

BOLTING TOOLS

Enerpac Bolting Tools

ENERPAC.

Enerpac's Bolting Solutions caters to the complete bolting work-flow, ensuring joint integrity in a variety of applications throughout industry:

Joint Assembly

From simple pipe alignment to complex joint positioning of large structural assemblies, our comprehensive line of joint assembly products range from hydraulic and mechanical alignment tools to PLC-controlled multi-point positioning systems.

Controlled Tightening

Enerpac offers a variety of controlled tightening options to best meet the requirements of your application, ranging from manual torque multipliers, to pneumatic torque wrenches, as well as a comprehensive range of hydraulic torque wrenches and interconnectable bolt tensioning tools.

Joint Separation

Enerpac also provides hydraulic nut splitters and a variety of mechanical and hydraulic spreading tools for joint separation during inspection, maintenance and decommissioning operations.

High-quality bolting solutions from the brand you can trust. See how Enerpac can make your bolting work-flow more accurate, safer and efficient.

ENERPAC 2

Bolting Integrity Software

Visit www.enerpac.com to access our free on-line bolting software application and obtain information on tool selection, bolt load calculations and tool pressure settings.

A combined application data sheet and joint completion report is also available.

All information in this catalog can be changed due to product improvements without prior notice.

Table of Contents

Tool Type and Function	Series	Page
Bolting Solutions		2-3

Torque Tools, Controlled Tightening	& Loosening	4-44
Manual Torque Multipliers	E	4-5
Hydraulic Square Drive Wrenches	S	6-9
Heavy-Duty Impact Sockets	BSH	10
Back-Up Spanners	BUS	11
Hydraulic Hexagon Wrenches	W	12-25
UltraSlim Stepped Width Cassettes	W-SL	22-23
Low Profile Hexagon Wrenches	RSL, RLP	26-35
Square Drive Hydraulic Wrenches	RSL, RSQ	36-37
Pneumatic Torque Wrenches	PTW	38-39, 42
Electric Torque Wrenches	ETW	40-42
Mobile Calibration Stand	MCS	44
Torque Wrench Pumps		45-61
Selection Matrix Pumps - Wrenches		45

Selection Matrix Pumps - Wrenches				
XC	46-47			
E	48-49			
TQ	50-51			
ZU4T	52-55			
ZE	56-57			
ZA4T	58-61			
	XC E TQ ZU4T ZE ZA4T			

Tensioning Tools & Pumps		62-82
HydraMax [®] Bolt Tensioners	HM	62-65
Topside Bolt Tensioners	GT	66-67
Aquajack Subsea Tensioners	EAJ	68-69
Power Generation Bolt Tensioners	PGT	70-71
Foundation Bolt Tensioners	FTR	72-73
Foundation Bolt Tensioners	FTE	74-75
Multi Stud Tensioners	MST	76
Hydraulic Nuts	HN	77
Ultra-High Pressure Hand Pump	HPT	78
Hoses, Couplers	HT, B	78
Electric Tensioning Pumps	ZUTP	80-81
Ultra-High Pressure Air Pump	ATP	82

Tool Type and Function	Series	Page					
Joint Assembly, Positioning and Separation							
Portable Hydraulic Tool Box Sets	SC, SL, SR, SW	83					
Cylinder-Pump Sets	SC	84-85					
Hydraulic Oil, Torque Wrench Hoses	HF, THQ	86					
Wedgie and Spread Cylinders	A, WR	87					
Flange Alignment Tools	ATM	88-89					
Flange Spreading Wedges	FSC, FSH, FSM	90-91					
Hydraulic Nut Cutters	NC	92-93					
Hydraulic Nut Splitters	NS	94-95					
Mechanical Flange Face Tool	FF	96-97					

Equalizer Flange Maintenance Tools	98-113	
Flange Spreading, Pin-Type	MG	99
Flange Spreading, Wedge-Type	SWi	100-103
Flange Spreading, Pulling-Type	SG	104-107
Valve Change-Out Tools	VC	108-109
Wind Tower Flange Alignment Tools	TFA	110
Flange Pulling Tools	FC	111
Hand Pumps and Hoses	HP	112
Training and Demonstration		113

Mirage Portable Machining Products

114-115

Bolting Yellow Pages		116-129
Introduction		116
Bolting Application Worksheet		117
Safety Instructions		118-119
Bolting Theory		120-121
Torque Tightening		122-123
Tensioning		124-125
Bolting Integrity Software	BSOFIN	126-127
Hexagon Nut and Bolt Sizes		128
Key to Measurement		129
Bolting Service, Goal Zero, Safety		130
Enerpac Academy, Maintenance Pro	gram	131
About Enerpac & Enerpac On-Line		132

Bolting Solutions

ENERPAC. 🖉

ATM-Series Flange Alignment Tools

E-Series, Manual Torque Multipliers

S, W and RSL-Series Torque Wrenches

PTW & ETW-Series Torque Wrenches

Misaligned Joints

Joints must be pulled together and correctly aligned prior to tightening. Current methods of manipulation tend to be dangerous and involve a high degree of manual lifting using slings, hooks and lifting gear. These methods can damage joint components, are time consuming in setup and disassembly, operational time and the amount of manpower required.

Controlled Tightening when External Power is Unavailable

Applications are often located where external power sources to drive air or electric-powered tools are unavailable but controlled bolting is required, typically at values higher than an operator can generate using manual wrenches.

Solution: Flange Alignment Tools

The Enerpac ATM-Series Flange Alignment Tools are developed to rectify twist and rotational misalignment without additional stress in pipelines.

Hydraulic cylinders, jacks and lifting wedges can also be used to assist in positioning and aligning.

Solution: Manual Torque Multipliers

Enerpac E-series manual torque multipliers offer a range of output torques from manual inputs that can easily be achieved by an operator, providing accurate, efficient torque multiplication for make-up or break-out of joint fasteners.

Industrial

Controlled tightening of a large range of fasteners including those in hard to reach areas, which require highly accurate torquing solutions.

Solution: Hydraulic Torque Wrenches

Professional tools for industrial applications. Truly versatile tools which utilize standard Impact Sockets, optional direct Allen[®] Key Drives or Interchangeable cassettes to provide controlled tightening of multiple-sized fasteners per tool. Optional accessories further extend the application range of these products.

General Applications

Applications that require controlled bolting, feature a high volume of fastenings.

Solution: Pneumatic Torque Wrenches

Enerpac Pneumatic Torque Wrenches are fast, easy to use and highly accurate. The ETW-Series electric torque wrenches are particularly well suited for complex jobs, which demand precision and traceability.

Bolting Solutions

Controlled Bolting

Increasing Health and Safety, Environmental and Productivity requirements demand even and parallel joint closure to ensure a sound assembly, especially on pressure containing vessels. This often requires the simultaneous tightening of multiple fasteners.

Frozen or Corroded Nuts

Often nuts are difficult to remove, while loosening using tightening tools is possible it generally requires larger equipment and is time consuming.

The use of cutting torches or hammers and chisels can cause damage to the joint components, requires significantly longer setup and operational time and can present a potential safety risk.

Joint Separation

Separation of stubborn joints for inspection and maintenance particularly those fitted with ring grooves or those with external forces acting on them are often difficult to separate. The use of hammers and wedges, chain blocks and lever bars can damage joint components and present a potential safety risk.

Solution: Hydraulic Bolt Tensioners

Enerpac Bolt Tensioners can achieve accurate preload in single or multiple fastener applications simultaneously, without inducing rotational twist or contending with the uncertainties of friction and lubrication.

Power Generation Bolt Tensioners (PGT) and Foundation Bolt Tensioners (FTE, FTR) are also available.

Solution: Hydraulic Nut Cutters

Nut splitting with the NC Series Nut Cutters or NS Series Nut Splitters is the safest method. It takes less time and avoids costly damage to joint components. The head design fitted with heavy-duty chisels permits the splitting of nuts on a wide variety of applications.

Solution: Flange Spreading Tools

Enerpac Wedge Spreaders and Flange Spreading Tools offer controlled separation without bending or risk of slipping from the joint. The SWi and SG-Series flange spreading tools can also be used.

HM, GT, EAJ-Series, Bolt Tensioners

NC and NS-Series, Nut Cutters

FSC, FSH, FSM-Series, Wedge Spreaders

Pumps and Accessories

A wide range of Pumps and Accessories are available including: Manual, Air and Electrically-operated pump units, hoses, gauges, manifolds and fittings.

Enerpac Bolting and Software Solutions

A wide range of Pumps and Accessories are available including: Manual, Air and Electrically-operated pump units, hoses, gauges, manifolds and fittings.

Pumps and Accessories Bolting Integrity Software

E-Series, Manual Torque Multipliers

ENERPAC. 🖉

▼ Shown from left to right: **E291, E393, E494**

• High-efficiency planetary gear sets achieve high output torque from low input torque

- Most models operator protected by anti-backlash device
- Multiplier output accuracy ± 5% of input torque
- Reversible, tighten or loosen bolts
- Reaction bar or reaction plate type
- Angle-of-turn protractor standard on E300 series models
- Reaction plate models offer increased versatility with reaction point locations
- E300 and E400 series replaceable shear drives provide overload protection of internal power train
- One replacement shear drive is included with each E300 and E400-Series models

Accurate, Efficient Torque Multiplication

When accurate make-up or break-out of stubborn fasteners requires high torque

Typical Torque Multiplier Applications

- Locomotives
- Power plants
- Pulp and paper mills
- Refineries
- Chemical plants
- Mining and construction
- Off-road equipment
- Shipyards
- Cranes

Torque Multiplier Type	Nomina Out	Model Number	
	(Ft.lbs)		
	750	1020	E290PLUS
Reaction	1000	1358	E291
Bar	1200	1627	E391
Multiplier	2200	2983	E392
	3200	4340	E393
	2200	2983	E492
Reaction	3200	4339	E493
Multiplier	5000	67879	E494
wuupnei	8000	10,846	E495

Manual Torque Multipliers

Manual Torque Multipliers

Enerpac manual torque multipliers provide efficient torque multiplication in

Selector Pawl

Shearable Square Drive

Designed to provide overload

protection on E300- and E400-series

when excess input torque is applied.

Internal shear pin prevents tool from

multiplier power train by shearing

Models with anti-backlash protection have directional selector pawls. Set the pawl

for clockwise or counterclockwise rotation.

wide clearance applications and when external power sources are not available.

Manual torque multipliers are used in most industrial, construction, and equipment maintenance applications. Hydraulic torque wrenches are better suited for tight tolerance, flange and repetitious bolting applications.

Use Reaction Bar Models:

- where space is limited
- where multiple reaction points are available
- · when portability is desirable

Use Reaction Plate Models:

- above 3200 Ft-lbs, output torque
- · on flanges and applications where neighboring bolt or nut is available to react against
- when extreme reaction forces are generated

Series

Ε

Nominal Output Torque: 750-8000 Ft.lbs

Torque Ratio: 3.3:1-52:1

Multiplier Output Ratio Accuracy: ± 5 %

CAUTION!

Never use impact type air tools for power driving torque multipliers. Torque multiplier drive train damage will occur.

Reaction Bar Type 1)

Angle-of-Turn Protractor

include an angle-of-turn protractor (scale) to tighten

fasteners using a "torque

degrees of rotation.

E391, E392 and E393 models

turn" method. Allows accurate

measuring a specific number of

Reaction Plate Type¹⁾

BSH-Series Sockets

Heavy-Duty Impact Sockets for power driven torquing equipment.

> 10 Page:

Back-Up Spanners

Hands free tool to be used to stop back nut from turning during make up or break out. Two hex sizes in one tool.

Input 1	Forque	Torque Ratio	que Input Output Male tio Female Square Drive			MaleOver-Anti-DriveloadBack-			[Dimens	ions (ir	1)		Wt.	Model Number
			Square Drive	60	Replaceable Shear Drive	Protec- tion	lash								
(Ft.lbs)	(Nm)		(in)	(in)	Model No.			D	н	L	L1	L2	R	(lbs)	
227	309	3.3 : 1	1⁄2	3⁄4	-	No	No	2.8	3.3	8.5	-	-	-	4.0	E290PLUS
303	411	3.3 : 1	1⁄2	3⁄4	-	No	No	2.8	3.3	17.4	-	_	-	5.5	E291
200	271	6:1	1⁄2	3⁄4	E391SDK	Yes	No	3.9	4.0	19.6	-	-	-	9.0	E391
162	220	13.6 : 1	1⁄2	1	E392SDK	Yes	Yes	4.1	5.7	19.6	-	-	-	15.2	E392
173	235	20.25 : 1	1⁄2	1	E393SDK	Yes	Yes	4.1	6.5	19.6	-	_	-	18.3	E393
162	219	13.6 : 1	1⁄2	1	E392SDK	Yes	Yes	4.9	5.5	14.0	5.5	4.9	1.3	17.2	E492
173	234	18.5 : 1	1⁄2	1	E393SDK	Yes	Yes	4.9	6.4	14.0	5.5	4.9	1.3	19.6	E493
189	256	26.5 : 1	1⁄2	1½	E494SDK	Yes	Yes	5.6	8.7	14.9	7.0	3.5	1.7	34.0	E494
208	154	52:1	1/2	11/2	E495SDK	Yes	Yes	5.8	10.7	15.2	7.0	3.5	1.9	50.3	E495

¹⁾ E200 and E400-series do not have an Angle-of-Turn Protractor (scale).

User must verify manual torque wrench accuracy prior to use to ensure accurate final output torque.

S-Series, Square Drive Hydraulic Torque Wrenches **ENERPAC**

Shown: S3000PX

Safety and Performance

- Compact, high-strength uni-body construction provides a small operating radius without sacrificing endurance
- 35° rotation angle and rapid return stroke for fast operation
- Tough manifold design with added safety feature for enhanced operator safety

Simplicity

- 360° click-on reaction arm with guick release lever provides easier handling, even when wearing gloves
- Includes robust handle which mounts on both sides of tool for extra maneuverability
- Push button square drive release for quickly reversing the square drive for tightening or loosening

Versatility

 Available with optional enhanced tilt and swivel TSP300 manifold for horizontal and vertical maneuverability, with greater durability*

Accuracy

- Constant torque output provides accuracy of +/-3% across full stroke
- Optional Angle-of-Turn Indicator provides measurement of rotation

* TSP300 is designed for X-Edition tools only, and is not compatible with standard edition tools. For replacement components for existing tools, refer to repair sheet on www.enerpac.com

Setting New Standards in Safety, Simplicity and Performance

All X-Edition tools are CE-ATEX declared, factory calibrated and are shipped complete with a calibration certificate.

9

 Intern
 Intern<

Bolting Integrity Software

Enerpac Bolting Integrity Software Solutions play a key role in implementing and managing an Integrity Program for bolted connections. The software offers Tool selection, Bolt Load calculations and Tool pressure settings, as well as, a combined Application Data Sheet and Joint Completion Report. Custom Joint information can also be entered.

S-Series, X-Edition, Square Drive Torque Wrenches

Standard are (1) (2) (6) (8). Other items are optional. **Select the Right** S Torque 250% Series Choose your Enerpac Torque Wrench using (X-Edition) the untightening rule of thumb: Loosening torque equals about 250% of tightening torque. Nominal Torque at 10,000 psi: 26,150 Ft.lbs Drive Unit (6) Standard Reaction Arm (2) Angled Positioning Handle (7) Allen® Drive (3) Straight Positioning Handle (8) Square Drive Square Drive Range: (9) Short Reaction Arm (4) Pro Series Swivel 3/4-21/2 inch (5) Reaction Tube Extension (ii) Extended Reaction Arm *TORQUE WRENCH SELECTION (based on socket size range) Nose Radius: Socket Size Range (mm) .98-2.52 inch 100 115 19 37 50 62 155 25,830 35.000 Maximum Operating Pressure: S25000X Torque Range (Ft.lbs) **Torque Range** (Nm) 10,000 psi 22,140 30.000 18,450 25.000 **Back-Up Spanners** 14,760 20.000 Hands free tool to be used to stop back nut from 11,070 15.000 S11000X turning during make up or break out. 7380 10.000 \$6000X 3690 5000 S3000X Page: 11 S1500X 37/8 3/4 17/16 2 27/16 45/8 61/8 ▼ The rigid steel design of the S-Series torque Socket Size Range (inch) wrenches provides durability, reliability and safety. Use only Heavy-Duty Impact Sockets For power driven torqueing equipment, according to ISO2725 and ISO1174; DIN 3129 and DIN 3121 or ASME-B107.2/1995. Page: 10 н Nominal Minimum Angle-of-Wt. **Square Drive** Torque Dimensions (in) Turn Torque Torque Wrench at at Size Model No. Model No. Model No.* 10,000 psi / 10,000 psi / (optional) (included (in) 690 bar 690 bar with wrench) В С D E F G н A (Ft.lbs) (Nm) (Ft.lbs) (Nm) (lbs) 1440 3⁄4" 144 SD15-012 AOT15 S1500X 2.56 4.25 3.82 5.35 1952 195 1.54 0.98 2.76 5.08 7.0 3225 323 1" SD30-100 AOT30 S3000X 1.89 4373 438 3.07 5.31 5.04 6.81 1.30 3.54 6.34 12.3 6150 8338 615 11/2" SD60-108 AOT60 S6000X 2.17 3.62 6.65 6.18 7.56 1.57 4.33 7.40 20.2 834 2.83 11,175 15.151 1,118 1516 11/2" SD110-108 AOT110 S11000X 4.49 7.76 7.48 8.98 1.95 5.24 9.02 34.7

* To order a S-series (X-Edition) wrench fitted with the TSP swivel, insert a "P" prior to the "X" in the tool designation. e.g., S1500PX.

S25000X

3.50

5.63 9.69

9.61

11.30 2.52

AOT250

26,150 35.455 2,615

3545

21/2"

SD250-208

7.17 11.61

70.8

SDA-Series, Allen[®] Drives

ENERPAC. 2

1) Drive Unit

- Angled Positioning Handle
- (3) Straight Positioning Handle (optional)
- Pro Series Swivel (optional)
- (5) Reaction Tube Extension (optional)
- 6 Standard Reaction Arm
- ⑦ Allen® Drive (optional)
- (8) Square Drive
- (9) Short Reaction Arm (optional)
- (1) Extended Reaction Arm (optional)

Nominal Torque at 10,000 psi: For 26,150 Ft.lbs. S Hexagon Size Allen® Drive: S 1/2-21/4 in. (14-85 mm) K-E

TORQUE	(OPTIONAL A	LLEN [®] DRIVES,		(OPTIONAL A	LLEN® DRIVES,		SHORT REACTION		
WRENCH		IMP	ERIAL			ME	TRIC		ARM ALLEN®	I FOR DRIVES	
12											
Model	Hexagon	Maximum	Model	Dim.	Hexagon	Maximum	Model	Dim.	Model	Dimer	nsions
Number	Size	Torque	Number	B1	Size	Torque	Number	D1	Number	(11	n)
	(in)	(Ft.Lbs)		(in)	(mm)	(Ft.lbs)		(in)		C1	H1
	1/2	355	SDA15-008	2.6	14	475	SDA15-14	2.60			
045001	5⁄8	690	SDA15-010	2.6	17	850	SDA15-17	2.68			
S1500X	3⁄4	1195	SDA15-012	2.8	19	1185	SDA15-19	2.76	SRA15X	2.66	2.56
(1440 Ft-105)	7⁄8	1400	SDA15-014	2.9	22	1400	SDA15-22	2.87			
	1	1400	SDA15-100	3.0	24	1400	SDA15-24	2.91			
	5/8	690	SDA30-010	3.0	17	850	SDA30-17	3.03			
	3/4	1195	SDA30-012	3.1	19	1185	SDA30-19	3.11			
	7/8	1895	SDA30-014	3.3	22	1835	SDA30-22	3.23			
S3000X (3225 Ft-lbs)	1	2825	SDA30-100	3.4	24	2385	SDA30-24	3.31	SRA30X	3.15	2.91
	1 1/8	3200	SDA30-102	3.5	27	3200	SDA30-27	3.35			
	11/4	3200	SDA30-104	3.5	30	3200	SDA30-30	3.43			
	-	-	-	-	32	3200	SDA30-32	3.46			
	5⁄8	690	SDA60-010	3.3	17	850	SDA60-17	3.39		3.60 3.	
	3/4	1195	SDA60-012	3.5	19	1185	SDA60-19	3.46			
000001/	7⁄8	1895	SDA60-014	3.6	22	1835	SDA60-22	3.58			
S6000X	1	2825	SDA60-100	3.7	24	2385	SDA60-24	3.66	SRA60X		3.50
(8050 Ft-105)	1 1/8	4025	SDA60-102	3.8	27	3395	SDA60-27	3.70			
	11/4	5520	SDA60-104	3.9	30	4655	SDA60-30	3.78			
	-	-	-	_	32	5650	SDA60-32	3.82			
	11/4	5520	SDA110-104	4.5	30	4655	SDA110-30	4.41			
	1%	7345	SDA110-106	4.6	32	5650	SDA110-32	4.49			
S11000X	1½	9535	SDA110-108	4.6	36	8040	SDA110-36	4.61	SRA110X	5.02	4.17
(11,175 Ft-IDS)	1 %	11,000	SDA110-110	4.8	41	11,000	SDA110-41	4.76			
	1¾	11,000	SDA110-112	4.9	46	11,000	SDA110-46	5.00			
	1½	9535	SDA250-108	5.5	36	8040	SDA250-36	5.51			
	15/8	12,120	SDA250-110	5.7	41	11.880	SDA250-41	5.67			
	13/4	15.135	SDA250-112	5.8	46	16.775	SDA250-46	5.83			
	11 %	18,620	SDA250-114	5.9	50	21,545	SDA250-50	5.94			
S25000X	2	22,595	SDA250-200	5.9	55	26,150	SDA250-55	6.06			
(26,150 Ft-lbs)	21/4	26,150	SDA250-204	6.0	60	26,150	SDA250-60	6.22	SRA250X	6.24	5.31
	-	-	-	-	65	26,150	SDA250-65	6.34			
	-	-	-	—	70	26,150	SDA250-70	6.46			
	_	_	-	_	75	26,150	SDA250-75	6.61			
	-	-	-	-	85	26,150	SDA250-85	6.89			

Accessories for S-Series, X-Edition Torque Wrenches

TSP-Series, **Pro Series** Swivels

- Robust interlocking design
- 360° X-axis and 160° Y-axis rotation
- Increases tool fit in restricted access areas
- Simplifies hose placement
- Includes male and female couplers

Torque Wrench Model Number	Model Number	Maximum Pressure (psi)	Wt. (lbs)
S1500X, S3000X, S6000X, S11000X, S25000X	TSP300*	10,000	0.44

Note: To order a S-series (X-Edition) wrench fitted with the TSP swivel, insert a "P" prior to the "X" in the tool designation, e.g., **S1500PX.** * TSP300 is designed for X-Edition tools only, and is not compatible with standard edition tools. For replacement components for existing tools, refer to repair sheet on www.enerpac.com

RTEX-Series, Reaction Tube Extensions

Full torque ratedIncreases tool fit in restricted access areas

Torque Wrench Model Number	Model Number		Wt.					
		A	A B C D					
S1500X	RTE15X	27.80	5.98	25.04	2.28	10.1		
S3000X	RTE30X	28.86	5.98	25.47	2.24	12.1		
S6000X	RTE60X	29.41	5.98	25.94	2.56	17.0		
S11000X	RTE110X	30.28	5.98	26.57	2.99	24.7		
S25000X	RTE250X	32.01	5.98	26.97	3.94	38.1		

* Weights indicated are for the accessories only and do not include the wrench.

