s)

 Read byte(s)

 Erase the whole flash

3.1.5.2 Event Messages

The Event Logger responds to the event messages listed in Table 8 below.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 29 of 47

Event Event Generation Source

SYSTEM_START System Manager

SYSTEM_ENGINE_ON System Manager

SYSTEM_ENGINE_OFF System Manager

SYSTEM_RESET System Manager

SYSTEM_ALARM System Manager

SYSTEM_MCU_UID_1 System Manager

SYSTEM_MCU_UID_2 System Manager

SYSTEM_MCU_UID_3 System Manager

CTRL_LOOP_INTERVAL System Manager

WOW_SETTING System Manager

OIL_TEMP Oil Actuator Controller

OIL_ACTUATION Oil Actuator Controller

OIL_POS_UPDATE Oil Actuator Controller

OIL_POS_CORRECTION Oil Actuator Controller

OIL_OP_MODE Oil Actuator Controller

OIL_LIMIT_TRIG Oil Actuator Controller

OIL_SET_POINT Oil Actuator Controller

OIL_CTRL_PARAM_P_GAIN Oil Actuator Controller

OIL_CTRL_PARAM_I_GAIN Oil Actuator Controller

OIL_CTRL_PARAM_D_GAIN Oil Actuator Controller

OIL_CTRL_PARAM_HYSTERESIS Oil Actuator Controller

OIL_CTRL_VALUE_ERROR Oil Actuator Controller

OIL_CTRL_VALUE_OUTPUT Oil Actuator Controller

OIL_CTRL_VALUE_OFFSET Oil Actuator Controller

OIL_CTRL_ALARM Oil Actuator Controller

COOLANT_TEMP Coolant Actuator Controller

COOLANT _ACTUATION Coolant Actuator Controller

COOLANT _POS_UPDATE Coolant Actuator Controller

COOLANT _POS_CORRECTION Coolant Actuator Controller

COOLANT _OP_MODE Coolant Actuator Controller

COOLANT _LIMIT_TRIG Coolant Actuator Controller

COOLANT _SET_POINT Coolant Actuator Controller

COOLANT _CTRL_PARAM_P_GAIN Coolant Actuator Controller

COOLANT _CTRL_PARAM_I_GAIN Coolant Actuator Controller

COOLANT _CTRL_PARAM_D_GAIN Coolant Actuator Controller

COOLANT _CTRL_PARAM_HYSTERESIS Coolant Actuator Controller

COOLANT_CTRL_VALUE_ERROR Coolant Actuator Controller

COOLANT_CTRL_VALUE_OUTPUT Coolant Actuator Controller

COOLANT_CTRL_VALUE_OFFSET Coolant Actuator Controller

COOLANT _CTRL_ALARM Coolant Actuator Controller

MOBILE_CONNECT Communication Manager

MOBILE_DISCONNECT Communication Manager

MOBILE_TIMESTAMP Communication Manager

MOBILE_READ_LOG Communication Manager

MOBILE_UPDATE_FW Communication Manager

READ_LOGS Communication Manager

CLEAR_LOGS Communication Manager

READ_PROPERTY CLI

Table 8: Event Logger event messages

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 30 of 47

3.1.6 Watchdog Manager

The Watchdog Manager is responsible for the following:

 Kicking the internal watchdog timer

 Book keeping of services checking in

Timing for the Watchdog Manager is a hard requirement. The Watchdog Manager must kick the

watchdog peripheral at the set interval otherwise the device will reset.

On each cycle that the Watchdog Manager executes, it determines whether it should kick the

watchdog based on when services have last checked in with it. This is done by keeping track of a

service’s last check in-time. If the time difference between the current time and the service’s

last check-in time exceeds the service’s set time limit, the Watchdog Manager will stop kicking

the watchdog and the system will reset. Table 9 below illustrates the table that the Watchdog

Manager bookkeeps.

Service Last Check-in [ticks] Check-in Time Limit [ms]

System Manager 0 150

Communication Manager 0 150

Actuator Controller (Coolant) 0 150

Actuator Controller (Oil) 0 150

Event Logger 0 370000

Command Line Interface 0 10000

Test Alarm Lights 0 4000

Debug Manager 0 150

Table 9: Watchdog Manager check-in table

Each thread has access to this table directly in order to minimize latency of a service checking in

with the Watchdog Manager. The check-in times and watchdog timeout are set such that the

time limit is greater than 100 ms, which is the time between watchdog kicks.