SRSX-Series, Extended Reaction Arms

SRSX Series

• Lightweight interchangeable design

Wrench Model	Max. Torque	Model Number	Dimensions (in)							
	(Ft-lbs)		А	В	С	D	E	(lbs)*		
	1328	SRS151X	3.70	3.39	5.00	0.94	1.34	1.8		
S1500X	1210	SRS152X	4.69	3.82	5.43	0.94	1.34	2.2		
	1131	SRS153X	5.71	4.29	5.83	0.94	1.34	2.6		
	2890	SRS301X	4.37	4.17	6.61	1.34	1.89	3.5		
S3000X	2739	SRS302X	5.39	4.61	7.17	1.34	1.89	4.4		
	2638	SRS303X	6.38	5.20	7.80	1.34	1.89	5.5		
	5784	SRS601X	5.43	5.04	7.56	1.54	2.44	5.1		
S6000X	5501	SRS602X	6.42	5.67	8.15	1.54	2.44	6.0		
	5295	SRS603X	7.44	6.26	8.74	1.54	2.44	7.5		
	10,812	SRS1101X	5.87	6.18	9.13	1.81	2.99	9.7		
S11000X	10,300	SRS1102X	6.89	6.77	9.72	1.81	2.99	11.2		
	9883	SRS1103X	7.87	7.36	10.28	1.81	2.99	12.8		
	24,751	SRS2501X	7.20	8.23	11.61	1.97	3.94	16.8		
S25000X	23,652	SRS2502X	8.19	8.74	12.20	1.97	3.94	18.5		
	22,694	SRS2503X	9.17	9.29	12.83	1.97	3.94	22.0		

* Weights indicated are for the accessories only and do not include the wrench.

• Heavy-duty impact sockets

• Supplied with "Pin and Ring"

METRIC SOCKETS										
3/4" Squar	e Drive	1" Square	e Drive	1 1/2" Squa	re Drive	2 1/2" Squa	are Drive			
Model Number	A/F (mm)	Model Number	A/F (mm)	Model Number	A/F (mm)	Model Number	A/F (mm)			
BSH7519	19	BSH1019	19	BSH1536	36	BSH2565	65			
BSH7524	24	BSH1024	24	BSH15163	41	BSH2570	70			
BSH7527	27	BSH1027	27	BSH1546	46	BSH2575	75			
BSH7530	30	BSH1030	30	BSH1550	50	BSH2580	80			
BSH7532	32	BSH1032	32	BSH1555	55	BSH2585	85			
BSH7536	36	BSH1036	36	BSH1560	60	BSH2590	90			
BSH75163	41	BSH10163	41	BSH1565	65	BSH2595	95			
BSH7546	46	BSH1046	46	BSH1570	70	BSH25100	100			
BSH7550	50	BSH1050	50	BSH1575	75	BSH25105	105			
-	-	BSH1055	55	BSH1580	80	BSH25110	110			
-	-	BSH1060	60	BSH1585	85	BSH25115	115			
-	-	BSH1065	65	BSH1590	90	BSH25120	120			
-	-	BSH1070	70	BSH1595	95	BSH25125	125			
-	-	BSH1075	75	BSH15100	100	BSH25135	135			
-	-	BSH1080	80	BSH15105	105	BSH25140	140			
-	-	BSH1085	85	BSH15110	110	BSH25145	145			
-	-	BSH1090	90	BSH15115	115	BSH25150	150			
-	-	BSH1095	95	-	-	BSH25155	155			
-	-	BSH10100	100	-	-	-	-			

BSH Series	
Hexagon Sizes: 3/4 - 61/8 in Sele Chor Torq Loosening torqu of tightening torqu	19 - 155 mm Ext the Right Torque ose your Enerpac ue Wrench using the ghtening rule of thumb: the equals about 250% que. Page: 123
	Hexagon Bolt and Nut Sizes See the table of hexagon sizes of bolts, nuts and related thread diameters. Page: 128

ENERPAC.

		IMPERIAL SOCKETS												
3/4" Squar	re Drive		1" Squ	are Drive			1 1/2" Sq	uare Drive			2 1/2" Sc	quare Drive		
Model	A/F	Model	A/F	Model	A/F	Model	A/F	Model	A/F	Model	A/F	Model	A/F	
Number	(in)	Number	(in)	Number	(in)	Number	(in)	Number	(in)	Number	(in)	Number	(in)	
BSH7519	3⁄4"	BSH1019	3⁄4"	BSH10231	2 5⁄16"	BSH15144	1 1⁄16"	BSH15281	2 ¹³ ⁄16"	BSH25244	2 1/16"	BSH25419	4 ¾16"	
BSH75088	7⁄8"	BSH10088	7⁄8"	BSH10238	2 ¾"	BSH1538	1 1⁄2"	BSH15288	2 1⁄8"	BSH25250	2 1⁄2"	BSH25425	4 1⁄4"	
BSH75094	¹⁵ ⁄16"	BSH10094	¹⁵ ⁄16"	BSH10244	2 7⁄16"	BSH15156	1 %16"	BSH1575	2 ¹⁵ ⁄16"	BSH2565	2 %16"	BSH25110	4 5⁄16"	
BSH7527	1 ½16"	BSH1027	1 ½16"	BSH10250	2 1⁄2"	BSH15163	1 5⁄8"	BSH15300	3"	BSH25263	2 5⁄8"	BSH25438	4 ¾"	
BSH7530	1 ¾16"	BSH1030	1 ³⁄16"	BSH1065	2 %16"	BSH1543	1 ¹¹ ⁄16"	BSH15306	3 1⁄16"	BSH25269	2 ¹¹ ⁄16"	BSH25450	4 1⁄2"	
BSH75125	1 ¼"	BSH10125	1 ¼"	BSH10263	2 5⁄8"	BSH15175	1 3⁄4"	BSH15313	3 1⁄8"	BSH2570	2 3⁄4"	BSH25463	4 5⁄8"	
BSH75131	1 5⁄16"	BSH10131	1 5⁄16"	BSH10269	2 ¹¹ ⁄16"	BSH1546	1 ¹³ ⁄16"	BSH15319	3 ³⁄16"	BSH25281	2 ¹³ ⁄16"	BSH25475	4 3⁄4"	
BSH7535	1 ¾"	BSH1035	1 ¾"	BSH1070	2 3⁄4"	BSH15188	1 7⁄8"	BSH15325	3 1⁄4"	BSH25288	2 1⁄8"	BSH25488	4 7⁄8"	
BSH75144	1 7⁄16"	BSH10144	1 7⁄16"	BSH10281	2 ¹³ ⁄16"	BSH15194	1 ¹⁵ ⁄16"	BSH15338	3 3⁄8"	BSH2575	2 ¹⁵ ⁄16"	BSH25500	5"	
BSH7538	1 1⁄2"	BSH1038	1 ½"	BSH10288	2 1⁄8"	BSH15200	2"	BSH15350	3 1⁄2"	BSH25300	3"	BSH25513	5 1⁄8"	
BSH75156	1 %16"	BSH10156	1 %16"	BSH1075	2 ¹⁵ ⁄16	BSH15206	2 1⁄16"	BSH15363	3 5⁄8"	BSH25306	3 1⁄16"	BSH25519	5 ¾16"	
BSH75163	1 5⁄8"	BSH10163	1 5⁄8"	BSH10300	3"	BSH15213	2 1⁄8"	BSH1595	3 3⁄4"	BSH25313	3 1⁄8"	BSH25525	5 1⁄4"	
BSH7543	1 ¹¹ ⁄16"	BSH1043	1 ¹ ¹ / ₁₆ "	BSH10306	3 1⁄16"	BSH15219	2 ³⁄16"	BSH15388	3 7⁄8"	BSH25319	3 ³⁄16"	BSH25538	5 ¾"	
BSH75175	1 ¾"	BSH10175	1 3⁄4"	BSH10313	3 1⁄8"	BSH15225	2 1⁄4"	BSH15100	3 ¹⁵ ⁄16"	BSH25325	3 1⁄4"	BSH25140	5 1⁄2"	
BSH7546	1 ¹³ ⁄16"	BSH1046	1 ¹³ ⁄16"	BSH10319	3 ³⁄16"	BSH15231	2 5⁄16"	BSH15400	4"	BSH25338	3 3⁄8"	BSH25575	5 ¾"	
BSH75188	1 1⁄8"	BSH10188	1 1⁄8"	BSH10325	3 1⁄4"	BSH15238	2 3⁄8"	BSH15105	4 1⁄8"	BSH25350	3 1⁄2"	BSH25150	5 1⁄8"	
BSH75194	1 ¹⁵ ⁄16"	BSH10194	1 ¹⁵ ⁄16"	BSH10338	3 3⁄8"	BSH15244	2 1⁄16"	BSH15419	4 ³⁄16"	BSH25363	3 5⁄8"	BSH25600	6"	
BSH75200	2"	BSH10200	2"	BSH10350	3 1⁄2"	BSH15250	2 1⁄2"	BSH15425	4 1⁄4"	BSH2595	3 ¾"	BSH25613	6 1⁄8"	
-	-	BSH10206	2 1⁄16"	BSH10363	3 5⁄8"	BSH1565	2 %16"	BSH15110	4 5⁄16"	BSH25388	3 1⁄8"	-	-	
-	_	BSH10213	2 1⁄8"	BSH1095	3 3⁄4"	BSH15263	2 5⁄8"	BSH15438	4 3⁄8"	BSH25100	3 ¹⁵ ⁄16"	-	-	
-	-	BSH10219	2 ³ ⁄16"	BSH10388	3 1⁄8"	BSH15269	2 ¹¹ ⁄16"	BSH15450	4 1⁄2"	BSH25400	4"	-	-	
-	-	BSH10225	2 1⁄4"	-	-	BSH1570	2 3⁄4"	BSH15463	4 5⁄8"	BSH25105	4 1⁄8"	-	-	

Back-Up Spanner for Torque Wrenches

▼ BUS03 Back-Up Spanner (safety cable not shown)

- Hands free solution improves operator safety
- Eliminates the need for flogging spanners
- Speeds up the bolting process
- Includes safety cable with quick-connect carabiner's, stainless steel tethers and secure Allen-key fixings
- Won't lock on during operations
- Spark free
- Two hexagon sizes in one tool

Hexagon Sizes (A/F) Model Dimensions (in) Wt. Number S1 to S2 S1 to S2 Α В С D (in) (mm) (lb) **BUS 01** 11/16 - 11/4" 27 - 32 2.0 3.9 0.6 M8 0.7 17/16 - 15/8" 4.7 **BUS 02** 0.6 36 - 41 2.4 M8 0.9 113/16 - 2" 46 - 50 **BUS 03** 3.0 5.6 0.8 M8 1.3 23/16 - 23/8" **BUS 04** 3.5 0.8 M12 55 - 60 6.5 1.8 2%16 - 23/4" **BUS 05** 65 - 70 3.9 7.5 1.0 M16 2.2 215/16 - 31/8" M16 75 - 80 **BUS 06** 4.4 8.4 1.0 2.9 31/2 - 37/8" **BUS 07** 5.3 10.1 1.2 M20 4.9 _ 41/4 - 45/8" **BUS 08** 6.4 12.2 1.2 M20 7.3 _ _ 85 - 90 **BUS 09** 5.0 9.5 1.0 M16 3.7 33/4 - 315/16" 95 - 100 **BUS 10** 5.4 10.5 1.2 M20 5.1 41/8 - 415/16" **BUS11** 105 - 110 6.0 11.7 1.2 M20 6.8 _ 115 - 120 **BUS 12** 6.5 12.6 1.2 M20 7.7

▼ SELECTION CHART BACK-UP SPANNERS

BUS Series

Hexagon Sizes (A/F): **1¹/16 - 4¹⁵/16 inch**

Hexagon Sizes (A/F): **27 - 120 mm**

E

Back-Up Spanners

Hands free operation of a hydraulic torque wrench improves the safety of the operator significantly.

Enerpac Back-Up Spanners are a handsfree tool that eliminates the need to use a flogging spanner as a backing tool.

The Back-Up Spanners have been specifically designed to prevent them from locking onto the nut during bolt torqueing operations. They fit easily onto the back nut and prevent it from turning during make up or break out of bolted joints.

Enerpac Back-Up Spanners to be used to stop back nut from turning during make up or break out.

Low-Profile Hexagon Wrenches

W4206X cassette with W4000X drive unit (Rear model shows optional straight handle)

Safety and Performance

- Superior strength to size ratio provides easy access to difficult to reach applications without sacrificing endurance
- 30° rotation angle and rapid return stroke provide fast operation
- Tough manifold design with added safety feature for enhanced operator safety

Simplicity

- Fast release drive unit enables rapid exchange of cassettes, no tools required and no pins to lose
- Includes robust handles which mount on both sides, and the tops of cassettes to allow for extra maneuverability
- Quick and easy disassembly for maintenance without special tools

Versatility

- Available with optional enhanced tilt and swivel TSP300 manifold for horizontal and vertical maneuverability, with greater durability*
- X-Edition drive units, cassettes and most accessories are compatible with standard edition tools*
- Drive unit compatible with UltraSlim and WCR-Series cassettes

Accuracy

 Constant torque output provides accuracy of +/-3% across full stroke

Setting New Standards in Safety, Simplicity and Performance

Two Handle Styles

Robust angled positioning handles come standard with every W-Series (X-Edition) tool. Straight positioning handles designed for

extreme limited access applications are available as accessories.

Compatible W-Series (X-Edition) Wrenches	Angled Positioning Handles (standard)	Straight Positioning Handles (optional)				
W2000X, W4000X	SWH6A	SWH6S				
W8000X, W15000X	SWH10A	SWH10S				
W22000X, W35000X	Supplied with an eyebolt handle (SWH10EA)					

All X-Edition tools are CE-ATEX declared, factory calibrated and are shipped complete with a calibration certificate.

Page:

24

II 2 GD ck T4 CSA/SIRA 15XT072

Bolting Integrity Software

Enerpac Bolting Integrity Software Solutions play a key role in implementing and

managing an Integrity Program for bolted connections. The software offers Tool selection, Bolt Load calculations and Tool pressure settings, as well as, a combined Application Data Sheet and Joint Completion Report. Custom Joint information can also be entered.

^{*} TSP300 is designed for X-Edition tools only, and is not compatible with standard edition tools. For replacement components for existing tools, refer to repair sheet on www.enerpac.com

W-Series, X-Edition Hexagon Wrenches

(1) Hexagon Cassette (2) Drive Unit (3) Angled Positioning Handle (4) Straight Positioning Handle (optional)

Hexagon Cassettes and Reducer Inserts

Full range of interchangeable hexagon cassettes and reducing

inserts provides maximum versatility. Details available at www. enerpac.com

(5) Pro Series Swivel (optional) (6) Extended Reaction Arm (optional) (7) Reducer Insert (optional) (8) Reaction Paddle (optional)

¹⁾See page 8 for table of hexagon sizes of bolts, nuts and related thread diameters.

V SE

31/8 - 61/8

SELECTI	ON CHART								1. A.		- an analysis	
Hexagon	Hexagon Range * Nominal Torque at 10,000 psi			Drive Unit Model Number **	Minir Toro	Minimum Torque		D ges 14-21	Dimension for dimens	s sions G, H	l, and S)	Weight (Drive unit without hexagon cassette)
(in)	14 (mm)	(Ft.lbs)	(Nm)	-	(Ft.lbs)	(Nm)	А	в	(in) C	D	F	(lbs)
11/16 - 23/8	30 - 60	2040	2766	W2000X	204	277	4.29	5.55	5.83	1.26	.79	3.04
15/16 - 33/8	36 - 85	4175	5661	W4000X	418	566	5.35	6.57	7.01	1.61	.79	4.44
1 ⁷ / ₈ - 4 ¹ / ₈	50 - 105	8470	11,484	W8000X	847	1148	6.77	8.07	8.19	2.07	.98	6.59
27/16 - 45/8	65 - 115	15,330	20,785	W15000X	1533	2079	8.15	9.45	9.96	2.48	.79	10.72
2 ¹⁵ /16 - 5 ³ /8	75 - 135	22.500	30.506	W22000X	2250	3050	8.94	10.46	11.68	3.03	1.38	16.98

With in-line reaction foot.

80-155

35,000 47,453

** To order a W-series (X-Edition) wrench fitted with the TSP swivel, insert a "P" prior to the "X" in the tool designation. e.g., W2000PX.

3500

4745

10.54

11.94

13.60

3.57

1.98

ENERPAC 🖉

W35000X

Nominal Torque at 10,000 psi: 35,000 Ft.lbs

Hexagon Range: 11/16 - 61/8 in 30 - 155 mm

Nose Radius:

1.22-4.52 inch

Maximum Operating Pressure: 10,000 psi

These rigid steel wrenches with lowprofile interchangeable hexagon cassettes guarantee durability and maximum versatility in bolting applications.

26.40

W2000X Series Imperial Cassettes & Reducer Inserts ENERPAC.

W4000X Series Imperial Cassettes & Reducer Inserts

Nominal Torque at 10,000 psi: 4175 Ft.Ibs Hexagon Range: 15/16-33/8 inch Maximum Operating Pressure:	W Series (X-Edition)	6
10,000 psi		

Drive Unit Model Number	Hexagon Size	Nose Radius	Dim.	Model Number	Wt.	6		6				
-	S (in)	H (in)	G (in)	65	(lbs)	Hexagon Reducer	Model Number	Hexagon Reducer	Model Number	Hexagon Reducer	Model Number	
	15/16	1.46	2.40	W4105X	8 15	_	_	()		()		
	13/8	1.46	2.40	W4106X	8 15	_	_	_	_	_		
	17/16	1 46	2 40	W4107X	8.15	_	_	_	_	_	_	
	1 ½	1.46	2.40	W4108X	8.31	_	_	_	_	_	_	
	1 %16	1.46	2.40	W4109X	8.22	_	_	-	_	_	_	
	1 5⁄8	1.46	2.40	W4110X	8.15	_	-	_	-	_	-	
	1 ¹¹ ⁄16	1.56	2.52	W4111X	8.43	-	-	_	-	_	-	
	1 ¾	1.56	2.52	W4112X	8.35	-	-	-	-	-	-	
	1 ¹³ ⁄16	1.56	2.52	W4113X	8.25	_		-	-	_	-	
	1 1⁄/8	1.63	2.63	W4114X	8.45	-	-	-	-	_	-	
	1 ¹⁵ ⁄16	1.63	2.63	W4115X	8.39	-	-	-	-	-	-	
	2	1.63	2.63	W4200X	8.28	2 - 1 ⁷ ⁄16	W4200R107	-	-	-		
	2 ¹ / ₁₆	1.73	2.89	W4201X	8.65	-	-	-	-	_	-	
	2 1⁄8	1.73	2.89	W4202X	8.53	_	-	-	-	-	-	
	2 ³ /16	1.73	2.89	W4203X	8.42	23/16 - 15/8	W4203R110	2 ³ ⁄16 - 1 ⁷ ⁄16	W4203R107	2 ³ ⁄16 - 1 ¹ ⁄4	W4203R104	
	2 ¼	1.83	2.78	W4204X	8.73	-	-	-	-	-	-	
	2 5⁄16	1.83	2.78	W4205X	8.61	-	-	-	-	-	-	
×	2 3⁄8	1.83	2.78	W4206X	8.47	2¾ - 2	W4206R200	23/8 - 113/16	W4206R113	2 ³ / ₈ - 1 ⁷ / ₁₆	W4206R107	
8	-	-	-	-	-	23⁄8 - 13⁄8	W4206R106	-	-	_	-	
6	2 ⁷ /16	1.95	3.00	W4207X	8.96	27/16 - 2	W4207R200	-	-	-	-	
Ś	2 ½	1.95	3.00	W4208X	8.86	21⁄2 - 2	W4208R200	21/2 - 113/16	W4208R113	21⁄2 - 21⁄16	W4208R201	
-	2 %16	1.95	3.00	W4209X	8.67	2%16 - 23/16	W4209R203	2%16 - 21/8	W4209R202	-	-	
	-	-	-	-	-	2%16 - 2	W4209R200	2%16 - 1 ¹³ ⁄16	W4209R113	-	-	
	2 ⁵ /8	2.07	3.08	W4210X	9.14	-	-	-	-	_	-	
	2 ¹¹ / ₁₆	2.07	3.08	W4211X	9.03	-	-	-	-	-	-	
	2 ³ /4	2.07	3.08	W4212X	8.84	23/4 - 23/8	W4212R206	23/4 - 23/16	W4212R203	23/4 - 21/8	W4212R202	
	2 ¹³ /16	2.18	3.21	W4213X	9.32	-	-	-	-	-	-	
	21/8	2.18	3.21	W4214X	9.17	-	-	-	-	-	-	
	2 ¹⁵ ⁄16	2.18	3.21	W4215X	8.96	$2^{15/16} - 2^{9/16}$	W4215R209	215/16 - 23/8	W4215R206	215/16 - 23/16	W4215R203	
	-	-	-	-	-	219/16 - 2	W4215R200	-	-	-	-	
	3	2.30	3.29	W4300X	9.51	3 - 2%16	W4300R203	-	-	_	-	
	3 1/16	2.30	3.29	W4301X	9.42	_	-	-	-	-	-	
	3 1/8	2.30	3.29	W4302A	9.10	-	- W/4202D206	31/8 - 29/4	W4302R212	31/8 - 2%16	W4302R209	
	-	_	_	-	-		W4302R200	<u>3¹/8 - 2⁹/16</u>	W4302R203	31/8 - 21/4	W4302R204	
	23/10	2 1 1	-	W4303Y	9.02	J 78 - ∠716	-	578-278	-	378-2	-	
	3 ^{-/16}	2.44	3.37	W4304Y	9.92	_				_		
	35/4	2.44	3.37	W4305X	9.92	_	_	_		_	_	
	3 3/2	2.44	3.37	W4306X	9.02		_	-	_	-	_	
	078	2.74	0.07	114000	0.02	_						

W8000X Series Imperial Cassettes & Reducer Inserts ENERPAC

Nominal Torque at 10,000 psi: 8470 Ft.Ibs	W	1 60
Hexagon Range: 17/8 -41/8 inch	(X-Edition)	Fil
Maximum Operating Pressure: 10,000 psi		0~