3.1.7 Command Line Interface

The Command Line Interface (CLI) service is responsible for the following:

 Providing information about and from the different services to the developer

 Running unit and system tests on the system

As a debugging and testing service, the CLI sends event messages to services while imitating

another service. For example, the CLI can imitate the Oil Actuator Controller and send event

logging information to the Event Logger service. This is useful because the CLI can then check

the response of the Event Logger (ex. request for its logging content) so that it can compare the

response with an expected value. By doing this, the CLI is used to perform system level testing

for the different services.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 31 of 47

3.1.7.1 Event Messages

This section lists the different event message the CLI will listen to. Because the CLI imitates other
services, the event messages that it will listen to is a combination of all the events from the
services it imitates.

3.1.8 Debug Logger

The Debug Logger service is responsible for serializing messages to be printed to the debug

console. It serializes messages through the use of the message queue. All other services use the

Debug Logger in order to print debug messages, useful during development. Instead of a queue

of event messages, the debug logger contains a queue of the messages that it writes in the

order in which the messages are received.

If the queue is full, the debug manager will increase a counter that keeps track of the number of

missed messages. A message will then be sent to the debug console with the number of

messages that have been missed.

3.2 Middleware Layer

The middleware layer contains hardware agnostic software modules which are used by the

application. This section describes the modules in this layer.

3.2.1 CMSIS-RTOS and Free-RTOS

The application software interfaces with the CMSIS-RTOS API. CMSIS-RTOS is a vendor-

independent hardware abstraction layer for the Cortex-M processor series. The underlying RTOS

is Free-RTOS v9.0.0 with the default configurations that the STM32CubeMX application defines.

3.2.2 STM32Cube USB Host Library Module

The controller only acts as the host on the USB interface for this application. As such, only the

USB host library is selected as part of the STM32CubeMX setup. The STM32Cube USB host

library module is organized into two main components: the USB host core and the USB host

class drivers. Figure 8 below is taken from the STM32Cube USB Host Library User Manual

UM1720 user manual which shows the USB host library architecture.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 32 of 47

Figure 8: USB host library architecture

The USB host library provides two APIs for the application layer: the Core APIs and the Class

APIs. The Core APIs are used to enable basic USB functionality such as initializing the USB host

stack, enumerating the USB device, and registering the class of USB devices. The Class APIs

provide functionality to communicate with specific USB device classes.

The only class of USB devices the controller communicates with at the moment is the

Communication Device Class (CDC). Accordingly, only the CDC files are used for the application.

More information about the STM32Cube USB Host library can be found in the STM32Cube USB

Host Library User Manual UM1720 document.

3.3 Hardware Abstraction Layer (HAL)

The hardware abstraction layer is provided by STM through the STM32CubeMX application. It

provides wrappers and convenience functions to the lower level driver code so that application

code can be separated from the underlying hardware. The HAL provides three operation modes

(polling, interrupt, and DMA) for applicable peripherals. Table 10 below lists the modes of

operation for the applicable peripherals for this application.

Peripheral Operation Mode Comments

GPIO Normal and Interrupt  Interrupt mode is used for

peripherals such as limit switch

and interrupter inputs.

 Pins are normally read and set

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 33 of 47

otherwise

UART Receive DMA  DMA with idle line detect

UART Transmit DMA

ADC DMA  Continuous multichannel

conversion with DMA

QSPI Polling  Polling because HAL layer

interrupts causes qspi to hang

sometime

Table 10: Peripheral operation mode

3.4 STM32 Driver Layer and STM32Fx Startup and Configuration Code

STM32CubeMX provides low level drivers which the HAL builds on top of. The application can

also use these low level drivers directly as well. In addition the STM32CubeMX application

generates the startup and configuration code for the project. This includes setting up the

appropriate pin multiplexing and clock tree for the system. Firmware version 1.17.0 was used.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 34 of 47

4 System-Level Considerations

This section specifies system design considerations that are made based on certain constraints

in the system.

4.1 Internal Flash Partitioning

The internal flash memory on the STM32F412 microcontroller is 512Kbytes. The memory

partitioning is show in Table 11 below.

Sector Size Field

Sector 0 16 KBytes Bootloader

Sector 1 16 KBytes Reserved

Sector 2 16 KBytes Control Block

Sector 3 16 KBytes Configuration

Sector 4 64 KBytes Reserved

Sector 5 128 KBytes Image A

Sector 6 128 KBytes Reserved

Sector 7 128 KBytes Image B

 Table 11: Internal flash partition

The configuration sector contains configurable data that must persist between restarts of the

system. The configuration registers are listed in Table 12 below.

Configuration Type Offset Size in bytes Description

Header 0x000 4 MAJOR.MINOR.PATCH

MAJOR is at the least significant

byte.

 0x1FC 4 Crc32

System 0x200 2 Flight Number

 0x202 2 Reserved

 0x204 4 Temperature ADC filter window

 0x208 4 Control loop interval

 0x20C 8 Flight registration

 0x214 4 WOW Setting

 0x3FC 4 Crc32

Oil 0x400 4 Oil controller proportional gain

 0x404 4 Oil controller integral gain

 0x408 4 Oil controller differential gain

 0x40C 4 Oil controller hysteresis

 0x410 2 Oil controller set point

 0x412 2 Oil controller pre bias

 0x5FC 4 Crc32

Coolant 0x600 4 Coolant controller proportional

gain

 0x604 4 Coolant controller integral gain

 0x608 4 Coolant controller differential

gain

 0x60C 4 Coolant controller hysteresis

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 35 of 47

 0x610 2 Coolant controller set point

 0x612 2 Coolant controller pre bias

 0x7FC 4 Crc32

Table 12: Configuration data

Each field will be discussed in detail in Section 5.

4.2 External Flash Partitioning

The external flash used is the Cypress Semiconductor S25FL256LAGMFN000. This component

has 256Mbit (32 Mbyte) of flash memory and is byte programmable. The log records are fixed

length records with the following information: flight number, system time, event type, data,

crc16. The flight number field is incremented whenever the engine is started. A flight is defined

as the period between an engine on and engine off signal. An engine signal that is on, when the

controller starts up, will indicate that the controller has restarted and the flight number should

be kept.

The system time field is defined as the number of seconds the controller has been awake for.

This time is started at 0 every time the controller starts up and will count up to 1677215 seconds

which is equivalent to around 4660 hours. The actual flight time is not recorded in the logs.

However, it can be calculated as the difference between the system time of an engine on and

off event. A log record is shown in Table 13 below.

 Event Type System Time Data Value Flight Number Crc16

Size in Byte(s) 1 3 4 2 2

Table 13: Generic event log structure

The crc code is crc of the preceding bytes in the log record. The log records are page aligned to

the flash’s page boundary. In the case of the selected flash, page alignment is on every 256

bytes. The total number of records that can be stored in the flash is:

𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 = 131072 𝑝𝑎𝑔𝑒𝑠 ∗ ⌊
256 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑝𝑎𝑔𝑒

12 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑟𝑒𝑐𝑜𝑟𝑑
⌋ = 2752512 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

The majority of the logs come from the regular temperature and actuator offset logs. The

requirement for logging temperature is one measurement every 5 seconds. Taking into account

the TBO of the engines to be around 600 hours, the total number of temperature and actuator

offset measurements can be calculated

𝑜𝑓 𝑡𝑒𝑚𝑝 & 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝑜𝑓𝑓𝑠𝑒𝑡 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 = 2 ∗ [2 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟𝑠 ∗ 600ℎ𝑟 ∗
3600𝑠

1ℎ𝑟
∗

1 𝑟𝑒𝑎𝑑𝑖𝑛𝑔

5𝑠
] =

1728000 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠

The other logs are based on changes in the actuator, firmware changes, or controller resets

which are mostly infrequent changes. This should occur less than once every 5 second with a

reasonable controller. Keeping this into account, there is still roughly a third of the flash space

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 36 of 47

left. Keeping into account the TBO safety factor already calculated, the size of the flash selected

is sufficient.

4.2.1 Event Log Format

The format for each type of event log is shown in Table 14 below.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 37 of 47

Component Event Name Event

Description

Event Type

Code

Value Value Description

Reserved - - 0x00 – 0x0F - -

System System start - 0x10 Uint32

MAJOR.MINOR.PATCH

MAJOR is at the least

significant byte.