Drive Unit Model Number	Hexagon Size	Nose Radius	Dim.	Model Number	Wt.	6	3	(3	6	
A.	S	H	G	62	(11)	Hexagon Reducer	Model Number	Hexagon Reducer	Model Number	Hexagon Reducer	Model Number
	(III) 1 76	(11)	(III)	WOAAAY		(11)		(III)		(11)	
	1 15/10	1.//	3.00	W8114X	17.97	_	-	_	-	_	-
	2	1.77	3.00	XCI IOW	17.09	_	-	_	-	-	-
	21/16	1.77	3.00	W9200A	17.52	_	_		-		_
	21/8	1.89	3 15	W8202X	17.36	_	_	_	_	_	_
	2 ³ / ₁₆	1.89	3 15	W8203X	17.00	_	_	_	_	_	_
	21/4	2.01	3.25	W8204X	17.92	_	_	_	_	_	_
	2 ⁵ /16	2.01	3.25	W8205X	17.76	_	_	_	_	_	_
	2 ³ /8	2.01	3.25	W8206X	17.59	_	_	_	_	_	_
	2 ⁷ /16	2.07	3.38	W8207X	17.65	_	_	-	_	_	_
	2 ½	2.07	3.38	W8208X	17.52	_	_	_	_	_	_
	2 ⁹ /16	2.07	3.38	W8209X	17.29	2%16 - 2	W8209R200		_		_
	2 5⁄8	2.20	3.34	W8210X	17.50	_	_	_	-	_	-
	2 ¹¹ / ₁₆	2.20	3.34	W8211X	17.36	-	_	-	_	-	-
	2 ³ ⁄4	2.20	3.34	W8212X	17.12	2¾ - 2¾	W8212R203		_		-
	2 ¹³ /16	2.28	3.35	W8213X	17.57	_	-	-	-	_	-
	2 ⁷ /8	2.28	3.35	W8214X	17.38	-	-	-	-	-	-
X	2 ¹⁵ /16	2.28	3.35	W8215X	17.11	2 ¹⁵ /16 - 2 ³ /8	W8215R206	215/16 - 23/16	W8215R203	_	-
Ö	3	2.38	3.52	W8300X	17.77	_	-	_	-	_	-
80	3 ¹ / ₁₆	2.38	3.52	W8301X	17.65	-	-	-	-	-	-
>	3 1⁄8	2.38	3.52	W8302X	17.33	31⁄8 - 29⁄16	W8302R209	31⁄8 - 23⁄8	W8302R206	31⁄8 - 23⁄16	W8302R203
	-	-	-	-	-	31⁄8 - 2	W8302R200	-	-	-	-
	3 ³ ⁄16	2.60	3.63	W8303X	18.99	_	-	-	-	-	-
	3 ¼	2.60	3.63	W8304X	18.72	_	-	-	-	-	-
	3 5⁄16	2.60	3.63	W8305X	18.54	-	-	-	-	-	-
	3 ¾	2.60	3.63	W8306X	18.36	-	-	-	-	-	-
	3 7⁄16	2.60	3.63	W8307IX	18.11	-	-	-	-	-	-
	3 ½	2.60	3.63	W8308X	17.81	3½ - 3	W8308R300	31⁄2 - 215⁄16	W8308R215	31⁄2 - 23⁄4	W8308R212
	3 %16	2.91	4.05	W8309X	20.36	-	-	-	-	-	-
	3 5⁄/8	2.91	4.05	W8310X	20.18	-	-	-	-	-	-
	3 ¹¹ / ₁₆	2.91	4.05	W8311X	19.93	-	-	-	-	-	-
	3 ¾	2.91	4.05	W8312X	19.71	3¾ - 31⁄8	W8312R302	33⁄4 - 215⁄16	W8312R215	3¾ - 2¾	W8312R212
	3 ¹³ ⁄16	2.91	4.05	W8313X	19.46	-	-	-	-	-	-
	37⁄8	2.91	4.05	W8314X	19.10	31/8 - 31/8	W8314R302	37/8 - 215/16	W8314R215	-	-
	3 ¹⁵ /16	3.13	4.33	W8315X	20.31	-	-	-	-	-	-
	4	3.13	4.33	W8400X	20.04	-	-	-	-	-	-
	4 ½16	3.13	4.33	W8401IX	19.80	-	-	-	-	-	-
	4 1⁄8	3.13	4.33	W8402X	19.39	-	-	-	-	-	-

W15000X Series Imperial Cassettes & Reducer Inserts

Nominal Torque at 10,000 psi: 15,330 Ft.Ibs Hexagon Range: 2⁷/16-4⁵/8 inch	W Series (X-Edition)	6
Maximum Operating Pressure: 10,000 psi		0

Drive Unit Model Number	Hexagon Size	Nose Radius	Dim.	Model Number	Wt.	(3	(6	•
	S	н	G	65		Hexagon Reducer	Model Number	Hexagon Reducer	Model Number	Hexagon Reducer	Model Number
100	(in)	(in)	(in)	•	(lbs)	(in)		(in)		(in)	
	2 ⁷ /16	2.32	3.49	W15207X	30.72	-	-	-	-	-	-
	2 ½	2.32	3.49	W15208X	30.72	-	-	-	-	-	-
	2 %16	2.32	3.49	W15209X	30.72	-	-	-	-	-	-
	2%	2.32	3.49	W15210X	30.72	-	-	-	-	-	-
	2 ¹ ¹ /16	2.32	3.49	W15211X	30.72	-	-	-	-	-	-
	2 ³ / ₄	2.32	3.49	W15212X	30.72	-	-	-	-	-	-
	2 ¹³ /16	2.44	3.56	W15213X	30.62	-	-	-	-	-	-
	21/8	2.44	3.56	W15214X	30.39	-	-	-	-	-	-
	2 ¹⁵ /16	2.44	3.56	W15215X	30.08	-	-	-	-	-	-
	3	2.54	3.66	W15300X	30.86	3 - 21/8	W15300R202	-	-	-	-
	3 ¹ ⁄16	2.54	3.66	W15301X	30.71	-	-	-	-	-	-
	31/8	2.54	3.66	W15302X	30.34	31/8 - 29/16	W15302R209		-		
	3 ³ ⁄16	2.74	3.80	W15303X	32.38	-	-	-	-	-	-
	31⁄4	2.74	3.80	W15304X	32.07	-	-	-	-	-	-
	3 ⁵ ⁄16	2.74	3.80	W15305X	31.85	-	-	-	-	-	-
	33/8	2.74	3.80	W15306X	31.63	-	-	-	-	-	-
X	3 7⁄16	2.74	3.80	W15307IX	31.32	-	-	-	-	-	-
ŏ	31/2	2.74	3.80	W15308X	30.98	31/2 - 215/16	W15308R215	31/2 - 23/4	W15308R212		-
50	3 %16	2.95	4.01	W15309X	31.70	-	-	-	-	-	-
7	35/8	2.95	4.01	W15310X	31.70	-	-	-	-	-	-
>	3 ¹¹ /16	2.95	4.01	W15311X	31.70	-	-	-	-	-	-
	3 ¾	2.95	4.01	W15312X	31.70	3 ³ ⁄ ₄ - 3 ¹ ⁄ ₈	W15312R302	<u>3³/4 - 2¹⁵/16</u>	W15312R215		-
	3 ¹³ ⁄16	2.95	4.01	W15313X	31.70	_	-	-	-	-	-
	31/8	2.95	4.01	W15314X	31.70	37/8 - 31/8	W15314R302	37/8 - 215/16	W15314R215	-	-
	3 ¹⁵ ⁄16	3.17	4.06	W15315X	34.02	-	-	-	-	-	-
	4	3.17	4.06	W15400X	33.70	-	-	-	-	-	-
	4 ½16	3.17	4.06	W15401IX	33.41	-	-	-	-	-	-
	4 1⁄8	3.17	4.06	W15402X	33.09	41⁄8 - 31⁄2	W15402R308	4 ¹ /8 - 3 ⁵ /16	W15402R305	41⁄8 - 31⁄4	W15402R304
	4 ¾16	3.17	4.06	W15403IX	32.81	-	-	-	-	-	-
	4 ¼	3.17	4.06	W15404X	32.29	4¼ - 3½	W15404R308	4¼ - 31/8	W15404R302	-	-
	4 ⁵ ⁄16	3.44	4.52	W15405X	35.61	-	-	-	-	-	-
	4 ³ / ₈	3.44	4.52	W15406X	35.32	_	-	-	-	-	-
	47/16	3.44	4.52	W15407X	34.99	_	-	-	-	_	-
	41/2	3.44	4.52	W15408IX	34.63	-	-	-	-	-	-
	4 %16	3.44	4.52	W15409IX	34.28	_	-	-	-	-	-
	4 5⁄8	3.44	4.52	W15410IX	33.72	45/8 - 315/16	W15410R315	45% - 37%	W15410R314	45% - 3¾	W15410R312
	-	-	-	-	-	45% - 31/2	W15410R308	-	-	-	-

W22000X Series Imperial Cassettes & Reducer Inserts ENERPAC

Nominal Torque at 10,000 psi: 22,500 Ft.Ibs	W	
Hexagon Range: 2 ¹⁵ /16 - 5 ³ /8 inch	Series (X-Edition)	F
Maximum Operating Pressure: 10,000 psi		0~0

Drive Unit Model Number	Hexagon Size	Nose Radius	Dim.	Model Number	Wt.	6	•	(6	
-3				FL		Hexagon	Model	Hexagon	Model	Hexagon	Model
-	S (ip)	H (in)	G (in)	0	(lba)	Reducer	Number	Reducer	Number	Reducer	Number
	(III) 2 ¹⁵ / ₁₆	2 64	4 02	W22215Y	48 72	(11)		(11)		(11)	_
	3	2.64	4.02	W22213X	48.40	_	-	_	_	_	_
	3 ¹ ⁄16	2.64	4.02	W22301X	48.22	_	_	_	_	_	_
	31/8	2.64	4.02	W22302X	47.78	$3\frac{1}{8} - 2\frac{3}{8}$	W22302B206	$3^{1/8} - 2^{3/16}$	W22302R203	_	_
	3 ³ ⁄16	2.85	4.23	W22303X	50.58	-	-	-	-	_	-
	31⁄4	2.85	4.23	W22304X	50.19	_	-	_	-	_	-
	3 5⁄16	2.85	4.23	W22305X	49.92	_	-	_	-	_	-
	3 ¾	2.85	4.23	W22306X	49.66	-	-	-	_	-	-
	3 7⁄16	2.85	4.23	W22307X	50.29	-	-	-	-	-	-
	3 ½	2.85	4.23	W22308X	48.87	31⁄2 - 23⁄4	W22308R212	31/2 - 29/16	W22308R209	31/2 - 23/8	W22308R206
	3 %16	3.07	4.45	W22309X	51.58	-	-	-	-	-	-
	3 5⁄8	3.07	4.45	W22310X	51.30	-	-	-	-	-	-
	3 ¹ / ₁₆	3.07	4.45	W22311X	50.93	-	-	-	-	-	-
	3 ¾	3.07	4.45	W22312X	50.62	3¾ - 2 ¹⁵ ⁄16	W22312R215	_	-	-	-
	3 ¹³ ⁄16	3.07	4.45	W22313X	50.24	-	-	-	-	-	-
	31/8	3.07	4.45	W22314X	49.77	31⁄8 - 31⁄8	W22314R302	37/8 - 215/16	W22314R215	31/8 - 23/4	W22314R212
<u> </u>	3 ¹⁵ ⁄16	3.35	4.72	W22315X	53.57	-	-	_	-	-	-
8	4	3.35	4.72	W22400X	53.19	-	-	-	-	-	-
5	4 ¹ / ₁₆	3.35	4.72	W22401IX	52.82	-	-	-	-	-	-
3	4 1⁄8	3.35	4.72	W22402X	52.43	-	-	-	-	-	-
	4 ³ / ₁₆	3.35	4.72	W22403X	52.09	-	-	-	-	-	-
	4 ¹ / ₄	3.35	4.72	W22404X	51.48	41⁄4 - 31⁄2	W22404R308	41⁄4 - 31⁄8	W22404R302	41/4 - 215/16	W22404R215
	4 ⁵ ⁄16	3.54	4.92	W22405X	54.26	-	-	-	-	-	-
	43/8	3.54	4.92	W22406X	53.91	-	-	-	-	-	-
	4 ⁴ /16	3.54	4.92	W22407X	53.50	-	-	-	-	-	-
	4 1/2	3.54	4.92	W22408IX	53.06	-	-	-	-	-	-
	4 [%] 16	3.54	4.92	W22409X	52.64	-	-	-	-	-	-
	4%	3.54	4.92	W22410IX	51.99	4% - 31/8	W22410R314	4% - 3%	W22410R312	4% - 31/2	W22410R308
	474	3.74	5.12	W22412X	52.60		-	-	-	-	-
	4'/8 E	3.74	5.12	W22414X	50.00	-	-	- E 41/	- W00500D400	- E 07/	- W22500B214
	516	3.74	0.1Z	W22500X	55 10	5 - 41⁄4	W22500R404	5 - 4 ½	W22500R402	5 - 31/8	wzzoumo14
	53/10	3.94	5.21	W22502X	54 71	-	-	-	-	-	_
	51/	3.94	5.21	W22503X	54.71	-	-	-	-	-	_
	53%	3.04	5.31	W22304X	52 77	- 53/2 /5/-	- W22506D410	53/- 11/-	- W22506B404	53/2- 11/2	W22506B402
	J 78	0.34	5.51	W22500X	52.11	536 276	W22506R410	078-474	-	J78- 478	-
	-	_		X00C2200X	52.11	578- 51/8	W22500R314	_		_	

W35000X Series Imperial Cassettes & Reducer Inserts

▼ SELECTION CHART

Drive Unit Model Number	Hexagon Size	Nose Radius	Dim.	Model Number	Wt.	1	
-	S (in)	H (in)	G (in)	65	(lbs)	Hexagon Reducer (in)	Model Number
	3 1⁄8	3.02	4.99	W35302X	72.30	31/8 – 2	W35302R200
	3 ¾16	3.02	4.99	W35303X	72.10	-	-
	31⁄4	3.02	4.99	W35304X	71.70	-	-
	3 5⁄16	3.02	4.99	W35305X	71.40	-	-
	3 ¾	3.02	4.99	W35306X	71.00	-	-
	3 7⁄16	3.02	4.99	W35307IX	70.50	-	-
	3 ½	3.02	4.99	W35308X	70.10	31⁄2 - 25⁄16	W35308R205
	3 %16	3.23	5.22	W35309X	71.40	-	-
	3 5⁄8	3.23	5.22	W35310X	73.40	-	-
	3 ¹ / ₁₆	3.23	5.22	W35311X	73.00	_	-
	3 ¾	3.23	5.22	W35312X	72.50	-	-
	3 ¹³ ⁄16	3.23	5.22	W35313X	72.10	-	-
	3 1⁄8	3.23	5.22	W35314X	71.40	31/8 - 211/16	W35314R211
	3 ¹⁵ /16	3.45	5.39	W35315X	70.80	3 ¹⁵ /16 - 2 ¹³ /16	W35315R213
	4	3.45	5.39	W35400X	74.70		-
	4 ½16	3.45	5.39	W35401X	74.30	-	-
	4 1⁄/8	3.45	5.39	W35402X	73.90	-	-
X	4 ³ ⁄16	3.45	5.39	W35403X	73.40	-	-
ŏ	4 ¼	3.45	5.39	W35404X	72.80	4¼ - 3¼16	W35404R301
50	4 ⁵ ⁄16	3.69	5.63	W35405X	76.90	-	-
EN N3	4 %	3.69	5.63	W35406X	76.50	-	-
	4 ⁷ / ₁₆	3.69	5.63	W35407X	76.10	_	-
	4 ½	3.69	5.63	W35408X	75.60	-	-
	4 %16	3.69	5.63	W35409IX	75.20	_	-
	4 5⁄/8	3.69	5.63	W35410IX	74.50	45% - 35%	W35410R310
	4 ³ ⁄ ₄	3.91	5.85	W35412X	78.50	43/4 - 33/4	W35412R312
	41/8	3.91	5.85	W35414X	76.90	-	-
	5	3.91	5.85	W35500X	75.60	5 - 4	W35500R400
	51%	4.09	6.02	W35502X	78.90	51/8 - 41/8	W35502R402
	53/16	4.09	6.02	W35503X	78.50	-	-
	51/4	4.09	6.02	W35504X	77.60	-	-
	5%	4.09	6.02	W35506X	76.30	5% - 4%16	W35506R405
	5½	4.31	6.24	W35508X	79.80	-	-
	5%16	4.31	6.24	W35509X	79.40	-	-
	5%	4.31	6.24	W35510X	78.50	-	-
	5%4	4.31	6.40	W35512X	76.90	0%4 - 4%4	W35512R412
	5 ⁴ /8	4.52	0.40	W35514X	80.90	J'/8 - 4'/8	W35514K414
	61/	4.52	0.40	W35602X	77.00	- 61/ 51/	W25602D502
	0 1/8	4.52	0.40	W33002X	08.11	0'/8 - 5'/8	W35002R502

Nominal Torque at 10,000 psi: 35,000 Ft.Ibs

Hexagon Range: 31/8-61/8 inches

Maximum Operating Pressure: **10,000 psi**

Back-Up Spanners Hands free tool to be used to stop back nut from turning during make up or break out.

Hexagon Bolt and Nut Sizes See the table of hexagon sizes of bolts, nuts and related thread diameters.

W-Series Metric Cassettes and Reducer Inserts

ENER PAC. 2

Hexagon Range: 24-105 mm

Maximum Operating Pressure: 10,000 psi (690 bar)

▼ SELECTION CHART

Drive Unit Model Number	Hexagon Size*	Nose Radius	Dim.	Model Number	Wt.		0			1	
1 State	S (mm)	H (in)	G (in)	6.	(lbs)	Hexagon Reducer (mm)	Model Number	Hexagon Reducer (mm)	Model Number	Hexagon Reducer (mm)	Model Number
	30	1.22	2.11	W2103X	4.19	-	-	_	-	-	-
	32	1.22	2.11	W2104X	4.19	-	-	-	-	-	-
	36	1.22	2.11	W2107X	4.19	-	-	-	-	-	-
X	38	1.32	2.29	W2108X	4.51	-	-	-	-	-	-
ğ	41	1.32	2.29	W2110X	4.38	41 - 32	W2110R104	41 - 30	W2110R103	41 - 24	W2110R024M
50	46	1.44	2.38	W2113X	4.69	46 - 36	W2113R107	46 - 32	W2113R104	-	-
3	50	1.54	2.48	W2200X	4.54	50 - 41	W2200R110	50 - 36	W2200R107	-	-
	55	1.65	2.70	W2203X	4.64	55 - 46	W2203R113	55 - 41	W2203R110	55 - 36	W2203R107
	60	1.75	2.55	W2206X	4.72	60 - 50	W2206R200	60 - 46	W2206R113	60 - 41	W2206R110
	-	-	-	-	-	60 - 36	W2206R107	-	-	-	-
	36	1.46	2.40	W4107X	7.72	-	-	-	-	-	-
	41	1.46	2.40	W4110X	7.72	-	-	-	-	-	-
	46	1.56	2.52	W4113X	7.94	-	-	-	-	-	-
	50	1.63	2.63	W4200X	8.28	50 - 36	W4200R107	—	-	-	-
×	55	1.73	2.89	W4203X	8.42	55 - 41	W4203R110	55 - 36	W4203R107	55 - 32	W4203R104
Ő	60	1.83	2.78	W4206X	8.47	60 - 50	W4206R200	60 - 46	W4206R113	60 - 36	W4206R107
ğ	65	1.95	3.00	W4209X	8.67	65 - 55	W4209R203	65 - 50	W4209R200	65 - 46	W4209R113
Ž	70	2.07	3.08	W4212X	8.84	70 - 60	W4212R206	70 - 55	W4212R203	-	-
	75	2.18	3.21	W4215X	8.96	75 - 65	W4215R209	75 - 60	W4215R206	-	-
	-	-	-		-	75 - 55	W4215R203	75 - 50	W4215R200	-	-
	80	2.30	3.29	W4302X	9.16	80 - 75	W4302R215	80 - 70	W4302R212	80 - 65	W4302R209
	-	-	-		-	80 - 55	W4302R203	80 - 50	W4302R200		-
	85	2.44	3.37	W4085MX	9.48	-	-	_	-	_	-
	50	1.77	3.08	W8200X	17.75	-	-	-	-	-	-
	55	1.89	3.15	W8203X	17.22	-	-	_	-	_	-
	60	2.01	3.25	W8206X	17.59	-	-	-	-	-	-
	65	2.07	3.38	W8209X	17.29	65 - 50	W8209R200	-	-	-	-
	70	2.07	3.34	W8212X	17.12	70 - 55	W8212R203	-	-	-	-
ŏ	75	2.28	3.35	W8215X	17.11	75 - 60	W8215R206	75 - 55	W8215R203	-	-
Õ	80	2.38	3.52	W8302X	17.33	80 - 65	W8302R209	80 - 60	W8302R206	80 - 55	W8302R203
/8(-	-	-	-	-	80 - 50	W8302R200		-	_	-
5	85	2.60	3.63	W8085MX	18.42	85 - 70	W8085R070M	85 - 65	W8085R065M	85 - 60	W8085R060M
	-	-	_	-	-	85 - 55	W8085R055M	_	-	_	-
	90	2.91	4.05	W8090MX	20.46	90 - 75	W8090R075M	-	-	-	-
	95	2.91	4.05	W8312X	19.71	95 - 80	W8312R302	95 - 75	W8312R215	-	-
	100	3.13	4.33	W8315X	20.31	-	-	-	-	-	-
	105	3.13	4.33	W8402X	19.39	-	-	_	-	-	-

* See page 128 for table of hexagon sizes of bolts, nuts and related thread diameters.

W-Series Metric Cassettes and Reducer Inserts

Hexagon Range: 65-155 mm Maximum Operating Pressure: 10,000 psi (690 bar)

W Series (X-Edition)

Drive Unit Model Number	Hexagon Size	Nose Radius	Dim.	Model Number	Wt.				
-				FR		Hexagon	Model	Hexagon	Model
-	(mm)	(in)	G (in)	0	(lbs)	(mm)	Number	(mm)	Number
	65	2.32	3 49	W15209X	30.72	-	-	_	_
	70	2.32	3.49	W15212X	30.72	_	_	_	_
	75	2.44	3.56	W15215X	30.08	-	_	_	_
	80	2.54	3.66	W15302X	30.34	80-65	W15302R209	_	_
X	85	2.74	3.80	W15085MX	31.70	85-70	W15085R070M	-	
Ö	90	2.95	4.01	W15090MX	33.32	90-75	W15090R075M	_	-
15(95	2.95	4.01	W15312X	31.70	95-80	W15312R302	95 - 75	W15312R215
Ś	100	3.17	4.06	W15315X	34.02	-	-	-	-
	105	3.17	4.06	W15402X	33.09	105-90	W15402R090M	-	-
	110	3.44	4.52	W15405X	35.61	110-95	W15110R095M	_	-
	115	3.44	4.52	W15115MX	34.48	115-100	W15115R100M	-	-
	75	2.64	4.02	W22215X	48.72	-	-	-	
	80	2.64	4.02	W22302X	47.78	80-60	W22302R206	80 - 55	W22302R203
	85	2.85	4.23	W22085MX	49.74	85-65	W22085MR209	85 - 60	W22085MR206
	90	3.07	4.45	W22090MX	51.72	90-70	W22090M212	90 - 60	W22090MR206
X	95	3.07	4.45	W22312X	50.62	95-75	W22312R215	-	-
ğ	100	3.35	4.72	W22315X	53.57	-	-	-	-
N N N	105	3.35	4.72	W22402X	52.09	-	-	-	-
N N	110	3.54	4.92	W22404X	51.48	-	-	-	-
-	115	3.54	4.92	W22115MX	52.88	-	-	-	-
	120	3.74	5.12	W22412X	54.54	-	-	-	-
	123	3.74	5.12	W22123MX	53.80	-	-	-	-
	130	3.94	5.31	W22502X	55.10	-	- W00500D400	-	-
	135	3.94	5.31	W22506X	52.77	135 - 105	W22000R402	-	-
	80	3.02	5.08	W35302X	72.30	00-00	W35302R200	_	-
	00	3.02	5.00	W35000IVIA	2/ 20	-	- W35000B206	-	
	90	3.23	5.33	W25210Y	72.50	90-00	-	_	
	100	3.45	5.48	W35315X	70.80	_	-	_	_
	105	3 45	5.48	W35402X	73.90	_	_	_	_
×	110	3 69	5.75	W35405X	76.90	110-85	W35405R085M	_	_
l Q	115	3.69	5.75	W35115MX	77.10	-	-	_	_
l õ	120	3.91	6.01	W35412X	78.50	120-95	W35412R312	_	_
131	123	3.91	6.01	W35123MX	78.90	-	-	_	-
5	130	4.09	6.30	W35502X	78.90	130-105	W35502R402	-	-
	135	4.09	6.30	W35506X	76.30	135-110	W35506R405	_	-
	140	4.31	6.43	W35508X	79.80	140-115	W35508R115M	_	-
	145	4.31	6.43	W35512X	76.90	145-120	W35512R412	-	-
	150	4.52	6.67	W35514X	80.90	_	-	-	-
	151	4.52	6.67	W35151MX	82.10	-	-	-	-
	155	4.52	6.67	W35602X	77.80	155-130	W35602R502	_	-

Shown: W4206SL stepped-width cassette with W4000X drive unit

Versatility

- Lean, stepped width design allows tool to be mounted over bolts where other tools won't fit
- Bi-Hexagonal cassette allows twice as many positioning points on nut or bolt
- Uses same drive unit as standard W-series hexagon cassettes
- Robust top mounted handle stays out of the way, providing safe fastening in hard to reach areas

Performance

• Premium components provide best-in-class endurance

Ease of Use

- Few moving parts are easily accessible for quick field maintenance
- Fast release drive unit enables rapid exchange of cassettes, no tools required and no pins to lose
- Uses same drive unit as standard and X-Edition cassettes

Accuracy

• Constant torque output provides accuracy of +/- 3% across the full stroke

Slim enough to fit and tough enough to last. This UltraSlim wrench is the perfect controlled bolting solution for this oil and gas flange.