Firmware version

MAJOR and MINOR

are 1 byte while

PATCH is 2 bytes

Engine On - 0x11 Uint32 Time from epoch (only

going forward)

Engine Off - 0x12 Uint32 Time from epoch (only

going forward)

Reset - 0x13 Uint8

0x00 – Normal power up

0x01 – FW update

0x02 – Watchdog tripped

Reason for reset

Alert - 0x14 Uint8

0x00 – None

0x01 – Controller high

temperature

0x02 – Watchdog tripped

0x03 – Power good tripped

-

MCU UID 1 - 0x15 Uint32 1
st
 32-bits of the MCU

UID

MCU UID 2 - 0x16 Uint32 2
nd

 32-bits of the MCU

UID

MCU UID 3 - 0x17 Uint32 3
rd

 32-bits of the MCU

UID

CTRL_LOOP_INTERVAL 0x19 Uint32 Min: 100

Max: 2000

Reserved - 0x1A – 0x1F - -

Oil Temperature Update - 0x20 Int16 Value is measured as

1/100
th

 of a degree (°C)

Door actuation Logged when

either the

open or close

0x21 Uint8

0x00 – Actuator close coil

energized

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 38 of 47

coils are

energized.

0x01 – Actuator open coil

energized

0x02 – Actuator close coil de-

energized

0x03 – Actuator open coil de-

energized

Door position update - 0x22 UInt8 Measured as revolutions

from closed position.

Door position correction Logged when

an end limit

is hit and

door position

differs than

the end limit

position.

0x23 Int8 Measured in number of

revolutions that must be

compensated to match

the real position.

Operation mode change - 0x24 Uint8

0x00 – Manual neutral

0x01 – Manual open

0x02 – Manual close

0x03 – Auto

0x04 - WOW

-

Limit switch hit - 0x25 Uint8

0x00 – Close limit hit

0x01 – Open limit hit

-

Set point change Logged when

the

temperature

set point is

changed

0x26 Int16 Value is measured as

1/100
th

 of a degree (°C)

Controller P Gain - 0x27 Int32_t Value of proportional

gain

Controller I Gain - 0x28 Int32_t Value of integral gain

Controller D Gain
-

0x29 Int32_t Value of differential

gain

Controller Hysteresis - 0x2A Int32_t Value of hysteresis

Alert - 0x2B Uint8 -

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 39 of 47

0x00 – None

0x01 – High temperature

0x02 – Interrupter missed

0x03 – Open and close limit

hit

0x04 – Disconnected

Controller Error - 0x2C Float (4 bytes) Value of error

Controller Output - 0x2D Float (4 bytes) Value of output

Pre-bias - 0x2E Int16 Value is measured as

1/100
th

 of a degree (°C)

Controller Offset - 0x2F Float (4 bytes) Value of offset

Coolant Temperature Update - 0x30 Int16 Value is measured as

1/100
th

 of a degree (°C)

Door actuation Logged when

either the

open or close

coils are

energized.

0x31 Uint8

0x00 – Actuator close coil

energized

0x01 – Actuator open coil

energized

0x02 – Actuator close coil de-

energized

0x03 – Actuator open coil de-

energized

Door position update - 0x32 Uint8 Measured as revolutions

from closed position.

Door position correction Logged when

an end limit

is hit and

door position

differs than

the end limit

position.

0x33 Int8 Measured in number of

revolutions that must be

compensated to match

the real position.

Operation mode change - 0x34 Uint8

0x00 – Manual neutral

0x01 – Manual open

0x02 – Manual close

-

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 40 of 47

0x03 – Auto

0x04 - WOW

Limit switch hit - 0x35 Uint8

0x00 – Close limit hit

0x01 – Open limit hit

-

Set point change Logged when

the

temperature

set point is

changed

0x36 Int16 Value is measured as

1/100
th

 of a degree (°C)

Controller P Gain - 0x37 Int32_t Value of proportional

gain

Controller I Gain - 0x38 Int32_t Value of integral gain

Controller D Gain
-

0x39 Int32_t Value of differential

gain

Controller Hysteresis - 0x3A Int32_t Value of hysteresis

Alert - 0x3B Uint8

0x00 – None

0x01 – High temperature

0x02 – Interrupter missed

0x03 – Open and close limit

hit

0x04 – Disconnected

-

Controller Error - 0x3C Float (4 bytes) Value of error

Controller Output - 0x3D Float (4 bytes) Value of output

Pre-bias - 0x3E Int16 Value is measured as

1/100
th

 of a degree (°C)

Controller Offset - 0x3F Float (4 bytes) Value of offset

Mobile

Application

Connection - 0x40 Uint32 Uuid of the connected

device (generated from

the app)

Disconnection - 0x41 Uint32 Uuid of the connected

device (generated from

the app)

Timestamp - 0x42 Uint32 Time from epoch in

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 41 of 47

seconds (only going

forward)

Read logs - 0x43 Uint16 Flight number of the

requested logs

Update FW - 0x44 Uint32

MAJOR.MINOR.PATCH

Firmware version

MAJOR and MINOR

are 1 byte while

PATCH is 2 bytes

Reserved - 0x45 – 0x4F - -

Reserved - - 0x50 – 0xFF - -

Table 14: List of event log structure

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 42 of 47

5 System Operation

The section covers the system operation of the software.

5.1 Maintenance Mode

Maintenance mode is entered when the following conditions are met:

 The engine pressure signal is low, indicating that the engine is off

 The mobile application is connected to the firmware

Maintenance mode puts the controller in a state where the following operations can be

performed via the mobile application:

 Update oil and coolant temperature set points

 Update oil and coolant control loop parameters

 Calibrate oil and coolant actuator position

 Update firmware

 Retrieve log data from non-volatile flash

When the engine pressure signal goes high, the mobile app is locked out from being able to

perform the above operations.

5.2 Bootloader

The bootloader is the first point of entry into the software after a reset or power on of the

system. The bootloader performs the following operations:

 Check control block information

 Determine FW application to boot from

 Determine if FW update needs to occur

 Update pending FW

 Jump to FW application

 Kick HW watchdog

When the bootloader is started, it first reads the state of the status byte in the control block to

determine what it should do. The control block contains the information shown in Table 15.

Byte Purpose Possible Values Meaning

0 Area use for

validation

0x0F If any other value, image A and B are in an

unknown state

1 Status 0xFF

0xF0

0x00

New image downloaded

Error in new image

Original State – alternate image not downloaded

2 Boot image 0xFF

0xF0

Image A

Image B

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 43 of 47

3 Reserved Reserved byte

4:7 Crc Crc32 of bytes 0-3

 Table 15: Control block information

On a normal boot-up, the status flag should be set to its original state, and the bootloader will

jump to the FW application indicated by the boot image byte and start execution from there.

If the status flag indicates that a new image has been downloaded, the bootloader will check the

firmware application control header of the selected image. The firmware control header is

shown in Table 16 below.

Byte Purpose Meaning

0:3 Version Version of the FW (MAJOR.MINOR.PATCH)
MAJOR and MINOR are 1 byte while PATCH is 2 bytes.
MAJOR is at the least significant byte.

4:7 Length in bytes Length of the image data in bytes

8 Image Type Image A (0xFF) or Image B(0xF0)

9:11 Reserved

12:15 CRC CRC32 of the image data

16:511 Reserved
Table 16: FW application control header

A CRC will be applied to the firmware to make sure that the executing code is valid. If it is, the

bootloader will jump to the beginning of the firmware and start execution. Otherwise the

bootloader will execute the previous firmware.

Before jumping to the application code, the bootloader will set the state of the status byte to

0xF0 to indicate an error. This error status code should be cleared by the executing application

at an appropriate point to indicate that it is error free. This is so that if the executing application

is bad, the bootloader can revert to loading the old application.

5.3 Over-The-Air (OTA) Firmware Update Process

The OTA firmware update process is initiated by the mobile application. The mobile application

sends the firmware to the Communication Manager which will then dispatch the information to

the System Manager for writing into internal flash.