Your Easy and Long-Lasting Solution to Difficult Access Bolting Applications

Designed for Tight Spots

Stepped width design provides easy access in confined areas. UltraSlim cassettes fit where standard solutions won't.

Built to Outperform

High endurance components keep working when others fail.

Top Mounted Handles

Standard top mounted handles provide safety and versatility; optional angled handles are also available.

Replacement handle (straight)	SWH6S
Angled handle (optional)	SWH6A

Calibration Certificate All UltraSlim Series cassettes are CE - ATEX declared, factory calibrated and are shipped complete with a calibration certificate.

CSA/SIRA 15XT072

UltraSlim Stepped-Width Cassettes

UltraSlim Stepped-Width Cassettes

Accessing narrow spaces normally requires

significantly reducing the width of the torque wrench. For the tool operator, this has always meant vastly reduced tool durability, and/or reduced torque output.

By using the highest-grade materials, perfecting the geometry, and placing the positioning handle on top of the tool, Enerpac UltraSlim cassettes are able to provide greater torque, get into tighter spaces, and vastly outperform the competition in product durability.*

*Average test results, whereby three Enerpac 1¹³/16" UltraSlim cassettes and three competitor 1¹³/16" cassettes were tested at 4000 ft-lbs for 50,000 cycles. The Enerpac side plates never broke for the full duration of the test.

Nominal Torque at 10,000 psi: **4360 Ft.Ibs.**

Hexagon Range:

1¹³/₁₆ -2¹⁵/₁₆ inches

Maximum Operating Pressure: 10,000 psi

Torque Wrench Pumps

Visit enerpac.com for system matched air and electric torque wrench pumps that are ideal for use with hydraulic torque wrenches.

Torque Wrench Hoses Use Enerpac THQ-700 Series hoses with W-Series torque wrenches to ensure the integrity of your hydraulic system.

19.5 feet long, 2 hoses	THQ-706T
39 feet long, 2 hoses	THQ-712T
1	Page: 86

SELECTION CHART

Hexagon Size	Nominal Torque @ 10,000 psi	Cassette Model Number	Minimum Torque @ 1000 psi	Nose Radius		Dimensions (in)							Weight	Drive Unit Model* (sold separately)	
S (in)	(Ft.lbs)	65	(Ft.lbs)	H (in)	G	Α	В	С	D	D1	E	F (radius)	J	(lbs)	B
1 ¹³ ⁄16	1980	W2113SL	200	1.44	2.35									4.87	
2 ¾16	1980	W2203SL	200	1.63	2.49	5.54	4.30	5.81	1.28	1.00	0.94	0.79	4.72	4.87	W2000X
2 3⁄/8	1980	W2206SL	200	1.75	2.56									4.88	
2 ¾16	4360	W4203SL	430	1.73	2.70									10.15	
2 3⁄/8	4360	W4206SL	430	1.89	2.82									10.36	
2 %16	4360	W4209SL	430	1.99	2.92	6.91	5.69	7.03	1.59	1.13	1.61	0.79	4.72	10.37	W4000X
2 ³ ⁄ ₄	4360	W4212SL	430	2.11	2.98									10.42	
2 ¹⁵ /16	4360	W4215SL	430	2.20	2.99									10.37	

* Bi-Hexagonal Cassette includes top mounted straight handle.

** May also be used with W2000PX and W4000PX drive units, featuring double-swivel manifolds.

Accessories for W-Series, X-Edition Torque Wrenches ENERPAC

- 1) Hexagon Cassette
- Drive Unit
- ③ Angled Positioning Handle
- (4) Straight Positioning Handle (optional)
- (5) Pro Series Swivel (optional)
- 6 Extended Reaction Arm (optional)
- ⑦ Reducer Insert (optional)
- (8) Reaction Paddle (optional)

TSP-Series, Pro Series Swivels

- Robust interlocking design
- 360° X-axis and 160° Y-axis rotation
- Increases tool fit in restricted access areas
- Simplifies hose placement

Includes male and female couplers

Torque Wrench Model Number	Model Number	Maximum Pressure (psi)	Wt. (lbs)
W2000X, W4000X, W8000X, W15000X, W22000X, W35000X	TSP300*	10,000	.44

Note: To order a W-series (X-Edition) wrench fitted with the TSP swivel, insert a "P" prior to the "X" in the tool designation, e.g., W2000PX. * TSP300 is designed for X-Edition tools only, and is not compatible with standard edition tools. For replacement components for existing tools.

standard edition tools. For replacement components for existing tools, refer to repair sheet on www.enerpac.com

WTE-Series, Extended Reaction Arm

WTE-Series

WRP-Series Reaction Paddles

Full torque rated

Increases tool fit in restricted access areas

Torque Wrench Model Number	Model Number	Di	Wt.*		
		Α	В	С	(lbs)
W2000X	WTE20	2.20	15.67	2.66	5.73
W4000X	WTE40	2.60	17.17	2.91	10.14
W8000X	WTE80	3.35	17.68	2.15	16.76
W15000X	WTE150	4.02	19.61	2.83	26.46
W22000X	WTE220	4.49	20.51	3.03	38.14
W35000X	WTE350	5.00	16.48	5.23	39.24

* Weights indicated are for the accessories only and do not include the wrench.

- Lightweight interchangeable design
- Allows for offset reaction when in-line reaction is not available

Torque Wrench	Model		Dimensions (in)							
Model Number	Number	A	A B C D E							
W2000X	WRP20	3.31	0.63	1.40	1.77	5.83	.88			
W4000X	WRP40	4.29	0.83	1.87	2.32	7.48	1.76			
W8000X	WRP80	5.37	1.02	2.25	2.72	8.78	4.41			
W15000X	WRP150	6.50	1.26	2.74	3.43	10.12	8.60			
W22000X	WRP220	8.15	1.52	3.58	5.28	12.48	15.87			
W35000X	WRP350	9.22	1.79	3.58	7.17	13.98	23.37			

* Weights indicated are for the accessories only and do not include the wrench.

Bolting Application Ideas

ENERPAC professional series steel torque wrenches provide reliable controlled tightening solutions across many industries.

S3000X Square Drive Torque Wrench on Wind Turbine Assembly and Maintenance

S3000X used to connect wind turbine segments during assembly and maintenance. A robust but compact solution is required for bolt tightening on wind tower sections. Large numbers of fasteners require precise application of torque to ensure joint integrity is achieved and maintained.

> The Enerpac S-Series wrench offers simple and reliable operation while providing accurate and repeatable results.

W4000X Low Profile Torque Wrench on an API Pipe Flange

Throughout the Oil and Gas, Petrochemical and Processing Industries, pipeline joints, valves, pumps and machinery present challenges for controlled bolting.

The restricted access on this flange was easily overcome with an Enerpac W-Series Torque Wrench. The W Wrenches offer reliability and control, ensuring even and consistent torque is applied to all bolts.

S3000X on an Oil and Gas Flange

During maintenance, quick turnaround times are essential; S-Series wrenches provide a large angle of nut rotation per stroke, offering speed and accuracy in a compact ergonomic tool.

RSL-Series, Low-Profile Hexagon Torque Wrenches ENERPAC

RSL Drive Units with interchangeable RLP Hexagon Cassette and RSQ Square Drive Head

Safety and Performance

- Innovative design that completely encloses all moving parts and minimizes pinch points
- 30-35° rotation angle provides added productivity while avoiding "tool lock-on" which is common with some torque wrench designs

Simplicity

- Simple robust alloy steel design with just three moving parts for reduced maintenance
- Robust handles are available for both sides and the tops of cassettes to allow for extra maneuverability
- Designed to give optimum strength-to-weight and torqueto-weight ratios
- Minimum nose radius for trouble-free tool fit

Versatility

- Interchangeable cassette design
- Wide range of hexagon sizes available for all applications
- Reaction arm has a simple dial lock for rapid change
- For use in multiple industrial, energy, and oil and gas applications

Accuracy

Accuracy of +/-3%

Setting New Standards in Safety, Simplicity and Performance

Options and Accessories

Optional extended reaction arms and tubes are common accessories available for maximum versatility. Please contact your Enerpac representative to help you select the

optimum solution for your application.

Back-Up Spanner

Hands free tool to be used to stop back nut from turning during make up or break out. Two hex sizes in one tool.

Hexagon S	Sizes (A/F)	Back-Up Spanner Model Number
(in)	(mm)	
11/16 - 11/4	27 - 32	BUS 01
17/16 - 15/8	36 - 41	BUS 02
1 ¹³ ⁄16 - 2	46 - 50	BUS 03
23/16 - 23/8	55 - 60	BUS 04
2%16 - 23⁄4	65 - 70	BUS 05
2 ¹⁵ /16 - 3 ¹ /8	75 - 80	BUS 06
31⁄2 - 37⁄8	_	BUS 07
4¼ - 45/8	_	BUS 08
-	85 - 90	BUS 09
3 ³ ⁄4 - 3 ¹⁵ ⁄16	95 - 100	BUS 10
41⁄8 - 415⁄16	105 - 110	BUS 11
-	115 - 120	BUS 12
		Page: 11

Torque Wrench Pumps Visit enerpac.com for system-matched air and electric torque wrench pumps that are ideal for use with hydraulic torque wrenches.

Page:

45

Drive Units for Hexagon Cassettes & Square Drive Heads

RSL Torque Wrench Drive Unit shown with RLP Low-Profile Hexagon Cassette

RSL

 Contact Enerpac for optional handles.

RSO

RSL Torque Wrench Drive Unit shown with RSQ Square Drive Head

▼ SELECTION CHART

Hexagon Casso (see pages 28 and mode	ette Range (A/F) 3-32 for sizes numbers)	Drive Unit Model Number	Max Torque	imum Output	Weight
(in)	(mm)		(ft-lbs)	Nm)	(lbs)
7⁄8 - 23⁄8	26 - 60	RSL1500	1408	1909	3.4
1¼ - 2 ¹⁵ ⁄16	32 - 74	RSL3000	3080	4176	5.6
2 - 31/8	50 - 80	RSL5000	5303	7190	8.9
2 ³ ⁄16 - 3 ¹ ⁄8	55 - 80	RSL8000	7862	10659	10.6
2%16 - 4%	65 - 117	RSL11000	11,154	15123	11.6
31⁄8 - 45⁄8	79 - 117	RSL19000	18,843	25547	20.0
31⁄2- 61⁄8	89 - 155	RSL28000	28,002	37965	22.0

ENERPAC 27

 Contact Enerpac for optional handles.

ENERPAC @

Drive Unit	AF	Size	Hexagon	Maxi	mum	Dimensions				Wt.	t. Dimensions				
Model			Cassette	Tor	que	e (in)						(m	m)		
Number			Model	Out	Output										
			Number					14/	L 11				147	u	
	(in)	(mm)		(ft-lbs)	(Nm)	n	L	vv	п	(IDS)	n	L	vv	п	(Kg)
	7⁄8	-	RLP 1014	320	434	0.79	6.00	1.25	4.33	2.2	20,1	152,4	31,8	110,0	1,0
	1 ¹ / ₁₆	26	RLP 1101	640	868	0.95	6.05	1.25	4.50	2.2	24,1	153,7	31,8	114,3	1,0
	11/8	-	RLP 1102	640	868	1.03	6.12	1.25	4.57	2.3	26,2	155,4	31,8	116,1	1,0
	1 ³ ⁄16	30	RLP 1103	640	868	1.03	6.12	1.25	4.57	2.3	26,2	155,4	31,8	116,1	1,0
	11/4	32	RLP 1104	640	868	1.03	6.12	1.25	4.57	2.3	26,2	155,4	31,8	116,1	1,0
	1 ⁵ ⁄16	33	RLP 1105	900	1220	1.15	6.24	1.25	4.69	2.4	29,2	158,5	31,8	119,1	1,1
	1%	35	RLP 1106	900	1220	1.15	6.24	1.25	4.69	2.4	29,2	158,5	31,8	119,1	1,1
	1 ⁷ ⁄16	36	RLP 1107	900	1220	1.15	6.24	1.25	4.69	2.4	29,2	158,5	31,8	119,1	1,1
	1½	38	RLP 1108	1408	1909	1.31	6.41	1.25	4.86	2.7	33,3	162,8	31,8	123,4	1,2
	1 %16	-	RLP 1109	1408	1909	1.31	6.41	1.25	4.86	2.7	33,3	162,8	31,8	123,4	1,2
	1%	41	RLP 1110	1408	1909	1.31	6.41	1.25	4.86	2.7	33,3	162,8	31,8	123,4	1,2
RSL1500	1 ¹¹ / ₁₆	-	RLP 1111	1408	1909	1.40	6.49	1.25	4.94	2.7	35,6	164,8	31,8	125,5	1,2
	13⁄4	-	RLP 1112	1408	1909	1.40	6.49	1.25	4.94	2.7	35,6	164,8	31,8	125,5	1,2
	1 ¹³ /16	46	RLP 1113	1408	1909	1.40	6.49	1.25	4.94	2.7	35,6	164,8	31,8	125,5	1,2
	17⁄8	-	RLP 1114	1408	1909	1.48	6.58	1.25	5.03	2.7	37,6	167,1	31,8	127,8	1,2
	1 ¹⁵ /16	-	RLP 1115	1408	1909	1.48	6.58	1.25	5.03	2.7	37,6	167,1	31,8	127,8	1,2
	2	50	RLP 1200	1408	1909	1.48	6.58	1.25	5.03	2.7	37,6	167,1	31,8	127,8	1,2
	2 ¹ / ₁₆	-	RLP 1201	1408	1909	1.58	6.68	1.25	5.13	2.7	40,1	169,7	31,8	130,3	1,2
	2 1⁄8	-	RLP 1202	1408	1909	1.58	6.68	1.25	5.13	2.7	40,1	169,7	31,8	130,3	1,2
	2 ³ / ₁₆	55	RLP 1203	1408	1909	1.58	6.68	1.25	5.13	2.7	40,1	169,7	31,8	130,3	1,2
	2 ¼	-	RLP 1204	1408	1909	1.70	6.79	1.25	5.24	2.8	43,2	172,5	31,8	133,1	1,3
	2 ⁵ /16	-	RLP 1205	1408	1909	1.70	6.79	1.25	5.24	2.8	43,2	172,5	31,8	133,1	1,3
	2 3⁄8	60	RLP 1206	1408	1909	1.70	6.79	1.25	5.24	2.8	43,2	172,5	31,8	133,1	1,3
	1 ⁵ ⁄16	33	RLP 3105	900	1220	1.18	7.62	1.38	5.49	3.5	30,0	193,5	35,1	139,4	1,6
	13⁄8	35	RLP 3106	900	1220	1.18	7.62	1.38	5.49	3.5	30,0	193,5	35,1	139,4	1,6
	1 ⁷ ⁄16	36	RLP 3107	900	1220	1.18	7.62	1.38	5.49	3.5	30,0	193,5	35,1	139,4	1,6
	1 ½	38	RLP 3108	1200	1627	1.32	7.77	1.38	5.63	3.9	33,5	197,4	35,1	143,0	1,8
	1 %16	-	RLP 3109	1200	1627	1.32	7.77	1.38	5.63	3.9	33,5	197,4	35,1	143,0	1,8
	1 5⁄8	41	RLP 3110	1200	1627	1.32	7.77	1.38	5.63	3.9	33,5	197,4	35,1	143,0	1,8
	1 ¹¹ / ₁₆	-	RLP 3111	1900	2576	1.47	7.87	1.38	5.78	4.0	37,3	199,9	35,1	146,8	1,8
	13⁄4	-	RLP 3112	1900	2576	1.47	7.87	1.38	5.78	4.0	37,3	199,9	35,1	146,8	1,8
	1 ¹³ /16	46	RLP 3113	1900	2576	1.47	7.87	1.38	5.78	4.0	37,3	199,9	35,1	146,8	1,8
	111/8	-	RLP 3114	2600	3526	1.60	8.04	1.38	5.92	4.5	40,6	204,2	35,1	150,4	2,0
	1 ¹⁵ /16	-	RLP 3115	2600	3526	1.60	8.04	1.38	5.92	4.5	40,6	204,2	35,1	150,4	2,0
	2	50	RLP 3200	2600	3526	1.60	8.04	1.38	5.92	4.5	40,6	204,2	35,1	150,4	2,0
	2 ¹ / ₁₆	-	RLP 3201	3080	4176	1.76	8.16	1.38	6.08	4.7	44,7	207,3	35,1	154,4	2,1
RSL3000	2 1⁄8	-	RLP 3202	3080	4176	1.76	8.16	1.38	6.08	4.7	44,7	207,3	35,1	154,4	2,1
	2 ³ /16	55	RLP 3203	3080	4176	1.76	8.16	1.38	6.08	4.7	44,7	207,3	35,1	154,4	2,1
	2 ¼	-	RLP 3204	3080	4176	1.84	8.25	1.38	6.15	4.8	46,7	209,6	35,1	156,2	2,2
	2 ⁵ /16	-	RLP 3205	3080	4176	1.84	8.25	1.38	6.15	4.8	46,7	209,6	35,1	156,2	2,2
	2 %	60	RLP 3206	3080	4176	1.84	8.25	1.38	6.15	4.8	46,7	209,6	35,1	156,2	2,2
	2 ⁷ /16	62	RLP 3207	3080	4176	1.95	8.14	1.38	6.26	4.6	49,5	206,8	35,1	159,0	2,1
	2 ½	63	RLP 3208	3080	4176	1.95	8.14	1.38	6.26	4.6	49,5	206,8	35,1	159,0	2,1
	2 %16	65	RLP 3209	3080	4176	1.95	8.14	1.38	6.26	4.6	49,5	206,8	35,1	159,0	2,1
	2 5⁄/8	-	RLP 3210	3080	4176	2.04	8.23	1.38	6.36	4.4	51,8	209,0	35,1	161,5	2,0
	2 ¹ / ₁₆	-	RLP 3211	3080	4176	2.04	8.23	1.38	6.36	4.4	51,8	209,0	35,1	161,5	2,0
	2 ³ ⁄ ₄	70	RLP 3212	3080	4176	2.04	8.23	1.38	6.36	4.4	51,8	209,0	35,1	161,5	2,0
	2 ¹³ /16	-	RLP 3213	3080	4176	2.16	8.34	1.38	6.54	4.7	54,9	211,8	35,1	166,1	2,1
	27/8	-	RLP 3214	3080	4176	2.16	8.34	1.38	6.54	4.7	54,9	211.8	35,1	166,1	2,1
	2 ¹⁵ /16	75	RLP 3215	3080	4176	2.16	8.34	1.38	6.54	4.7	54,9	211,8	35,1	166,1	2,1

Enerpac's Bolting Integrity Software Solutions play a key role in implementing and managing an Integrity Program for bolted connections. Our

Bolting Software Suite includes **BoltUp** (free, online calculator providing reliable, repeatable bolt loads), **Informate** (bolt load calculation software for huge range of flanged joints and clamped connections), and **Integrity Data Management System/iDMS** (flexible data management and activity-planning system for use on assets featuring bolted connections).

Contact Enerpac for more information.

Slimline Stepped-Width Hexagon Cassettes

For accessing narrow spaces RLP...SL Stepped-Width

Hexagon Cassettes are available. Slimline cassettes use same drive unit as standard RLP-cassettes.

Hexagon Range: 7/8 - 61/8 inches

Hexagon Range: 26 - 155 mm

Maximum Operating Pressure: **10,000 psi**

Drive Unit Model Number	AF	Size	Hexagon Cassette Model	Maxi Tor Out	mum que put	Dimensions (in)				Wt.	Dimensions (mm)				Wt.
	(in)	(mm)	Number	(ft-lbs)	(Nm)	R	L	w	н	(lbs)	R	L	w	н	(kg)
	1 ¹¹ ⁄16	-	RLP 5111	2600	3526	1.61	9.08	1.75	6.52	6.6	40,9	230,6	44,5	165,6	3,0
	1 ¾	-	RLP 5112	2600	3526	1.61	9.08	1.75	6.52	6.6	40,9	230,6	44,5	165,6	3,0
	1 ¹³ /16	46	RLP 5113	2600	3526	1.61	9.08	1.75	6.52	6.6	40,9	230,6	44,5	165,6	3,0
	11 1/8	-	RLP 5114	2600	3526	1.61	9.08	1.75	6.52	6.6	40,9	230,6	44,5	165,6	3,0
	1 ¹⁵ ⁄16	-	RLP 5115	2600	3526	1.61	9.08	1.75	6.52	6.6	40,9	230,6	44,5	165,6	3,0
	2	50	RLP 5200	2600	3526	1.61	9.08	1.75	6.52	6.6	40,9	230,6	44,5	165,6	3,0
	2 ¹ / ₁₆	-	RLP 5201	3500	4746	1.71	9.18	1.75	6.62	6.5	43,4	233,2	44,5	168,1	2,9
	2 1⁄8	-	RLP 5202	3500	4746	1.71	9.18	1.75	6.62	6.5	43,4	233,2	44,5	168,1	2,9
	2 ³ /16	55	RLP 5203	3500	4746	1.71	9.18	1.75	6.62	6.5	43,4	233,2	44,5	168,1	2,9
	21 /4	-	RLP 5204	4500	6102	1.87	9.34	1.75	6.78	7.0	47,5	237,2	44,5	172,2	3,2
	2 5⁄16	-	RLP 5205	4500	6102	1.87	9.34	1.75	6.78	7.0	47,5	237,2	44,5	172,2	3,2
BSI 5000	2 3⁄8	60	RLP 5206	4500	6102	1.87	9.34	1.75	6.78	7.0	47,5	237,2	44,5	172,2	3,2
NSE3000	2 ⁷ /16	62	RLP 5207	5303	7191	2.01	9.48	1.75	6.92	7.0	51,1	240,8	44,5	175,8	3,2
	2 ½	63	RLP 5208	5303	7191	2.01	9.48	1.75	6.92	7.0	51,1	240,8	44,5	175,8	3,2
	2 %16	65	RLP 5209	5303	7191	2.01	9.48	1.75	6.92	7.0	51,1	240,8	44,5	175,8	3,2
	2 5⁄8	-	RLP 5210	5303	7191	2.16	9.63	1.75	7.07	7.5	54,9	244,6	44,5	179,6	3,4
	2 ¹ / ₁₆	-	RLP 5211	5303	7191	2.16	9.63	1.75	7.07	7.5	54,9	244,6	44,5	179,6	3,4
	2 ³ ⁄ ₄	70	RLP 5212	5303	7191	2.16	9.63	1.75	7.07	7.5	54,9	244,6	44,5	179,6	3,4
	2 ¹³ /16	-	RLP 5213	5303	7191	2.24	9.71	1.75	7.15	7.5	56,9	246,6	44,5	181,6	3,4
	2 ⁷ /8	-	RLP 5214	5303	7191	2.24	9.71	1.75	7.15	7.5	56,9	246,6	44,5	181,6	3,4
	2 ¹⁵ /16	75	RLP 5215	5303	7191	2.24	9.71	1.75	7.15	7.5	56,9	246,6	44,5	181,6	3,4
	3	-	RLP 5300	5303	7191	2.26	9.73	1.75	7.17	7.2	57,4	247,1	44,5	182,1	3,3
	3 ¹ / ₁₆	-	RLP 5301	5303	7191	2.26	9.73	1.75	7.17	7.2	57,4	247,1	44,5	182,1	3,3
	3 1⁄8	80	RLP 5302	5303	7191	2.26	9.73	1.75	7.17	7.2	57,4	247,1	44,5	182,1	3,3
	2 ¾	60	RLP 8206	4500	6102	1.87	9.53	2.25	7.00	8.9	47,5	242,1	57,2	177,8	4,0
	2 ⁷ /16	62	RLP 8207	5800	7865	2.01	9.67	2.25	7.13	9.0	51,1	245,6	57,2	181,1	4,1
	2 ½	63	RLP 8208	5800	7865	2.01	9.67	2.25	7.13	9.0	51,1	245,6	57,2	181,1	4,1
	2 %16	65	RLP 8209	5800	7865	2.01	9.67	2.25	7.13	9.0	51,1	245,6	57,2	181,1	4,1
	2 5⁄8	-	RLP 8210	7862	10.661	2.16	9.82	2.25	7.28	9.6	54,9	249,4	57,2	184,9	4,4
	2 ¹ / ₁₆	-	RLP 8211	7862	10.661	2.16	9.82	2.25	7.28	9.6	54,9	249,4	57,2	184,9	4,4
RSL8000	2 ³ / ₄	70	RLP 8212	7862	10.661	2.16	9.82	2.25	7.28	9.6	54,9	249,4	57,2	184,9	4,4
	2 ¹³ /16	-	RLP 8213	7862	10.661	2.24	9.90	2.25	7.38	9.6	56,9	251,5	57,2	187,5	4,4
	2 ⁷ /8	-	RLP 8214	7862	10.661	2.24	9.90	2.25	7.38	9.6	56,9	251,5	57,2	187,5	4,4
	2 ¹⁵ /16	75	RLP 8215	7862	10.661	2.24	9.90	2.25	7.38	9.6	56,9	251,5	57,2	187,5	4,4
	3	-	RLP 8300	7862	10.661	2.26	9.92	2.25	7.39	9.3	57,4	252,0	57,2	187,7	4,2
	3 ¹ / ₁₆	-	RLP 8301	7862	10.661	2.26	9.92	2.25	7.39	9.3	57,4	252,0	57,2	187,7	4,2
	3 1⁄8	80	RLP 8302	7862	10.661	2.26	9.92	2.25	7.39	9.3	57,4	252,0	57,2	187,7	4,2

ENERPAC. 🖉

Hexagon Range: 7/8 - 61/8 inches Hexagon Range: 26 - 155 mm Maximum Operating Pressure: 10,000 psi

Drive Unit Model Number	AF	Size	Hexagon Cassette Model	Maxi Tor Out	mum que put	Dimensions (in)				Wt.	Dimensions (mm)				
	(in)	(mm)	Number	(ft-lbs)	(Nm)	R	L	w	н	(lbs)	R	L	w	н	(kg)
	2 ⁷ /16	62	RLP 11207	5800	7865	1.98	10.00	2.50	8.03	14.2	50,3	254,0	63,5	204,0	6,4
	2 ¹ / ₂	-	RLP 11208	5800	7865	1.98	10.00	2.50	8.03	14.2	50,3	254,0	63,5	204,0	6,4
	2 %16	65	RLP 11209	5800	7865	1.98	10.00	2.50	8.03	14.2	50,3	254,0	63,5	204,0	6,4
	2 5⁄8	_	RLP 11210	7300	9899	2.19	11.20	2.50	8.23	14.8	55,6	284,5	63,5	209,0	6,7
	2 ¹ / ₁₆	-	RLP 11211	7300	9899	2.19	11.20	2.50	8.23	14.8	55,6	284,5	63,5	209,0	6,7
	2 ³ / ₄	70	RLP 11212	7300	9899	2.19	11.20	2.50	8.23	14.8	55,6	284,5	63,5	209,0	6,7
	2 ¹³ ⁄16	-	RLP 11213	9000	12.204	2.29	11.31	2.50	8.34	14.8	58,2	287,3	63,5	211,8	6,7
	2 ⁷ /8	_	RLP 11214	9000	12.204	2.29	11.31	2.50	8.34	14.8	58,2	287,3	63,5	211,8	6,7
	2 ¹⁵ /16	75	RLP 11215	9000	12.204	2.29	11.31	2.50	8.34	14.8	58,2	287,3	63,5	211,8	6,7
	3	_	RLP 11300	11,154	15.125	2.43	11.44	2.50	8.47	15.2	61,7	290,6	63,5	215,1	6,9
	3 ½16	_	RLP 11301	11,154	15.125	2.43	11.44	2.50	8.47	15.2	61,7	290,6	63,5	215,1	6,9
	3 1⁄8	80	RLP 11302	11,154	15.125	2.43	11.44	2.50	8.47	15.2	61,7	290,6	63,5	215,1	6,9
	3 ³ ⁄16	-	RLP 11303	11,154	15.125	2.60	11.71	2.50	8.64	16.6	66,0	297,4	63,5	219,5	7,5
	-	85	RLP 11085M	11,154	15.125	2.60	11.71	2.50	8.64	16.6	66,0	297,4	63,5	219,5	7,5
	3¼	-	RLP 11304	11,154	15.125	2.60	11.71	2.50	8.64	16.6	66,0	297,4	63,5	219,5	7,5
	3 ⁵ /16	-	RLP 11305	11,154	15.125	2.60	11.71	2.50	8.64	16.6	66,0	297,4	63,5	219,5	7,5
BSL11000	3 ¾	-	RLP 11306	11,154	15.125	2.60	11.71	2.50	8.64	16.6	66,0	297,4	63,5	219,5	7,5
	3 ⁷ /16	_	RLP 11307	11,154	<mark>15.125</mark>	2.60	11.71	2.50	8.64	16.6	66,0	297,4	63,5	219,5	7,5
	31⁄2	-	RLP 11308	11,154	15.125	2.60	11.71	2.50	8.64	16.6	66,0	297,4	63,5	219,5	7,5
	_	90	RLP 11090M	11,154	15.125	2.88	11.89	2.50	8.92	17.2	73,2	302,0	63,5	226,6	7,8
	3% 16	-	RLP 11309	11,154	15.125	2.88	11.89	2.50	8.92	17.2	73,2	302,0	63,5	226,6	7,8
	3 5/8	-	RLP 11310	11,154	15.125	2.88	11.89	2.50	8.92	17.2	73,2	302,0	63,5	226,6	7,8
	3¹¹/ 16	-	RLP 11311	11,154	15.125	2.88	11.89	2.50	8.92	17.2	73,2	302,0	63,5	226,6	7,8
	3 ³ /4	95	RLP 11312	11,154	15.125	2.88	11.89	2.50	8.92	17.2	73,2	302,0	63,5	226,6	7,8
	3 ¹³ /16	-	RLP 11313	11,154	15.125	2.88	11.89	2.50	8.92	17.2	73,2	302,0	63,5	226,6	7,8
	37/8	-	RLP 11314	11,154	15.125	2.88	11.89	2.50	8.92	17.2	73,2	302,0	63,5	226,6	7,8
	3 ¹⁵ /16	100	RLP 11315	11,154	15.125	2.98	12.00	2.50	9.03	16.4	75,7	304,8	63,5	229,4	7,4
	4	-	RLP 11400	11,154	15.125	2.98	12.00	2.50	9.03	16.4	75,7	304,8	63,5	229,4	7,4
	4 ¹ / ₁₆	-	RLP 11401	11,154	15.125	2.98	12.00	2.50	9.03	16.4	/5,/	304,8	63,5	229,4	7,4
	4¹/8	105	RLP 11402	11,154	15.125	2.98	12.00	2.50	9.03	16.4	/5,/	304,8	63,5	229,4	7,4
	41/4	-	RLP 11404	11,154	15.125	2.98	12.00	2.50	9.03	10.4	/5,/	304,8	63,5	229,4	7,4
	4⁵/ 16	110	RLP 11405	11,154	15.125	3.25	12.27	2.50	9.30	17.6	82,6	311,7	63,5	236,2	8,0
	41/2	-	RLP 11408	11,154	15.125	3.25	12.27	2.50	9.30	17.6	82,6	311,7	63,5	236,2	8,0
	4 5⁄8	-	RLP 11410	11,154	15.125	3.25	12.27	2.50	9.30	17.6	82,6	311,7	63,5	236,2	8,0

RSL

Series

Enerpac's Bolting Integrity Software Solutions play a key role in implementing and managing an Integrity Program for bolted connections. Our

Bolting Software Suite includes **BoltUp** (free, online calculator providing reliable, repeatable bolt loads), **Informate** (bolt load calculation software for huge range of flanged joints and clamped connections), and **Integrity Data Management System/iDMS** (flexible data management and activity-planning system for use on assets featuring bolted connections).

Contact Enerpac for more information.

Hexagon Range:7/8 - 61/8 inchesHexagon Range:26 - 155 mmMaximum Operating Pressure:10,000 psi

SELECTION CHART

Drive Unit Model Number	AF	Size	Hexagon Cassette Model	Maxi Tore Out	mum que put	Dimensions V (in)				Wt.	Dimensions (mm)				
	(in)	(mm)	number	(ft-lbs)	(Nm)	R	L	W	н	(lbs)	R	L	w	н	(kg)
	2 ¹⁵ /16	75	RLP 19215	11,000	14.916	2.45	12.72	2.75	9.44	21.5	62,2	323,1	69,9	239,8	9,8
	3	-	RLP 19300	11,000	14.916	2.45	12.72	2.75	9.44	21.5	62,2	323,1	69,9	239,8	9,8
	3 ¹ / ₁₆	-	RLP 19301	11,000	14.916	2.45	12.72	2.75	9.44	21.5	62,2	323,1	69,9	239,8	9,8
	3 1⁄8	80	RLP 19302	11,000	14.916	2.45	12.72	2.75	9.44	21.5	62,2	323,1	69,9	239,8	9,8
	3 ³ ⁄16	-	RLP 19303	16,000	21.696	2.77	13.04	2.75	9.76	22.6	70,4	331,2	69,9	247,9	10,3
	_	85	RLP 19085M	16,000	21.696	2.77	13.04	2.75	9.76	22.6	70,4	331,2	69,9	247,9	10,3
	31⁄4	-	RLP 19304	16,000	21.696	2.77	13.04	2.75	9.76	22.6	70,4	331,2	69,9	247,9	10,3
	3 5⁄16	-	RLP 19305	16,000	21.696	2.77	13.04	2.75	9.76	22.6	70,4	331,2	69,9	247,9	10,3
	3 3⁄8	-	RLP 19306	16,000	21.696	2.77	13.04	2.75	9.76	22.6	70,4	331,2	69,9	247,9	10,3
	3 ⁷ /16	-	RLP 19307	16,000	21.696	2.77	13.04	2.75	9.76	22.6	70,4	331,2	69,9	247,9	10,3
	31⁄2	-	RLP 19308	16,000	21.696	2.77	13.04	2.75	9.76	22.6	70,4	331,2	69,9	247,9	10,3
	-	90	RLP 19090M	18,843	25.551	2.95	13.22	2.75	9.94	23.8	74,9	335,8	69,9	252,5	10,8
	3 %16	-	RLP 19309	18,843	25.551	2.95	13.22	2.75	9.94	23.8	74,9	335,8	69,9	252,5	10,8
	3 5⁄8	-	RLP 19310	18,843	25.551	2.95	13.22	2.75	9.94	23.8	74,9	335,8	69,9	252,5	10,8
	3 ¹ / ₁₆	-	RLP 19311	18,843	25.551	2.95	13.22	2.75	9.94	23.8	74,9	335,8	69,9	252,5	10,8
RSL19000	3 ³ ⁄4	95	RLP 19312	18,843	25.551	2.95	13.22	2.75	9.94	23.8	74,9	335,8	69,9	252,5	10,8
	3 ¹³ ⁄16	-	RLP 19313	18,843	25.551	2.95	13.22	2.75	9.94	23.8	74,9	335,8	69,9	252,5	10,8
	37⁄8	-	RLP 19314	18,843	25.551	2.95	13.22	2.75	9.94	23.8	74,9	335,8	69,9	252,5	10,8
	3 ¹⁵ /16	100	RLP 19315	18,843	25.551	3.30	13.57	2.75	10.28	25.3	83,8	344,7	69,9	261,1	11,5
	4	-	RLP 19400	18,843	25.551	3.30	13.57	2.75	10.28	25.3	83,8	344,7	69,9	261,1	11,5
	4 ¹ / ₁₆	-	RLP 19401	18,843	25.551	3.30	13.57	2.75	10.28	25.3	83,8	344,7	69,9	261,1	11,5
	4 ¹ / ₈	105	RLP 19402	18,843	25.551	3.30	13.57	2.75	10.28	25.3	83,8	344,7	69,9	261,1	11,5
	4 ³ ⁄16	-	RLP 19403	18,843	25.551	3.30	13.57	2.75	10.28	25.3	83,8	344,7	69,9	261,1	11,5
	4 ¹ / ₄	-	RLP 19404	18,843	25.551	3.30	13.57	2.75	10.28	25.3	83,8	344,7	69,9	261,1	11,5
	4 5⁄16	110	RLP 19405	18,843	25.551	3.44	13.71	2.75	10.43	25.6	87,4	348,2	69,9	264,9	11,6
	4 ¾	-	RLP 19406	18,843	25.551	3.44	13.71	2.75	10.43	25.6	87,4	348,2	69,9	264,9	11,6
	4 ⁷ /16	-	RLP 19407	18,843	25.551	3.44	13.71	2.75	10.43	25.6	87,4	348,2	69,9	264,9	11,6
	4 ½	-	RLP 19408	18,843	25.551	3.44	13.71	2.75	10.43	25.6	87,4	348,2	69,9	264,9	11,6
	-	115	RLP 19115M	18,843	25.551	3.44	13.71	2.75	10.43	25.6	87,4	348,2	69,9	264,9	11,6
	4 %16	-	RLP 19409	18,843	25.551	3.44	13.71	2.75	10.43	25.6	87,4	348,2	69,9	264,9	11,6
	4 5⁄8	-	RLP 19410	18,843	25.551	3.44	13.71	2.75	10.43	25.6	87,4	348,2	69,9	264,9	11,6

ENERPAC 31

ENERPAC.

Hexagon Range:
7/8 - 61/8 inchesRSL
SeriesHexagon Range:
22 - 155 mmSeriesMaximum Operating Pressure:
10,000 psiImage: Content of the series

Drive Unit Model Number	AF	Size	Hexagon Cassette Model Number	Torque (in) Output				Wt.	(mm)						
	(in)	(mm)	Humber	(ft-lbs)	(Nm)	R	L	W	н	(lbs)	R	L	W	н	(kg)
	3 1⁄/8	80	RLP 28302	16,000	21.696	2.56	14.36	3.00	10.54	27.6	65,0	364,7	76,2	267,7	12,5
	3 ¾16	-	RLP 28303	16,000	21.696	2.56	14.36	3.00	10.54	27.6	65,0	364,7	76,2	267,7	12,5
	-	85	RLP 28085M	16,000	21.696	2.56	14.36	3.00	10.54	27.6	65,0	364,7	76,2	267,7	12,5
	3 ¼	-	RLP 28304	16,000	21.696	2.56	14.36	3.00	10.54	27.6	65,0	364,7	76,2	267,7	12,5
	3 5⁄16	-	RLP 28305	16,000	21.696	2.56	14.36	3.00	10.54	27.6	65,0	364,7	76,2	267,7	12,5
	3 3⁄8	-	RLP 28306	16,000	21.696	2.56	14.36	3.00	10.54	27.6	65,0	364,7	76,2	267,7	12,5
	3 ⁷ /16	-	RLP 28307	16,000	21.696	2.56	14.36	3.00	10.54	27.6	65,0	364,7	76,2	267,7	12,5
	3 ½	-	RLP 28308	16,000	21.696	2.56	14.36	3.00	10.54	27.6	65,0	364,7	76,2	267,7	12,5
	-	90	RLP 28090M	22,000	29.832	2.92	14.36	3.00	10.77	28.8	74,2	364,7	76,2	273,6	13,1
	3%16	-	RLP 28309	22,000	29.832	2.92	14.36	3.00	10.77	28.8	74,2	364,7	76,2	273,6	13,1
	3%	-	RLP 28310	22,000	29.832	2.92	14.36	3.00	10.77	28.8	74,2	364,7	76,2	273,6	13,1
-	3 ¹ /16	-	RLP 28311	22,000	29.832	2.92	14.36	3.00	10.77	28.8	74,2	364,7	76,2	273,6	13,1
	3 %4	95	RLP 20312	22,000	29.832	2.92	14.30	3.00	10.77	28.8	74,2	304,7	76,2	273,0	13,1
	376	-	DI D 20214	22,000	29.002	2.92	14.30	3.00	10.77	20.0	74,2	364,7	76.2	273,0	12.1
	3 15/10	100	DI D 28315	22,000	27.071	2.92	14.30	3.00	11.11	21.7	14,Z	267.5	76.2	273,0	1/ /
-	J ¹ /16	100	RI P 28400	28,002	37 971	3.29	14.47	3.00	11.14	31.7	83.6	367.5	76.2	283.0	1/ /
	41/16	_	RI P 28401	28,002	37 971	3.29	14.47	3.00	11 1/	31.7	83.6	367.5	76.2	283.0	14.4
-	41/2	105	RLP 28402	28,002	37 971	3.29	14 47	3.00	11 14	31.7	83.6	367.5	76.2	283.0	14.4
	4 ³ /16	-	RLP 28403	28,002	37 971	3.29	14.47	3.00	11 14	31.7	83.6	367.5	76.2	283.0	14.4
-	4 ¹ / ₄	-	RLP 28404	28.002	37.971	3.29	14.47	3.00	11.14	31.7	83.6	367.5	76.2	283.0	14.4
RSL28000	4 ⁵ / ₁₆	110	RLP 28405	28,002	37.971	3.43	14.61	3.00	11.28	31.5	87.1	371.1	76.2	286.5	14.3
	4%	_	RLP 28406	28.002	37.971	3.43	14.61	3.00	11.28	31.5	87,1	371,1	76.2	286.5	14.3
	4 ⁷ / ₁₆	-	RLP 28407	28,002	37.971	3.43	14.61	3.00	11.28	31.5	87,1	371,1	76,2	286,5	14,3
	4 ½	-	RLP 28408	28,002	37.971	3.43	14.61	3.00	11.28	31.5	87,1	371,1	76,2	286,5	14,3
	-	115	RLP 28115M	28,002	37.971	3.43	14.61	3.00	11.28	31.5	87,1	371,1	76,2	286,5	14,3
	4 %16	-	RLP 28409	28,002	37.971	3.43	14.61	3.00	11.28	31.5	87,1	371,1	76,2	286,5	14,3
	4 5⁄8	-	RLP 28410	28,002	37.971	3.43	14.61	3.00	11.28	31.5	87,1	371,1	76,2	286,5	14,3
	4 ¾	120	RLP 28412	28,002	37.971	3.65	14.83	3.00	11.50	33.5	92,7	376,7	76,2	292,1	15,2
	-	123	RLP 28123M	28,002	37.971	3.65	14.83	3.00	11.50	33.5	92,7	376,7	76,2	292,1	15,2
	4 ⁷ /8	-	RLP 28414	28,002	37.971	3.65	14.83	3.00	11.50	33.5	92,7	376,7	76,2	292,1	15,2
.	5	-	RLP 28500	28,002	37.971	3.65	14.83	3.00	11.50	33.5	92,7	376,7	76,2	292,1	15,2
	5½	130	RLP 28502	28,002	37.971	3.79	14.97	3.00	11.64	33.2	96,3	380,2	76,2	295,7	15,1
	53/16	-	RLP 28503	28,002	37.971	3.79	14.97	3.00	11.64	33.2	96,3	380,2	76,2	295,7	15,1
	51/4	-	RLP 28504	28,002	37.971	3.79	14.97	3.00	11.64	33.2	96,3	380,2	76,2	295,7	15,1
	5%	135	RLP 28506	28,002	37.9/1	3.79	14.97	3.00	11.64	33.2	96,3	380,2	76,2	295,7	15,1
	5 1/2	140	RLP 28508	28,002	37.971	4.05	15.23	3.00	11.90	33.5	102,9	380,8	76.0	302,3	15,2
	55/0	-	RLP 20009	20,002	27 071	4.05	15.23	3.00	11.90	33.5 22 F	102,9	300,0	76.0	202,3	15.2
	53/	1/5	RI D 28512	28,002	37 071	4.05	15.23	3.00	11.90	33.5	102,9	386.8	76.2	302,3	15.2
	57/4	140	RI P 28514	28,002	37 971	4.00	15.23	3.00	12 15	34.5	102,9	303.0	76.2	302,3	15.6
	6	-	BLP 28600	28,002	37 971	4 22	15.48	3.00	12.13	34.5	107,2	393.2	76.2	308.6	15.6
	6 ¹ / ₈	155	RLP 28602	28.002	37.971	4.22	15.48	3.00	12.15	34.5	107.2	393.2	76.2	308.6	15.6
ı – – – – – – – – – – – – – – – – – – –	- / -			,				0.00					,_	, .	

Options and Accessories

TWMPS503

TWMPS503, Torque Wrench Moly Paste

- Enerpac 503 Moly Paste reduces friction on threaded fasteners – bolts, nuts and studs
- The low and uniform friction coefficient of 0.06 (torque coefficient, K, of 0.11) creates reliable assembly conditions
- This lubricant stays in place through heat, load and vibration to ensure trouble-free disassembly from -20 °F to 750 °F (-29 °C to 400 °C)
- 4 lbs. (1,8 kg) container

ERA-Series, Extended Reaction Arms

For Torque	Model		Dimensions (in)									
Wrench	Number				()							
Model No.		A	В	С	D	E	(lbs)					
	ERA15114	3.42	5.71	7.68	1.14	1.42	1.98					
	ERA15228	4.45	7.13	9.06	1.14	1.42	3.97					
RSL1500	ERA15342	5.47	8.90	10.87	1.14	1.42	5.95					
	ERA15456	6.46	9.29	11.26	1.14	1.42	7.94					
	ERA15570	7.44	11.30	13.27	1.14	1.42	9.92					
	ERA30114	4.13	7.68	10.12	1.34	1.61	5.95					
RSL3000	ERA30228	5.16	9.09	11.54	1.34	1.61	7.94					
	ERA30342	6.14	10.47	12.91	1.34	1.61	9.92					
	ERA30456	7.13	11.89	14.66	1.34	1.61	11.90					
	ERA50114	5.16	8.19	11.18	1.73	1.89	9.04					
	ERA50228	6.14	9.57	12.60	1.73	1.89	11.02					
N3L3000	ERA50342	7.13	10.98	13.98	1.73	1.89	13.01					
	ERA50456	8.15	12.37	15.39	1.73	1.89	15.00					
	ERA110114	4.92	8.62	11.65	2.01	2.32	13.89					
DEL 11000	ERA110228	5.91	10.04	13.06	2.01	2.32	16.09					
NSL11000	ERA110342	6.93	11.46	14.45	2.01	2.32	18.08					
	ERA110456	7.91	12.83	15.83	2.01	2.32	20.06					
BSI 28000	ERA280228	6.73	13.19	16.18	2.24	3.50	24.91					
NGL20000	ERA280342	7.76	14.57	17.60	2.24	3.50	30.00					

 ERA280342
 7.76
 14.57
 17.60
 2.24
 3.50
 1

 NOTE: Extended Reaction Arms for RSL8000 and RSL19000 are available on request.