Upon receiving the blocks of firmware from the Communication Manager, the Communication

Manager will send the packets of data to the System Manager. The System Manager will then

write the data into internal flash. Once the entirety of the firmware is written into the internal

flash, the System Manager initiates a CRC check on the firmware. If the CRC check is invalid, the

System Manager communicates the error to the Communication Manager and the mobile

application will be notified. If the CRC check is valid, the System Manager updates the control

block information and resets the system.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 44 of 47

5.3.1 Firmware Versioning

The firmware versioning will comply with Semantic Versioning. This gives a version number in

the form of MAJOR.MINOR.PATCH which is used by the firmware and mobile app to check for

compatibility. The MAJOR, MINOR, and PATCH values represent:

 MAJOR version bump indicates an incompatible API change with previous versions of

the mobile app

 MINOR version bump indicates backwards compatible features with previous versions of

the mobile app

 PATCH version bump indicates backwards compatible bug fixes with previous versions of

the mobile app

A MAJOR version bump will occur in this application when the API between the controller and

mobile device changes. This also includes any changes in the event log format.

The firmware is not expected to be updated often during the lifetime of the device. Therefore

the version number will be represented as three bytes with each byte representing either the

MAJOR, MINOR, or PATCH number.

5.4 Door Position Calibration

A door position calibration is needed for controller to determine the position of the air door

positions. The door positions are calibrated based on the operation and considerations below:

 The doors and the software will be calibrated and the door position will be remembered

in non-volatile memory. The calibration process should be performed when:

o A controller is installed or replaced

o An actuator is installed or replaced

 The controller will always record the door position in non-volatile memory as indicated

by the interrupter switch

 The controller will rely on the stored position of the door for calibration on startup

 The controller PID loop is not dependent on the absolute door position. The controller

uses the error in the desired and actual temperature to either open the door more, or

close it more.

 If the controller encounters an end-stop limit switch earlier than expected (fully closed

or fully open door) due to an error in stored position, the internal state is automatically

updated to the true position of the door. In this way the controller is self-correcting and

the position of the door stays accurate over time.

 In the worst case scenario, the stored value could differ from the actual value if during

shutdown while in automatic mode the door was operating and the interrupter was

almost triggered and the power shutoff. The interrupter may register a revolution, but

the controller was powered down and as such did not record the interrupter event.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 45 of 47

5.5 Controller Fault and Alert Behavior

The response of the controller based on certain fault and alert conditions are listed below in

Table 17.

Event Turn on Coolant Alert

Light

Turn on Oil Alert Light

Coolant temperature exceeds maximum temperature x

Oil temperature exceeds maximum temperature x

Coolant actuator fails x

Oil actuator fails x

Controller malfunctions x x

Table 17: Controller fault and alert responses

5.6 Mobile Application Communication

The controller and the mobile application communicate with one another through BLE. The

controller exposes certain services and characteristics that the mobile application will subscribe

to. The communication protocol between the two devices can be found in the Mobile SDD.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 46 of 47

6 Tools

This section describes the tools that are used during the development process.

6.1 STM32CubeMX

The STM32CubeMX tool is a graphical interface application supplied by STM which aids

developers in generating code for setting the desired pin muxing, peripheral drivers, hardware

abstraction layer interfaces, and a real time operating system. It is part of the STMCube™

initiative originated by STMicroelectronics to ease developers in writing controller specific

drivers and setup code so that more time can be spent in writing the actual application.

6.2 System Workbench for STM32

The System Workbench for STM32 is a free Eclipse IDE that integrates a complete code editor,

compilation tools, and remote-debugging tools for STM32 devices. The System Workbench will

primarily be used as a debugger for the firmware but may also be used to build and flash the

firmware onto the microcontroller.

6.3 Software Development Environment

The software development environment is set up using a Linux operating system running the

latest Ubuntu 16.04 LTS distribution. The Linux OS is running inside a virtual machine (VM) from

the Windows host operating system. A VM is useful in containing development packages so that

the same development environment can be shared easily between developers.

6.4 STM32F412G Evaluation Board

The STM32F412G evaluation board is used during the implementation phase of development.

This board contains the same processor and package type as the one that is used in the final

design. This means that very minimal software work is required to have the code that is

developed on the evaluation board to work on the final board.

WNG01: Actuator Controls – Firmware SDD September 11, 2019, Rev 1.7

NUVATION | Proprietary & Confidential Page 47 of 47

7 Licenses

Software License

STM33CubeF4 Open-source BSD

FreeRTOS v8.0.0 GPL 2

CMSIS Apache 2.0

BGAPI™ and BGLib™ Free license

USB host library MCD-ST Liberty SW License Agreement V2