ERT-Series, Extended Reaction Tubes

For Torque	Model	Dii	mensions	; (in)	
Model No.	Number	A	В	ØC	(lbs)
	ERT152	6.18	2.01	2.24	1.98
	ERT156	10.20	5.98	2.24	3.53
RSL1500	ERT159	13.19	9.02	2.24	5.51
	ERT1512	16.18	12.01	2.24	7.50
	ERT1524	28.19	24.02	2.24	14.78
DCI 2000	ERT3012	16.89	12.01	2.76	6.61
R5L3000	ERT3024	28.90	24.02	2.76	13.01
	ERT5012	17.76	12.01	3.50	12.35
N3L3000	ERT5024	29.76	24.02	3.50	24.91
	ERT1106	12.99	5.98	3.74	4.63
DCI 11000	ERT11012	19.02	12.01	3.74	9.04
NSL11000	ERT11018	25.00	17.99	3.74	13.45
	ERT11024	30.98	24.02	3.74	18.52
RSL19000	ERT19024	31.50	24.02	5	36.82
	ERT2806	13.82	5.98	5	7.94
DCI 20000	ERT28012	19.80	12.01	5	16.09
RSL28000	ERT28018	25.79	17.99	5	24.03
	ERT28024	31.81	24.02	5	36.60

NOTE: Extended Reaction Tubes for RSL8000 are available on request.

- Only to be used on RSL-drive units with RSQ-square drive wrenches
- Used in place of standard reaction arm
- Lightweight interchangeable design

• Full torque rated

- Only to be used on RSL-drive units with RLP-hexagon cassettes
- Used in place of standard reaction arm
- One-piece steel design, durable and simple
- Increases tool fit in restricted access areas
- Full torque rated

ENERPAC.

Shown: RSL drive unit with interchangeable RLP-SL slimline cassette

Simplicity

- Minimum nose radius for trouble-free tool fit which makes it uniquely equipped to access tight spaces, such as Blowout Preventers (BOPs)
- Simple robust alloy steel design with three moving parts for reduced maintenance
- Proven to perform even in the harshest environments
- Reaction arm has a simple dial lock for rapid change
- Designed to give optimum strength-to-weight and torqueto-weight ratios

Versatility

- Interchangeable cassette design
- Drive unit / hexagon cassette combination for limited height in line solutions
- Wide range of hexagon sizes available for all applications

Accuracy

Accuracy of +/-3%

Ease of Use

- Few moving parts are easily accessible for quick field maintenance
- Innovative design that completely encloses all moving parts and minimizes pinch points

Setting New Standards in Simplicity, Versatility and Accuracy

Torque Wrench Pumps

Visit enerpac.com for system matched air and electric torque wrench pumps that are ideal for use with hydraulic torque wrenches.

Options and Accessories

Optional extended reaction arms and tubes are common accessories available for maximum versatility. Please contact your Enerpac

representative to help you select the optimum solution for your application.

Back-Up Spanner

To be used to stop back nut from turning during make up or break out. Two hex sizes in one tool.

Hexagon S	Sizes (A/F)	Back-Up Spanner Model Number					
(in)	(mm)						
11/16 - 11/4	27 - 32	BUS 01					
17/16 - 15/8	36 - 41	BUS 02					
1 ¹³ ⁄16 - 2	46 - 50	BUS 03					
2 ³ ⁄16 - 2 ³ ⁄8	55 - 60	BUS 04					
2%16 - 23⁄4	65 - 70	BUS 05					
215/16 - 31/8	75 - 80	BUS 06					
31⁄2 - 37⁄8	-	BUS 07					
41⁄4 - 45⁄8	-	BUS 08					
_	85 - 90	BUS 09					
3 ³ ⁄4 - 3 ¹⁵ ⁄16	95 - 100	BUS 10					
41⁄8 - 415⁄16	105 - 110	BUS 11					
-	115 - 120	BUS 12					
Page							
Slimline Stepped-Width Hexagon Cassettes for RSL-Series

Slimline Stepped-Width **Hexagon Cassettes**

Accessing narrow spaces, typically found on BOP stacks, normally requires significantly reducing the width of the torque wrench. For the tool operator, this has always meant vastly reduced tool durability, and/or reduced torque output.

By using the highest-grade materials and perfecting the geometry, the RSL Slimline cassettes are able to provide greater torque, get into tighter spaces, and vastly outperform the competition in product durability.

W

SELECTION CHART

Page: 86

Drive Unit Model Number	AF Size H		Hexagon Cassette Model	Maxi Tor Out	mum que tput		Di	imensions (in)			Wt.	Dimensions (mm)				Wt.	
	(in)	(mm)	Number	(ft-lbs)	(Nm)	R	L	w	W1	н	(lbs)	R	L	w	W1	н	(kg)
	1 ¼	32	RLP 1104SL	375	509	1.03	6.12	1.25	1.00	4.57	2.2	26,2	155,4	31,8	25,4	116,1	1,0
	1 7⁄16	36	RLP 1107SL	658	892	1.15	6.24	1.25	1.00	4.69	2.3	29,2	158,5	31,8	25,4	119,1	1,0
RSL1500	1 5⁄/8	41	RLP 1110SL	831	1127	1.31	6.41	1.25	1.00	4.86	2.7	33,3	162,8	31,8	25,4	123,4	1,2
	1 ¹³ /16	46	RLP 1113SL	831	1127	1.40	6.49	1.25	1.00	4.94	2.7	35,6	164,8	31,8	25,4	125,5	1,2
	2	50	RLP 1200SL	831	1127	1.48	6.58	1.25	1.00	5.03	2.7	37,6	167,1	31,8	25,4	127,8	1,2
	2	50	RLP 3200SL	1354	1836	1.60	8.04	1.38	1.13	5.92	4.5	40,6	204,2	35,1	28,7	150,4	2,0
	2 ³ /16	55	RLP 3203SL	1604	2175	1.76	8.16	1.38	1.13	6.08	4.7	44,7	207,3	35,1	28,7	154,4	2,1
BSI 3000	2 3⁄8	60	RLP 3206SL	1604	2175	1.84	8.25	1.38	1.13	6.15	4.8	46,7	209,6	35,1	28,7	156,2	2,2
NOL0000	2% 16	65	RLP 3209SL	1604	2175	1.95	8.14	1.38	1.13	6.26	4.6	49,5	206,8	35,1	28,7	159,0	2,1
	2 ³ /4	70	RLP 3212SL	1604	2175	2.04	8.23	1.38	1.13	6.36	4.4	51,8	209,0	35,1	28,7	161,5	2,0
	2 ¹⁵ /16	75	RLP 3215SL	1604	2175	2.16	8.34	1.38	1.13	6.54	4.7	54,9	211,8	35,1	28,7	166,1	2,1
BSI 5000	2 ³ /4	70	RLP 5212SL	4173	5659	2.16	9.63	1.75	1.62	7.07	7.5	54,9	244,6	44,5	41,1	179,6	3,4
INSE3000	3 1⁄8	80	RLP 5302SL	4173	5659	2.26	9.73	1.75	1.62	7.17	7.2	57,4	247,1	44,5	41,1	182,1	3,3
	2 ³ /16	55	RLP 8203SL	2487	3372	1.71	9.53	2.25	2.00	6.84	8.5	43,4	242,1	57,2	50,8	173,7	3,9
	2 ¾	60	RLP 8206SL	3198	4336	1.87	9.67	2.25	2.00	7.00	8.9	47,5	245,6	57,2	50,8	177,8	4,0
	2 %16	65	RLP 8209SL	4122	5589	2.01	9.67	2.25	2.00	7.13	9.0	51,1	245,6	57,2	50,8	181,1	4,1
RSL8000	2 ³ /4	70	RLP 8212SL	5587	7576	2.16	9.82	2.25	2.00	7.28	9.6	54,9	249,4	57,2	50,8	184,9	4,4
	2 ¹⁵ / ₁₆	75	RLP 8215SL	5587	7576	2.24	9.90	2.25	2.00	7.36	9.6	56,9	251,5	57,2	50,8	186,9	4,4
	3 1⁄8	80	RLP 8302SL	5587	7576	2.26	9.92	2.25	2.00	7.39	9.3	57,4	252,0	57,2	50,8	187,7	4,2
	33/16	_	RLP 8303SL	4740	6427	2.26	9.92	2.25	2.00	7.39	9.3	57.4	252.0	57.2	50.8	187.7	4.2

ENERPAC 🖉 35

Square Drive Hydraulic Torque Wrenches

ENERPAC.

V RSL drive unit with interchangeable RSQ square drive head

Safety and Performance

- Innovative design that completely encloses all moving parts and minimizes pinch points
- 30–35° of operating stroke provides added productivity while avoiding "tool lock on" which is common with some torque wrench designs

Simplicity

- Simple robust design with just three moving parts for reduced maintenance
- Robust handles are available which mount on both sides and the tops of cassettes to allow for extra maneuverability
- Pull-type square drive release for quickly reversing the square drive for tightening or loosening

Versatility

- Square Drive Sets available with interchangeable Hexagon Cassettes
- Power head / square drive combination for flexible use with standard impact quality sockets
- Reaction arm has a simple dial lock for rapid change

Accuracy

• Accuracy of +/-3%

Setting New Standards in Safety, Simplicity and Performance

Options and Accessories

Optional extended reaction arms and tubes are common accessories available for maximum versatility. Please

contact your Enerpac representative to help you select the optimum solution for your application.

Back-Up Spanner

To be used to stop back nut from turning during make up or break out. Two hex sizes in one tool.

Hexagon S	izes (A/F)	Back-Up Spanner							
(in)	(mm)	Model Number							
11/16 - 11/4	27 - 32	BUS 01							
17/16 - 15/8	36 - 41	BUS 02							
1 ¹³ ⁄16 - 2	46 - 50	BUS 03							
23/16 - 23/8	55 - 60	BUS 04							
2%16 - 23⁄4	65 - 70	BUS 05							
215/16 - 31/8	75 - 80	BUS 06							
31⁄2 - 37⁄8	-	BUS 07							
41⁄4 - 45⁄8	-	BUS 08							
-	85 - 90	BUS 09							
3 ³ ⁄4 - 3 ¹⁵ ⁄16	95 - 100	BUS 10							
4 ¹ /8 - 4 ¹⁵ /16	105 - 110	BUS 11							
_	115 - 120	BUS 12							
Page: 11									

Torque Wrench Hoses Use Enerpac THQ-700 Series hoses with RSL-Series torque wrenches to ensure the integrity of your hydraulic system.

6 feet long, 2 hoses	THQ702T
19.5 feet long, 2 hoses	THQ706T
39 feet long, 2 hoses	THQ712T

RSL-Series, Square Drive Torque Wrenches

RSL

Series

Maximum Torque Output:

Maximum Torque Output:

3/4 - 21/2 inches

Maximum Operating Pressure:

Square Drive Range:

10,000 psi

1408 - 28,002 Ft.lbs

1909 - 37,965 Nm

	TION CH	ART			Page: 45									
Maxiı Torque	mum Output	Square Drive Size	Square Drive Head Model Numbers ¹⁾	Square Drive Torque Wrench Set Model Numbers ²⁾		Dimensions (in)						Weight (lbs) Drive Unit Reaction Squa		
(ft-lbs)	(Nm)	(in)			w	W1	W2	н	L	L1	R	(no reaction arm)	Arm	Drive Head
1408	1909	3⁄4	RSQ1500	RSQ1500ST	1.25	2.30	3.98	4.48	6.29	7.45	0.94	3.4	1.0	2.8
3080	4176	1	RSQ3000	RSQ3000ST	1.50	2.88	4.89	5.57	7.67	10.30	1.25	5.6	2.2	5.2
5303	7190	11/2	RSQ5000	RSQ5000ST	1.75	3.71	6.31	6.42	9.27	11.67	1.52	8.9	4.0	9.1
7862	10659	1½	RSQ8000	RSQ8000ST	2.40	4.14	6.30	6.65	9.47	11.78	1.52	10.6	4.3	11.6
11154	15123	11/2	RSQ11000	RSQ11000ST	2.50	4.63	6.70	7.93	11.20	12.40	1.88	11.6	6.6	18.4
18843	25547	21/2	RSQ19000	RSQ19000ST	3.25	6.38	10.42	9.48	13.46	18.97	2.50	20.0	15.7	28.9
28002	37965	21/2	RSQ28000	RSQ28000ST	3.50	6.54	8.93	10.35	14.09	21.07	2.50	22.0	11.1	39.3

¹⁾ When ordering an RSQ Square Drive Head the RSL Drive Unit must be ordered separately.

²⁾ An RSQ....ST Torque Wrench Set includes a RSQ Square Drive Head, RSL Drive Unit with short Whip Hoses, and Reaction Arm

torque wrench pumps that are ideal for use with

BSH-Series Sockets

Heavy-Duty Impact Sockets for power driven torquing equipment.

Page:

10

Select the Right Torque

Choose your Enerpac Torque Wrench using the untightening rule of thumb:

Loosening torque equals about 250% of tightening torque.

Torque Wrench Pumps

Visit enerpac.com for system matched air and electric hydraulic torque wrenches.

ENERPAC 🖉 37

PTW1000

Continuous Rotation Controlled Torque

Productivity

- High speed continuous rotation for constant torque output
- Low friction planetary gearbox design minimizes wear and extends uptime

Safety

- Ergonomic, low vibration design reduces fatigue and the risk of vibration related injuries for the operator
- Low noise air motor provides quiet, consistent performance for indoor and outdoor applications

Convenience

- Provided with standard reaction arm; wide assortment of custom arms and accessories are available
- Available with or without Filter-Regulator-Lubricator (FRL)
- Unique calibration certificate provided with each tool

MCS-Series, Mobile Calibration System

To check torque accuracy, run calibration tests and create calibration certificates prior to the use

of continuous rotation torque tools in various applications while on a job site.

PTW-Series Pneumatic Torque Wrenches are ideal for applications where speed and precision are critical, such as track maintenance.

 The PTW1000 makes quick work of this flange maintenance job.

Pneumatic Torque Wrenches

PTW

Series

PTW-Series Pneumatic Torque Wrenches

Enerpac PTW-Series Pneumatic Torque

Wrenches are designed for applications that require speed and control. The standard package includes a Torque Wrench with a calibration certificate, an FRL (Filter/Regulator/Lubricator), and a 10 ft. (3 m) long, $\frac{1}{2}$ " (13 mm) diameter air hose, which connects the FRL to the wrench.

Once the air hoses are connected, the operator simply adjusts the air pressure on the FRL to achieve the desired torque using the calibration certificate. After this, the tool is ready to go to work!*

The air source used with the PTW system must be regulated and/ or limited to 120 psi (8.3 bar), and must be capable of providing a volume of at least 50 CFM (85 CMH) at 100 psi (6.9 bar). A separate ½" (13 mm) hose (not included) must be used to connect the FRL to the air supply.

*See instruction manual for comprehensive instructions

Nominal Output Torque: 6000 Ft.Ibs

Square Drive Range: 3/4 - 1 - 11/2 inch

Accessories

Enerpac offers a full line of accessories including a range of reaction arms and drives.

Page:

Page:

Page:

42

10

11

- 1 PTW Torque Wrench
- (2) Standard Reaction Arm
- ③ FRL120C Filter-Regulator-Lubricator with 10 feet air hose

BSH-Series Sockets Heavy-Duty Impact Sockets for power driven torquing equipment.

All tools are shipped complete with standard reaction arm and FRL*.

Back-Up Spanner

Hands free tool to be used to stop back nut from turning during make up or break out. Two hex sizes in one tool.

▼ SELECTION CHART

Weight** Minimum Nominal Square Model **RPM** Dimensions (in) Drive Number* Torque Torque Α в С D (Ft.lbs) (Ft.lbs) (lbs) (Nm) (Nm) (in) PTW1000C-75 12.6 300 407 1000 1356 3⁄4 10.70 3.27 2.83 5.12 17.4 407 1000 PTW1000C 12.6 10.70 3.27 300 1356 1 2.83 5.12 18 2000 2712 PTW2000C 3.27 19.5 500 678 1 8.0 11.26 3.11 5.24 900 1220 3000 4067 PTW3000C 3.1 13.50 3.27 3.74 5.24 23 1 1300 1763 6000 8135 11/2 **PTW6000C** 2.5 14.40 4.49 5.00 7.00 39

* To order without FRL and hose, remove "C" suffix from model number (e.g. PTW3000).

** Weight does not include reaction arm. Reaction arm weight for PTW1000, PTW2000, PTW3000 is 2.9 lbs. and for the PTW6000 is 7.75 lbs.

ETW-Series, Electric Torque Wrenches

ENERPAC. 🖉

TW3000B (torque wrench shown without servo motor cord)*

Versatility

- Patented firmware design provides accurate fastening on soft, hard, or pre-tightened joints
- Single control box may be used to operate multiple wrench models
- Wrenches and control boxes may be purchased separately or as a set

Performance

- · High-speed continuous rotation gets the job done faster
- Torque and angle functionality allows input of nominal torque value followed by a specific angle of rotation
- Pass/Fail LED indicator on back of tool verifies fastening has been completed according to specified input

Simplicity

- Control box with large 7-inch touchscreen simplifies tool operation
- Controls on back of wrench enable operator to monitor and manage the fastening process without returning to the control box
- Brightly lit three-line LED display on wrench is easy to read in any environment

Traceability

- Fastening record can be viewed on-screen and transferred to a computer
- Each tool is performance tested and shipped complete with a factory calibration certificate

Safety

- Lift points on wrench enable use with positioning handle or lifting device for greater handling safety
- Ground fault detector protects operator in the event of insufficient grounding
- * NOTE: Wrench cannot be used without control box.

Your Simple Solution for Smart Bolting

Touchscreen Control Box

ETW tools feature an easy to use, interactive touch-screen control box, which helps make even the most complex jobs simple to complete.

A single control box may be used to operate multiple wrench models.

Firmware upgrades may be uploaded online and easily transferred to the tool via a USB connection.

Easy Access to Controls

Controls on back of wrench with LED display allow user to directly input desired torque, change direction of rotation, and monitor the fastening process.

American Electrical Safety by CSA International

- Carry a CSA US and Canada mark

- Are CE declared

▼ ETW-Series Electric Torque Wrenches are ideal for high volume fastening applications that require precision and traceability, such as this wind tower job.

Electric Torque Wrenches

ETW-Series Electric Torque Wrenches

Enerpac ETW-Series Electric Torque Wrenches

are particularly well suited to complex jobs which demand precision and traceability.

The tools feature an automatic mode, which helps simplify and automate complex jobs, including those with torque and angle specifications, through the creation of presets.

Using the touchscreen, simply input the number of fasteners and desired torque value for each fastening step, followed by the required angle of turn. This sequence may then be saved as an automatic preset for future use.

Once the input torque is achieved, the tool stalls, and a pass/fail indicator verifies that it is ready to move on to the next fastener.

When the job is completed, the fastening record can be viewed on the touch screen, or exported to a computer via a USB connection on the control box.

Nominal Output Torque: 6000 Ft.lbs

Square Drive Range: 1 - 11/2 inch

Torque Wrench Accessories

Enerpac offers a full line of accessories including a wide range of reaction arms and drives.

BSH-Series Sockets

Heavy-Duty Impact Sockets for power driven torquing equipment. Details on www.enerpac.com.

Voltage: (Model No. ending with suffix)

- B = 115V, 60 Hz
- I = 230V, 60 Hz (with NEMA 6-15 plug)
- $\mathbf{E} = 230 \text{V}, 50 \text{ Hz}$ (with commonly used European (SCHUKO) plug)

В	A
C C	

ETW Set

(1) ETW Torque Wrench (with 20-ft. servo cord) (2) Control Box (with 6-ft. power cord)

(3) Reaction Arm

Ε

ΕTW	Torque	Wrench
-----	--------	--------

ET/	NCR	Cor	ntrol	R

Mini	mum	Non	ninal	Square	ETW Set	ETW Set Includes		Voltage	Nominal	nal Dimensions (in))	Weight ¹⁾	
Tor	que	Tor	que	Drive	Model	Wrench	Control Box		Speed	1				
(Ft.lbs)	(Nm)	(Ft.lbs)	(Nm)	(in)	Number	Model No. ²⁾	Model No. ²⁾		RPMs	Α	В	С	D	(lbs)
200	270	1000	1355	1.0	ETW1000B	TW1000B	ETWCB-B	115V 60 Hz	9.8	14.4	3.3	2.8	5.2	18.1
200	270	1000	1355	1.0	ETW1000I	TW1000EI	ETWCB-I	230V 60 Hz	15.2	14.4	3.3	2.8	5.2	18.1
200	270	1000	1355	1.0	ETW1000E	TW1000EI	ETWCB-E	230V 50 Hz	15.2	14.4	3.3	2.8	5.2	18.1
400	540	2000	2710	1.0	ETW2000B	TW2000B	ETWCB-B	115V 60 Hz	5.8	15.0	3.3	3.1	5.2	19.7
400	540	2000	2710	1.0	ETW2000I	TW2000EI	ETWCB-I	230V 60 Hz	9.0	15.0	3.3	3.1	5.2	19.7
400	540	2000	2710	1.0	ETW2000E	TW2000EI	ETWCB-E	230V 50 Hz	9.0	15.0	3.3	3.1	5.2	19.7
600	810	3000	4065	1.0	ETW3000B	TW3000B	ETWCB-B	115V 60 Hz	2.8	17.1	3.3	3.7	5.2	26.3
600	810	3000	4065	1.0	ETW3000I	TW3000EI	ETWCB-I	230V 60 Hz	4.3	17.1	3.3	3.7	5.2	26.3
600	810	3000	4065	1.0	ETW3000E	TW3000EI	ETWCB-E	230V 50 Hz	4.3	17.1	3.3	3.7	5.2	26.3
1200	1625	6000	8135	1.5	ETW6000B	TW6000B	ETWCB-B	115V 60 Hz	1.9	17.8	4.5	5.0	7.0	42.1
1200	1625	6000	8135	1.5	ETW6000I	TW6000EI	ETWCB-I	230V 60 Hz	2.9	17.8	4.5	5.0	7.0	42.1
1200	1625	6000	8135	1.5	ETW6000E	TW6000EI	ETWCB-E	230V 50 Hz	2.9	17.8	4.5	5.0	7.0	42.1

¹⁾ Wrench weight does not include reaction arm. Reaction arm weight for ETW1000, ETW2000, ETW3000 is 2.9 lbs. and for the ETW6000 is 7.75 lbs. Standard reaction arm included with TW-models. Weight of control box is 20 lbs.

²⁾ Use of ETW requires both wrench and control box. These may be purchased separately, or as a calibrated set.

PTW and ETW-Series Torque Wrenches

Enerpac offers the following accessories to support a wide variety of applications in industries such as mining, power generation and oil and gas. For additional custom accessories not pictured here, please contact Enerpac.

Nominal Output Torque: 6000 Ft.lbs

Square Drive Range: 1 - 11/2 inch

BSH-Series Sockets Heavy-Duty Impact Sockets for power driven torquing equipment. Details on www.enerpac.com. Page:

10

▼	Optional accessories for use with PTW1000, ETW1000, PTW2000, ETW2000, PTW3000, ETW3000 models												
No.	Description	Model No.	Application	Dir	nension	s in inch	nes						
				Α	В	С	D						
1	Extended Drive, 6 inch (152 mm)	ED6TWS		2.44	8.11	2.87	—						
1	Extended Drive, 12 inch (305 mm)	ED12TWS	Nose extension, primarily for truck wheel bolts	2.44	15.12	2.87	_						
1	Extended Drive, 18 inch (457 mm)	ED18TWS		2.44	20.12	2.87	—						
2	Standard Reaction Arm	RATWS	RATWS Standard arm included with PTW/ETW model 2				0.83						
3	Extended Reaction Arm	ERATWS	Long plate for use with deep well sockets	2.87	5.91	7.95	2.01						
4	Sliding Reaction Arm	SLRATWS	For widely spaced and uneven bolt centers	4.41	15.00	7.99	4.02						
5	Double Straight Reaction Arm	DSATWS	Reduces time to reposition arm *	2.87	15.98	0.75	4.02						
6	Straight Reaction Arm	SRATWS	Long plate for wide spaced reaction points	2.87	9.45	0.75	2.01						
7	Blank Reaction Arm **	BLTWS	Weldable blank for custom applications **	2.83	5.94	0.98	2.01						
▼	For use with PTW6000, ETW6000	models											
1	Extended Drive 6 inch (152 mm)	ED6TWL		3.31	9.13	4.02	—						
1	Extended Drive 12 inch (305 mm)	ED12TWL	Nose extension, primarily for truck wheel bolts	3.31	15.12	4.02	—						
2	Standard Reaction Arm	RATWL	Standard arm included with PTW/ETW model	4.02	9.02	5.75	1.26						
3	Extended Reaction Arm	ERATWL	Long plate for use with deep well sockets	4.02	10.00	7.24	2.52						
4	Sliding Reaction Arm	SLRATWL	For widely spaced and uneven bolt centers	5.98	16.50	7.48	4.49						
5	Double Straight Arm	DSATWL	Reduces time to reposition arm *	4.02	20.00	1.26	2.24						
6	Straight Reaction Arm	SRATWL	Long plate for wide spaced reaction points	4.02	12.01	1.26	2.24						
7	Blank Reaction Arm **	BLTWL	Weldable blank for custom applications **	4.02	5.98	1.26	2.24						

* Time to reposition arm when repeatedly moving from tightening to loosening.

** A WARNING: Blank reaction arms must be heat treated to HRc 38-42 prior to use.

Typical Applications

PTW- & ETW-SERIES TORQUE WRENCHES

A simple-to-use solution for tough bolting jobs, when you want them done quickly and safely.

Typical PTW & ETW-Series Torque Wrench Applications

Mining

- Track maintenance
- Undercarriage
 maintenance
- Wheel
 maintenance
- Shovel maintenance

Generation

Turbine bolts

• Tower segments

• Turbine casings

Power

Oil & Gas

- Pipe flanges
- Valves
- Manway covers
- Pressure vessels

ADVANTAGES

 Safe and Quiet Axle Correction with a Pneumatic Torque Wrench.

PRODUCTIVITY

- High speed continuous rotation for constant torque output
- Low friction planetary gearbox design minimizes wear and extends uptime

SAFETY

- Ergonomic, low vibration design reduces operator fatigue and vibration-related injuries
- Low noise air motor provides quiet, consistent performance for indoor and outdoor applications

SIMPLICITY

- Ready to go tool comes with Filter/Regulator/Lubricator (FRL) and calibration certificate
- Simple to operate trigger style handle with easily accessible tightening/ loosening control

MCS-Series, Mobile Calibration System

ENERPAC. 🖉

MCS-Series, Mobile Calibration System

Versatility

- Accurately measures torque output for continuous rotation tools from 150 to 7,500 Ft.lbs.
- Adaptable design enables use with a large variety of Enerpac and competitive wrenches
- Standard global electrical adaptor set enables use in most electrical outlet types from 90V to 250V

Performance

- Certificate Manager feature enables quick and easy creation of calibration certificates
- Tool database feature allows specific wrench data and calibration results to be recorded and saved for future use
- Each MCS comes with a standard ISO17025 calibration certificate

Ease of Use

- Compact design facilitates easy transport, allowing calibration to be carried out in the shop, on jobsites, or even in a vehicle
- Integrated digital interface enables torque values to be displayed, saved, printed or transferred to a computer

MCS Series

Nominal Output Torque: **150 - 7500 Ft.Ibs** Square Drive Range:

1½ inch

Accuracy

The calibration system is a calibrated instrument qualified in a UKAS certified laboratory. The accuracy of the MCS7500 is calibrated to meet or exceed:1% of FSD from 2% to 8% of torque range and 1% of reading from 8% to 100% of torque range.

Female Reducer Set

The Female Reducer Set consists of two reducers: $1\frac{1}{2} \times 1$ inch and $1\frac{1}{2} \times \frac{3}{4}$ inch. To be ordered separately as **MCS7500RS.**

▼ SELECTION CHART

Minimum Torque		Nom Torc	iinal que	Female Square Drive	Model Number*	Description	Weight
(Ft.lbs)	(Nm)	(Ft.lbs)	(Nm)	(in)			(lbs)
148	200	7375	10,000	11⁄2	MCS7500	Mobile Calibration System (MCS)	76
148	200	7375	10,000	11/2	MCS7500C	MCS with carrying case	87

* Not suitable for use with hydraulic wrenches or impact tools.

Selection Matrix – Optimum Wrench-Pump Combinations

Fo pe	r optimum rformance	speed and Enerpac				5		AIR DRIVEN PUMPS
rec fol	commends lowing syst	the tem set-up	XC-Series	XC-Series TQ-Series		ZU4-Series	ZE-Series	ZA4-Series
with wrench-pump- hose combinations. For other combinations, consult your Enerpac bolting expert or your authorized Enerpac								
dis	stributor.	Speed:					\bigcirc	
Oil Flow at 10,000 psi:			15 in ³ /min	30 in ³ /min	32 in ³ /min	60 in ³ /min	60-120 in ³ /min	60 in ³ /min
Reservoir Capacity:			.5 gallon	1 gallon	.79 gallon	1 - 1.75 gallons	1 - 10 gallons	1 - 1.75 gallons
Duty Cycle:		Intermittent	Standard	Heavy-Duty	Standard	Heavy-Duty	Heavy-Duty	
Weight:		i		L.	ÅÅ			
	Field/Fac	tory Work:	Field	Field/Factory	Field/Factory	Field	Factory	Field
ries		S1500X S3000X	Optimal	Optimal	Optimal			
S-Se	0	S11000X S25000X	-	Acceptable	Acceptable			
es	1 4	W2000X W4000X	Optimal	Optimal	Optimal	Optimal	Optimal	Optimal
W-Seri	6	W8000X W15000X W22000X W35000X	-	Acceptable	Acceptable	-		
ries	1	RSL1500 RSL3000 RSL5000	Optimal	Optimal	Optimal			
RSL-Seri		RSL8000 RSL11000 RSL19000 RSL28000	-	Acceptable	– Optimal		Optimal	Optimal

XC-Series, Portable Cordless Pumps

The XC battery torque wrench pump is ideal for maintenance bolting applications at sites that do not have access to power or where having extension cords or air hoses could cause trip hazards.

TQ-700 Series, Electric Torque Wrench Pumps

Designed for both portability and production, the TQ-700 features optimized flow technology to deliver superior bolting speed.

E-Series, E-Pulse Electric Torque Wrench Pumps

The E-Pulse has a high-efficiency permanent magnet, direct drive motor for continuous use and long service life. It is ideal for high volume fastening applications where weight is critical and it also features a rugged roll-cage design. E-Pulse pumps include an interactive pendant for operation, programming and diagnostics.

ZU4T-Series, Electric Torque Wrench Pumps

Utilizing a universal motor, the ZU4-Series works well with long extension cords or generator driven electrical power supplies. ZU4-pumps are available in Pro and Classic formats.

- ZU4T Pro Pumps have an LCD feature to display torque or pressure, selectable torque wrench, and selfdiagnostics – premium features not available on any other pump.
- ZU4T Classic Pumps feature an analog gauge and a basic electrical

package to deliver durable, safe and efficient hydraulic power.

ZE4T, ZE5T-Series, Electric Torque Wrench Pumps

The ZE-Series features premium options, such as the LCD to display torque or pressure values, and self-diagnostics. These pumps utilize an induction motor, making the ZE-Series the coolest and quietest pumps in their class.

ZA4T-Series, Air Driven Torque Wrench Pumps

Utilizing the highly efficient design of the Z-Class pumping element, this air driven pump is best suited to power medium to large size torque wrenches.

XC-Series, Cordless Torque Wrench Pump **ENERPAC**

XC1502TB

- Ideal for maintenance bolting applications requiring portability and convenience
- Interactive pendant provides visual and vibratory feedback of pump operation
- User can set pressure and operate in manual or auto-cycle mode
- Superior run-time with 5Ah, 28V battery
- Brushless DC motor extends motor life and reduces maintenance
- 20-foot detachable pendant control, with option to use trigger control as well
- 4-inch glycerin-filled gauge for easy viewing
- User-adjustable relief valve can be locked when desired pressure is set

Portable Battery Pump for Torque Applications

28-Volt Battery The **XC28V5** with Lithiumlon technology for maximum battery performance.

Battery Charger

1-hour quick charger.

XC115VC	115 VAC
XC230VC	230 VAC

Roll Cage

A roll cage accessory is available for all XC models. Please order model number **XCRCTK.**

Torque Wrenches

The following wrenches are ideal for use with the XC Cordless Torque Wrench Pump:

<u>S-Series</u> S1500X S3000X <u>W-Series</u> W2000X W4000X RSL-Series RSL1500 RSL3000 RSL5000

Larger wrenches will work with the pump, battery run time and application speed will be impacted.

Page: 45

Cordless Torque Wrench Pump

XC

The XC-Series Cordless Torque Wrench pump is ideal for maintenance applications in the

PowerGen, Oil & Gas and MRO markets. This portable pump is perfect for remote locations, sites that do not have access to power or where trip hazards are a concern.

The interactive pendant allows the user to set and clear pressure and operate in manual or autocycle mode.

The pump has an easily accessible user adjustable valve for precise pressure control.

Fasteners Torqued On One Charge

Torque Wrench	Nut AF (in)	Stud (in)	Press- ure (psi)	Torque (ft-lbs)	Fasteners Torqued
S3000X	2%"	1½"	4800	1500	32
W2000X	2¾"	1½"	5000	1000	52

Useable Oil Capacity: 120 in³

Flow at Rated Pressure: 15 in³/min.

6 feet long, 2 hoses

19.5 feet long, 2 hoses

39 feet long, 2 hoses

Motor Size:

.5 hp

Maximum Operating Pressure: 10,000 psi

Twin Torque

Wrench Hoses

Use Enerpac THQ700 series twin hoses with

THQ702T

THQ706T

THQ712T

10,000 psi pumps.

OIL FLOW vs. PRESSURE

Pump Type	Useable Oil Capacity	Model Number	Output Flow Rate (in ³ /min)		Rate	Included with Pump	Weight (includes oil
	(in ³)		No Load	2000 psi	10,000 psi		(lbs)
Cordless Pump Kit	120	XC1502TB	125	30	15	2 batteries and 115V charger	29
Cordless Pump Kit	120	XC1502TE	125	30	15	2 batteries and 230V charger	29
Cordless Pump	120	XC1502T*	125	30	15	No batteries or charger	26.6

* Batteries and charger not included.

ENERPAC. 47

EP3504T E-Pulse Torque Wrench Pump

Performance

- Two-stage pump with high by-pass pressure: 220 in³/min at 2900 psi, 32 in³/min at 10,000 psi
- Smart controls enable motor to maintain constant power across the pressure range
- 24V DC power regulator minimizes effects of poor power supply
- Six-piston block design provides even flow for smooth operation of tool

Durability

- High-efficiency permanent magnet, direct drive motor enables continuous use and long service life
- Built-in thermal protection
- System components enclosed for protection
- IP Rating: IP54 on the Pump, IP67 on the Pendant
- Integrated heat exchanger minimizes heat buildup

Convenience

- Integrated calibrated pressure gauge
- Pendant and cord management system
- Draining oil not required for pump element maintenance
- Convenient oil fill port, oil level indicator and automatic breather

Productivity through innovation

Bolting Integrity Software

Enerpac Bolting Integrity Software Solutions play a key role in implementing and managing an Integrity Program for bolted connections. The software offers Tool selection, Bolt Load calculations and Tool pressure settings, as well as, a combined Application Data Sheet and Joint Completion Report. Custom Joint information can also be entered.

45

Page:

Torque Wrenches

The following wrenches are ideal for use with the E-Pulse Torque Wrench Pump:

S-Series	W-Series	RSL-Series		
S1500X	W2000X	RSL1500		
S3000X	W4000X	RSL3000		
S6000X	W8000X	RSL5000		
Larger wrenches will work with the pump,				
battery run tim	e and applica	tion speed will		
be impacted.				

Twin Torque Wrench Hoses Use Enerpac THQ-700

series twin hoses with 10,000 psi pumps.

10,000 psi	
6 feet long, 2 hoses	THQ-702T
19.5 feet long, 2 hoses	THQ-706T
39 feet long, 2 hoses	THQ-712T
	Page: 86

E-Pulse[™], Electric Torque Wrench Pumps

E-Pulse Torque Wrench Pump

The Enerpac E-Pulse Torque Wrench Pump, through its innovative design, is ideal for high volume fastening applications where weight is a critical factor. Smart controls enable the motor to maintain constant power providing higher flow than "traditional" ½ hp pumps. The durable aluminum housing, integrated heat exchanger and highly efficient permanent magnet motor minimize heat buildup in the toughest environments. The interactive pendant provides the operator a number of usage options for optimal efficiency. The E-Pulse Torque Wrench Pump is the pinnacle of bolting equipment.

20-ft. cord

Interactive Torque Wrench Pendant

- User can set pressure and operate in manual or auto-cycle mode
- Intelligent Auto-Cycle enables press and release actuation to cycle wrench until final torque is achieved

Useable Reservoir Capacity: **0.8 gallon**

Flow at Rated Pressure: **32** in³/min.

Motor Size: 0.85 hp

Maximum Operating Pressure: 10,000 psi

▲ EP3504T-M shown with multi-port manifolds

Number of Wrenches Pump can Operate	Useable Oil Capacity	Model Number	0 14.5	utput F (in ³ /	Flow Ra (min)	ate	Motor Voltage	Plug Type	Current Draw	Sound Level	Dimension C	Weight (with oil)	
	(gal)		psi	psi	psi	psi	(VAC)		(Amps)	(dBA)	(in)	(lbs)	
1	0.8		EP3504TB	220	130	58	32	100-120	NEMA 5-15	12	70-85	15.8	44.9
		EP3504TI	220	130	58	32	200-250	NEMA 6-15	7	70-85	15.8	44.9	
		EP3504TE	220	130	58	32	200-250	Schuko CEE 7/7	7	70-85	15.8	44.9	
2	0.8	EP3504TB-M*	220	130	58	32	100-120	NEMA 5-15	12	70-85	16.9	47.9	
		EP3504TI-M*	220	130	58	32	200-250	NEMA 6-15	7	70-85	16.9	47.9	
		EP3504TE-M*	220	130	58	32	200-250	Schuko CEE 7/7	7	70-85	16.9	47.9	

alfer F

* Pump model with multi-port manifold.

ENERPAC. **2** 49

TQ-700 Series, Electric Torque Wrench Pump ENERPAC

TQ-700E

- Optimized flow technology delivers up to 50% faster bolting than competing pumps
- Compact and lightweight design fits through tight openings and provides easy handling
- Built-in protection for controls, gauge, and pendant for job-site durability
- IP55 rating for superior dust and water protection
- Advanced brushless motor provides for quiet, continuous operation, high voltage tolerance, and low maintenance
- Heat exchanger prevents breakdown of oil during heavy usage in hot environments
- Simple pressure setting and convenient pendant control for hassle-free operation

Lightweight Electric Torque Wrench Pump

Hydraulic Torque Wrenches

Enerpac offers a complete range of square drive and hexagon cassette torque wrenches.

Pendant Control The TQ-700 comes equipped with a 20-foot pendant cord which allows the user to pressurize the pump from a distance increasing productivity and speed of setup.

Four Port Manifold

The **TQ-700** offers an optional four wrench manifold as an accessory (TQM) factory installed. (Add suffix "M" at the end of the model number. For example: **TQ700EM**)

Twin Torque Wrench Hoses Use Enerpac THQ-700

series twin hoses with 10,000 psi pumps.

10,000 psi	
6.5 feet long, 2 hoses	THQ-702T
19.5 feet long, 2 hoses	THQ-706T
39 feet long, 2 hoses	THQ-712T
F	

Gauge Overlay Kit Gauge overlay kits are also available separately. GT-4015-Q includes

overlays for all S-, W- and RSL-Series Torque Wrenches.

Electric Torque Wrench Pump

TQ-700 Series Pump Applications

The TQ-700 Series pump is ideal for powering hydraulic wrenches for the Power Generation and Wind Markets.

Bolting speed is more complex than how much flow per minute the pump produces. The key is optimizing the flow rate across the entire bolting cycle. With more oil flowing at the right time and at the right volume, you achieve the optimized flow for a hydraulic bolting system.

The result of this optimized flow is more bolts tightened faster and a more productive work team.

Internal laboratory testing based on standard torquing procedure on a pipe flange with 14, 11%" bolts.

ENERPAC.

Г 10.98 19.25 93 5 TQ **Series**

Reservoir Capacity: 1 gallon

Maximum Operating Pressure: 10,000 psi

IP55 Rating for Superior Dust and Water Protection

The IP Code (or Ingress Protection Rating) classifies

and rates the degrees of protection provided against the intrusion of solid objects and water in mechanical casings and electrical enclosures.

An IP55 rating means the TQ-700 offers complete protection against contact with mechanical and electrical components, and that dust will not enter in a sufficient quantity to interfere with the operation of the equipment.

The IP55 rating also means water jets sprayed against the TQ-700 from any direction will not have any harmful effects.

The TQ-700E and the W-Series wrenches are a productive combination.

Dimensions shown in inches.

SELECTION CHART

For Use with Torque Wrenches	Pressure Rating	Model Number ¹⁾	Useable Oil Capacity	Motor Size	Motor Electrical Specifications	Sound Level	Wt.
	(psi)		(gal)	(hp)	(Volt - Ph - Hz)	(dBA)	(lbs)
All S-, W- and BSL-Series	10,000	TQ-700B	1	1.0	115 - 1 - 50/60	82 - 85	68
	10,000	TQ-700 E ²⁾	1	1.0	230 - 1 - 50	82 - 85	66
wrenches	10,000	TQ-7001 ³⁾	1	1.0	230 - 1 - 60	82 - 85	66

5.00

All models meet CE safety requirements and all TÜV requirements 1)

European plug and CE EMC directive compliant With NEMA 6-15 plug 2)

3)

ZU4T Electric Torque Wrench Pumps

ENERPAC. 🖉

VICTOR STATES OF CONTROL OF CONTROL OF CONTROL CONTRO

- Features *Z*-*Class* high-efficiency pump design; higher oil flow and bypass pressure, cooler running and requires 18% less current draw than comparable pumps
- Powerful 1.7 hp universal electric motor provides high power-to-weight ratio and excellent low-voltage operating characteristics
- High-strength, molded composite shroud protects motor and electrical components, while providing an ergonomic, non-conductive handle for easy transport
- Low-voltage pendant provides additional safety for the operator

Pro-Series

- LCD readout provides pressure and torque display and a number of diagnostic and readout capabilities never before offered on a portable electric pump
- Auto cycle feature provides continuous cycle operation of the torque wrench as long as the advance button is pressed. (Pump can be used with or without auto cycle feature.)

 Any brand of hydraulic torque wrench can be powered by the portable ZU4-Series torque wrench pump.

Classic Electrical

Basic electrical package includes mechanical contactor, ON/OFF toggle switch, pendant with

electro-mechanical pushbuttons, 24V transformer timer and operator accessible circuit breaker.

Back-lit LCD Display for Pro Series

Back-lit LCD and Pressure Transducer featuring Auto-Cycle Technology.

- Digital read-out and "Autocycle" setting
- "Auto-Cycle" setting easily programmable
- Torque wrench model is selectable
- Pump usage information, hour and cycle counts
- Low-voltage warning and recording
- Self-test and diagnostic capabilities
- Information can be displayed in English, French, German, Italian, Spanish and Portuguese
- Pressure transducer is more accurate and durable than analog gauges
- Easy-viewing variable rate display
- Display pressure in bar, MPs or psi

ZU4T Torque Wrench Pumps

Z-Class – A Pump For **Every Application**

Patented Z-Class pump technology provides

high by-pass pressures for increased productivity-important in applications using long hose runs and high pressure-drop circuits, like heavy lifting or certain doubleacting tools.

Enerpac ZU4 Hydraulic Pumps are built to power small to large torque wrenches. Choosing the right ZU4 torque wrench pump for your application is easy.

Classic Electric Torque Wrench Pump

• The Classic has an analog gauge and traditional electro-mechanical components (transformers, relays and switches) in place of solidstate electronics. The Classic

delivers durable, safe and efficient hydraulic power.

Pro Series Electric Torque Wrench Pump

- Digital (LCD) display features a built-in hour meter, pressure and torque display, and shows self-diagnostic, cycle-count and low voltage warning information. These premium features are not available on any other pump-anywhere!
- AutoCycle feature provides continuous cycle operation of the torque wrench as long as the advance button is pressed. (Pump can be used with or without AutoCycle feature).

Reservoir Capacity: 1 and 2 gal. Flow at 10,000 psi: 60 in³/min Motor Size: 1.7 hp Maximum Operating Pressure: 10,000 psi

COMMON PUMP MODELS

	For Use With Torque Wrenches	Model Number 1)	Motor Electrical Specification	Usable Oil Capacity (gal)	Weight with Oil (lbs)
		ZU4204TB-Q	115 V-1 ph	1.0	70
s		ZU4208TB-Q	115 V-1 ph	1.75	76
erie	All wrenches	ZU4204TE-Q ²⁾	208-240 V-1 ph	1.0	70
0.0		ZU4208TE-Q ²⁾	208-240 V-1 ph	1.75	76
đ		ZU4204TI-Q ³⁾	208-240 V-1 ph	1.0	70
		ZU4208TI-Q ³⁾	208-240 V-1 ph	1.75	76
		ZU4204BB-QH	115 V-1 ph	1.0	82
		ZU4204BB-Q	115 V-1 ph	1.0	73
ssic	All wrenches	ZU4208BE-QH 2)	208-240 V-1 ph	1.75	83
Clai		ZU4204BE-Q ²⁾	208-240 V-1 ph	1.0	74
		ZU4208BI-QH ³⁾	208-240 V-1 ph	1.75	88
		ZU4208BI-Q 3	208-240 V-1 ph	1.75	79

All models meet CE safety requirements and all TÜV requirements 1)

European plug and CE EMC directive compliant 2)

With NEMA 6-15 plug 3)

Torque Wrench Pump Selection Matrix

For optimum speed and performance see the torque wrench pump selection matrix.

Page:

Overlay Kit with Gauge

Available separately for use with ZU4T-Series Classic: GT-4015Q includes gauge and torque overlays for all

S-, W- and RSL-Series torque wrenches.

www.enerpac.com

45

Bolting Integrity Software

Enerpac Bolting Integrity Software Solutions play a key role in implementing and

managing an Integrity Program for bolted connections. The software offers Tool selection, Bolt Load calculations and Tool pressure settings, as well as, a combined Application Data Sheet and Joint Completion Report. Custom Joint information can also be entered.

ZU4T Ordering Matrix and Specifications

ENERPAC.

Reservoir Capacity:

Flow at 10,000 psi:

10,000 psi

ZU4208TB-QMHK

Motor Size:

1.7 hp

60 in³/min.

Maximum Operating Pressure:

Ordering Example: Model No.

S-, W- and RSL-Series and other

Refer to the torque wrench pump

10,000-psi torque wrenches, 115V

10,000-psi pump for use with Enerpac

motor, 1.75-gallon reservoir, 4-wrench

manifold, heat exchanger and skidbar.

selection matrix for optimum wrench,

45

How to Order Your ZU4T-

Series Torque Wrench Pump

1 and 2 gal.

- **Z** = Pump series

2 Motor Type

U = Universal electric motor

3 Flow Group

4 = 60 in³/min @ 10,000 psi

4 Valve Type

2 = Torque wrench valve

5 Reservoir Size (useable capacity)

- **04** = 1.0 gallon
- **08** = 1.75 gallons

6 Valve Operation

- **T** = Solenoid valve with pendant, LCD electric and pressure transducer
- **B** = Solenoid valve with pendant, classic electrical

7 Voltage

- **B** = 115V, 1 ph, 50/60 Hz
- **E** = 208-240V, 1 ph, 50/60 Hz (with European plug CE RF compliant)
- I = 208-240V, 1 ph, 50/60 Hz (with NEMA 6-15 plug)

8 Factory installed features and options

- $\mathbf{Q} = 10,000$ coupler for use with S-, W, and RSL-Series or other wrenches
- **H** = Heat exchanger
- **M** = 4-wrench manifold

ZU4-Series Torque Wrench Pumps

Reservoir Size (useable gallons)	A (in)
1	6.0
1.75	8.1

Dimensions shown in inches

- (1) User adjustable relief valve
- (2) Heat exchanger (optional)
- ③ Skidbar (optional)
- (4) 4-wrench manifold (optional)
- (5) Roll cage (optional)

ZU4 Performance							
Motor Size	(Output F (in³/r	low Rate min)		Motor Electrical Specification*	Sound Level	Relief Valve Adjustment Range
(hp)	100 psi	700 psi	5,000 psi	10,000 psi		(dBA)	(psi)
1.7	700	535	76	60	115 VAC, 1-ph 208-240 VAC, 1-ph	85-90	1,800-10,000**

* 50/60 HZ

** Pump type (-Q) shown, (-E) range is 1,800 - 11,600 psi.

K = Skidbar **R** = Roll cage

pump and hose combinations.				
	Page: 45			
	Torque Wrench Hoses			
	Use Enerpac twin safety			
6.00	hoses to connect your torque			
	wrench to the pump.			

10,000 psi	
6.5 feet long, 2 hoses	THQ-702T
19.5 feet long, 2 hoses	THQ-706T
39 feet long, 2 hoses	THQ-712T
	Page: 86

 Most hydraulic torque wrenches can be powered by the Enerpac ZU4-Series torque wrench pump.

ZU4T Torque Wrench Pump Options

4-Wrench Manifold

- For simultaneous operation of multiple torque wrenches
- Can be factory installed or ordered separately

Skidbar

- Provides greater pump stability on soft or uneven surfaces
- Provides easy two-handed lift

Heat Exchanger

- Removes heat from the bypass oil to provide cooler operation
- Stabilizes oil viscosity, increasing oil life and reduces wear of pump and other hydraulic components

Accessory Kit No. *	Can be used on ZU4-Series torque wrench pumps	
ZTM-Q	for 10,000-psi torque wrenches	

* Add suffix **M** to pump model number for factory installation.

Ordering Example:

Model No. ZU4208TB-QM

Accessory Kit No. *	Can be used on ZU4-Series torque wrench pumps
SBZ-4	1 and 1.75 gallon ¹⁾
SBZ-4L	1 and 1.75 gallon ²⁾

- Add suffix **K** to pump model number for factory installation.
- ¹⁾ Without heat exchanger 4.9 lbs.
- ²⁾ With heat exchanger 7.0 lbs.

Ordering Example:

Model No. ZU4208TB-QK

Accessory Kit No. *	Can be used with:
ZHE-U115	115V pumps
ZHE-U230	230V pumps

 * Add suffix H to pump model number for factory installation.
 Heat Exchanger adds 9.1 lbs. to pump weight.

Ordering Example:

Model No. ZU4208TB-H

Thermal Transfer *	Maximum pressure	Maximum oil flow	Voltage			
Btu/h	(psi)	(GPM)	(VDC)			
900	4351	7.0	12			
* At 116 in ³ /min at 70° F ambient temperature.						
Do not exceed maximum oil flow and						
pressure rat	pressure ratings.					

Heat exchanger is not suitable for water-

glycol or high water-based fluids.

These rigid steel wrenches with low profile interchangeable hexagon cassettes guarantee durability and maximum versatility in bolting applications.

Roll Cage

- Protects pump
- Provides greater pump stability

Accessory Kit No. *	Can be used on ZU4-Series torque wrench pumps	
ZRC-04	1 and 1.75 gallon reservoir ¹⁾	
ZRC-04H	1 and 1.75 gallon reservoir ²⁾	

- * Add suffix **R** for factory installation.
 ¹⁾ For use with pumps without a heat exchanger fitted
- ²⁾ For use with pumps with a heat exchanger fitted

Ordering Example:

Model No. ZU4208BB-QR

ZE-Series Electric Torque Wrench Pumps

ENERPAC. 🖉

ZE4204TB-QHR

- Auto-Cycle feature provides continuous cycle operation of the torque wrench as long as the advance button is pressed (Pump can be used with or without Auto-Cycle feature)
- LCD readout provides pressure and torque display and a number of diagnostic and readout capabilities never before offered on a portable electric pump
- Totally enclosed, fan-cooled industrial electric motors supply extended life and stand up to harsh industrial environments
- High-strength, molded electrical enclosure protects electronics, power supplies and LCD readout from harsh environments

The ZE4 torque wrench pumps are perfectly matched for this W2000X wrench.

information can also be entered.

www.enerpac.com

Page:

126

ZE-Series Electric Torque Wrench Pumps

Reservoir Size	Α
(useable gallons)	(in)
1	6.0
1.75	8.1

- Dimensions shown in inches.
- ① User adjustable relief valve
- Heat Exchanger (optional)
- ③ Roll cage (optional)

▼ COMMON PUMP MODELS

For Use With Torque Wrenches	Max. Operating Pressure	Model Number with Heat Exchanger and Roll Cage	Motor Electrical Specification	Usable Oil Capacity ¹⁾ (gal)	Weight with Oil (lbs)
	10,000	ZE4208TB-QHR	115 V-1 ph	2	129
All S-, W- and	10,000	ZE4208TI-QHR	230 V-1 ph	2	129
RSL-Series	10,000	ZE4208TG-QHR	230 V-3 ph	2	131
Wienches	10,000	ZE5208TW-QHR	400 V-3 ph	2	131

¹⁾ Reservoir sizes available: 1, 2, 2.5, 5, 10 gallon. Contact Enerpac.

▼ PERFORMANCE CHART

Pump Series	Output Flow Rate (in ³ /min)			Motor Size		Relief Valve Adjustment Range	Sound Level	
	100 psi	700 psi	5,000 psi	10,000 psi	hp	RPM	(psi)	(dBA)
ZE4T	650	600	62	60	1.5	1750	1000 - 11,600	75
ZE5T	850	825	123	120	3.0	1750	1000 - 11,600	75

Flow rate will be approximately 5/6 of these values at 50 Hz.

ZE Series	
Reservoir (1.0 -1	Ogal.
Flow at 10, 60-12	000 psi: 10 in³/min.
Motor Size	0 hp
Maximum 10,000	Operating Pressure: 0 psi
	Torque Wrench Pump Selection MatrixFor optimum speed and performance see the torque wrench pump selection matrix.Page:45
-	Accessory Options A full list of optional accessories can be found in the ZU4 section.

Torque Wrench Hoses Use Enerpac twin safety

Page:

55

hoses to connect your torque wrench to the pump.

10,000 psi	
6.5 feet long, 2 hoses	THQ-702T
19.5 feet long, 2 hoses	THQ-706T
39 feet long, 2 hoses	THQ-712T
	Page: 86

ZA4T Air Driven Torque Wrench Pumps

ENERPAC. 🖉

ZA4204TX-QR

- Two-speed operation and high by-pass pressure reduces cycle time for improved productivity
- Glycerin filled pressure gauge with transparent overlays in Ft.lbs and Nm for Enerpac torque wrenches provide a quick torque reference
- Regulator-Filter-Lubricator with removable bowls and auto drain is standard
- Ergonomic pendant allows remote operation up to 20 feet
- Valve technology reduces oil operating temperatures and withstands contaminants to increase pump reliability

Torque Wrench Hoses Use Enerpac twin safety hoses to connect your torque wrench to the pump.

10,000 psi	
6.5 feet long, 2 hoses	THQ-702T
19.5 feet long, 2 hoses	THQ-706T
39 feet long, 2 hoses	THQ-712T

Gauge Overlay Kit

Gauge overlay kits are also available separately.

Page: ,

86

GT-4015-Q includes overlays for all S-, W- and RSL-Series torque wrenches.

Most hydraulic torque wrenches can be powered by the Enerpac ZA4-Series torque wrench pump.

Torque Wrench Pump Selection Matrix

For optimum speed and performance see the torque wrench pump selection matrix.

Page: 45

ZA4T Air Driven Torque Wrench Pumps

ZA4-Series Pump Applications

The ZA4-Series pump is best suited to power medium to large size torque wrenches.

Patent-pending Z-Class technology provides high by-pass pressures for increased productivity. Its high power-toweight ratio and compact design make it ideal for applications which require easy transport of the pump.

For further application assistance contact your local Enerpac office.

ATEX Certified

The ZA-series pumps are tested and certified according to the Equipment Directive 94 / 9 / EC "ATEX Directive".

The explosion protection is for equipment group II, equipment category 2 (hazardous area zone 1), in gas and/or dust atmospheres. The ZA-series pumps are marked with: Ex II 2 GD ck T4.

Reservoir Capacity: **1 and 1.75 gal.** Flow at 10,000 psi: **60 in³/min.** Air Consumption: **20-100 scfm**

Maximum Operating Pressure:

10,000

▼ ZA4208TX-QR for improved wrench performance and torque control at low pressure.

▼ COMMON PUMP MODELS

For Use With Torque Wrenches	Maximum Operating Pressure (psi)	Model Number 1)	Usable Oil Capacity (gal)	Weight with Oil (lbs)
	10,000	ZA4204TX-Q	1.0	94
For all S- and W- Series	10,000	ZA4208TX-Q	1.75	100
(X-Edition) and RSL-Series	10,000	ZA4204TX-QR*	1.0	101
	10,000	ZA4208TX-QR*	1.75	112

* With roll cage

¹⁾ All models meet CE safety requirements and all TÜV requirements.

ZA4T Ordering Matrix and Specifications

ENERPAC.

▼ This is how a ZA4-Series pump model number is built up:

- 5 Reservoir Size (useable capacity)
- **04** = 1.0 gallon
- 08 = 1.75 gallons
- **R** = Roll cage

How to Order Your ZA4-Series Torque Wrench Pump

Ordering Example: Model No. ZA4208TX-QMR

10,000-psi pump for use with Enerpac S-, W and RSL-Series and other 10,000-psi torque wrenches, 2-gallon reservoir, 4-wrench manifold, and roll cage.

Refer to the torque wrench pump selection matrix for optimum wrench, pump and hose combinations.

ZA4-Series Torque Wrench Pumps

Reservoir Size	Α
(useable gallons)	(in)
1	6.0
1.75	8.1

	ZA4 Performance														
	Output Flow Rate (in ³ /min)				Dynamic Air Pressure Range	Air Consumption	Sound Level at 100 psi Dynamic	Relief Valve Adjustment Range							
100 psi	700 psi	5,000 psi	10,000 psi	11,600 psi	(psi)	(scfm)	(dBA)	(psi)							
600	500	80	60	55	60-100	20-100	80-95	1,400-10,000*							

* Pump type (-Q) shown.

- User adjustable relief valve 1
- 2 Roll bar cage (optional)
- 3 Gauge with overlays
- ④ Filter/lubricator/regulator
- 5 Oil level sight gauge
- Air input 1/2" NPTF 6
- Standard handle \overline{O}
- 8 Oil drain
- (9) 1/4"-18 NPTF Oil Outlet
 - ▼ Most hydraulic torque wrenches can be powered by the Enerpac ZA4-Series torque wrench pump.

ZA4T Torque Wrench Pump Options

Skidbar

- Provides greater pump stability on soft or uneven surfaces
- Provides two-handed lift

Accessory Kit No. *	Can be used on ZA4-Series torque wrench pumps
SBZ-4	1 and 2-gallon reservoir

* Add suffix **K** for factory installation. Skidbar weight 4.9 lbs.

Ordering Example: Model No. ZA4208TX-QK

4-Wrench Manifold

- For simultaneous operation of multiple torque wrenches
- Can be factory installed or ordered separately

Kit No. * torque wi	ench pumps
ZTM-Q for 10,000)-psi torque wrenches

 * Add suffix M for factory installation. Manifold weight 7.9 lbs.
 Ordering Example:

Model No. ZA4208TX-QM

Reservoir Capacity: **1 and 2 gal.** Flow at 10,000 psi: **60 in³/min.**

Air Consumption: 20-100 scfm

Maximum Operating Pressure: **10,000 psi**

10,000-psi Spin-on Couplers
• Mounted on:

- Torque wrench pumps with suffix "Q"
- RSL, S and W-Series wrenches
- THQ-Series hoses
- 4-Wrench manifold ZTM-Q

Roll Cage

- Protects pump
- Provides greater pump stability

Accessory Kit No. *	Can be used on ZA4-Series torque wrench pumps
ZRC-04	1 and 2-gallon reservoir

* Add suffix **R** for factory installation. Roll bar cage weight 7.5 lbs. **Ordering Example:**

Model No. ZA4208TX-QR

Twin Torque Wrench Hoses

Use Enerpac **THQ-700** series twin hoses with 10,000 psi pumps.

10,000 psi	
6.5 feet long, 2 hoses	THQ-702T
19.5 feet long, 2 hoses	THQ-706T
39 feet long, 2 hoses	THQ-712T

▼ HM10 Hydramax[®] Topside Tensioner

- Fifteen load cells from 3/4" to 4" / M20 to M100
- Twin ports for quick connection of multiple tools
- High bolt-load capacity at maximum 21,750 psi (1500 bar)
- Long-stroke capability of 9/16 inch (15 mm) with over stroke elimination
- HM01 to HM05: mechanical over-stroke prevention, no spring return; HM06 to HM15: relief valve for over-stroke prevention, spring return
- Quick release bridge
- Stroke indicator
- Captive socket eliminates falling object risk
- Interchangeable adapter kits available
- · Anti-slip grip for more secure handling
- HM-Series HydraMax[®] Tensioners comply to following: Machine Directive 2006/42/EC, ASME B30.1, EN-ISO 4413:2010, EN-ISO 12100:2010

Enerpac HM-Series HydraMax[®] tensioners have been designed to generate high-bolt loads associated with compact flanges, while providing versatility for maximum bolt coverage.

High Bolt Load Capacities, Superior Performance

HydraMax[®] Topside Tensioners

The HM-Series tensioners have been designed to fit all standard flanges, including ANSI, API and compact flanges based on Norsok L005 and generates 30% more load capacity than traditional tensioners.

Tensioning Pumps, Hoses and Couplers

High-pressure pumps, hoses and fittings matched for use with the Enerpac Bolt Tensioners.

See enerpac.com

Ultra-High Pressure

This tool operates at ultrahigh pressure, use only the specified fittings and hoses

designed for these pressures.

How to Order HydraMax[®] Tensioners

To provide maximum flexibility Load Cells are ordered

separately from Adaptor and Bridge Kits. Example, to order a complete tensioner

for a M24 x 3 threaded bolt order:

1 x Load Cell: HM03-LC

1 x Adaptor and Bridge Kit: HM03BPM-NRS02430

Bolting Integerity Software

The software offers Tool selection, Bolt Load calculations and Tool pressure

settings, as well as, a combined Application Data Sheet, and Joint Combination report. Custom Joint information can also be entered.

Page:

126

HydraMax[®] Topside Tensioners

Thread and Pitch Sizes Contact Enerpac for different thread or pitch sizes. Alternative size adaptor kits can be supplied upon request.

Minimum Stud

Protrusion

X = Minimum socket rotation 60°

Nearest obstruction

Stroke HM01 models .39 inch Strokes all other HM-models .59 inch

Load Cell Model Number*	Thread Size	Adaptor and Bridge Kit Model Number	Cylinder Effective Area	Maximum Load Capacity			Dir	nensio (in)	ons			Load Cell Weight	Adaptor and Bridge Kit
			(in²)	(tons)	A	В	С	D	E min.	F	N min.	(lbs)	(lbs)
	M20 x 2.5	HM01BPM-NRS02025	1.39	15.1	4.4	3.8	0.6	2.7	7.8	1.1	2.0	3.5	1.3
HM01-LC	³ ⁄4"- 10 _{UN}	HM01BP-NRS0750U10	1.39	15.1	4.4	3.8	0.6	2.7	7.8	1.1	2.0	3.5	1.3
	M20 x 2,5	HM02BPM-NRS02025	1.92	20.9	4.7	4.1	0.6	2.9	8.2	1.1	2.1	4.0	2.0
	M22 x 2,5	HM02BPM-NRS02225	1.92	20.9	4.7	4.1	0.6	2.9	8.2	1.1	2.1	4.0	2.0
HIMU2-LC	34" - 10 UN	HM02BP-NRS0750U10	1.92	20.9	4.7	4.1	0.6	2.9	8.2	1.1	2.0	4.0	2.0
	% "-9 ∪N	HM02BP-NRS0875U09	1.92	20.9	4.7	4.1	0.7	2.9	8.2	1.1	2.2	4.0	1.8
	M20 x 2,5	HM03BPM-NRS02025	2.52	27.4	4.7	4.1	0.6	3.2	8.3	1.1	2.2	4.9	2.4
	M22 x 2,5	HM03BPM-NRS02225	2.52	27.4	4.7	4.1	0.6	3.2	8.3	1.1	2.3	4.9	2.4
HM03-LC	M24 x 3	HM03BPM-NRS02430	2.52	27.4	4.7	4.1	0.8	3.2	8.3	1.1	2.3	4.9	2.4
	¾ "- 10 ∪N	HM03BP-NRS0750U10	2.52	27.4	4.7	4.1	0.6	3.2	8.3	1.1	2.2	4.9	2.4
	%" - 9∪N	HM03BP-NRS0875U09	2.52	27.4	4.7	4.1	0.7	3.2	8.3	1.1	2.3	4.9	2.4
	1"- 8un	HM03BP-NRS1000U08	2.52	27.4	4.9	4.3	0.8	3.2	8.5	1.3	2.4	4.9	2.4
	M22 x 2,5	HM04BPM-NRS02225	3.35	36.4	5.0	4.4	0.7	3.5	9.1	1.1	2.4	6.0	3.5
	M24 x 3	HM04BPM-NRS02430	3.35	36.4	5.1	4.4	0.8	3.5	9.1	1.1	2.5	6.0	3.5
	M27 x 3	HM04BPM-NRS02730	3.35	36.4	5.3	4.6	0.8	3.5	9.3	1.3	2.5	6.0	3.7
HM04-LC	M30 x 3,5	HM04BPM-NRS03035	3.35	36.4	5.4	4.7	0.9	3.5	9.4	1.4	2.6	6.0	3.7
	%" - 9∪N	HM04BP-NRS0875U09	3.35	36.4	5.1	4.4	0.7	3.5	9.1	1.1	2.4	6.0	3.5
	1"- 8un	HM04BP-NRS1000U08	3.35	36.4	5.3	4.6	0.8	3.5	9.3	1.3	2.5	6.0	3.7
	1½"-8UN	HM04BP-NRS1125U08	3.35	36.4	5.4	4.7	0.9	3.5	9.4	1.4	2.6	6.0	3.7
	M24 x 3	HM05BPM-NRS02430	4.27	46.4	5.1	4.5	0.7	3.9	9.2	1.1	2.7	7.3	4.2
	M27 x 3	HM05BPM-NRS02730	4.27	46.4	5.3	4./	0.8	3.9	9.4	1.3	2.7	7.3	4.4
	M30 x 3,5	HM05BPM-NRS03035	4.27	46.4	5.5	4.8	0.9	3.9	9.5	1.4	2.8	7.3	4.4
HM05-LC	111 0	HM05BPM-NRS03335	4.27	46.4	5.6	4.9	1.1	3.9	9.6	1.5	2.8	7.3	4.6
	11/2 0.00	HM05BP-NRS1000008	4.27	46.4	5.3	4.7	0.0	2.9	9.4	1.3	2.1	7.3	4.0
	1 /8 -OUN 11/4 9 000	HM05PD NDS1250U09	4.27	40.4	5.5	4.0	1.1	3.9	9.5	1.4	2.1	7.3	4.0
	M30 x 3 5	HM06BDM_NDS03035	6.45	70.2	5.6	4.9 5.0	0.0	1.6	9.0	1.0	2.0	7.3	6.2
	M33 x 3 5	HM06BPM-NRS03033	6.45	70.2	5.7	5.1	11	4.0	0.8	1.4	3.1	9.9	6.4
	M36 x /	HM06BPM-NRS03535	6.45	70.2	5.0	5.2	1.1	4.0	9.0	1.5	3.2	9.9	6.6
	M39 x 4	HM06BPM-NRS03940	6.45	70.2	6.0	5.3	1.3	4.6	10.0	1.0	3.3	9.9	6.8
HM06-LC	11/2"- 8UN	HM06BP-NBS1125U08	6.45	70.2	5.6	5.0	0.9	4.6	9.7	1.0	3.1	9.9	6.2
	11/4"- 8UN	HM06BP-NRS1250U08	6.45	70.2	5.7	5.1	11	4.6	9.8	1.5	32	9.9	6.4
	13/4"- 8UN	HM06BP-NRS1375U08	6 45	70.2	5.9	5.2	1.3	4.6	9.9	1.0	3.2	9.9	6.6
	1½"- 8UN	HM06BP-NRS1500U08	6.45	70.2	6.0	5.3	1.3	4.6	10.0	1.8	3.3	9,9	6.8
	.72 001		0.10	10.2	0.0	0.0			10.0		0.0	0.0	0.0

* Tommy bar is included with Load Cell

ENERPAC 🖉 63

HM-Series, HydraMax[®] Topside Tensioners **ENERPAC**

Load Cell Model Number*	Thread Size	Adaptor and Bridge Kit Model Number	Cylinder Effective Area	Maximum Load Capacity			Din	nensio (in)	ons			Load Cell Weight	Adaptor and Bridge Kit
			(in²)	(tons)	Α	В	С	D	E min.	F	N min.	(lbs)	Weight (lbs)
	M33 x 3,5	HM07BPM-NRS03335	7.72	83.9	5.7	5.0	1.1	5.0	9.7	1.5	3.4	11.5	7.5
	M36 x 4	HM07BPM-NRS03640	7.72	83.9	5.8	5.2	1.3	5.0	9.8	1.6	3.4	11.5	7.7
	M39 x 4	HM07BPM-NRS03940	7.72	83.9	5.9	5.3	1.3	5.0	9.9	1.8	3.5	11.5	7.9
	M42 x 4,5	HM07BPM-NRS04245	7.72	83.9	6.1	5.4	1.3	5.0	10.0	1.9	3.6	11.5	8.2
HIVIU7-LC	1¼"- 8un	HM07BP-NRS1250U08	7.72	83.9	5.7	5.0	1.1	5.0	9.7	1.5	3.4	11.5	7.5
	1%"- 8un	HM07BP-NRS1375U08	7.72	83.9	5.8	5.2	1.3	5.0	9.8	1.6	3.4	11.5	7.7
	1½"- 8∪N	HM07BP-NRS1500U08	7.72	83.9	5.9	5.3	1.3	5.0	9.9	1.8	3.5	11.5	7.9
	1%" - 8 ∪N	HM07BP-NRS1625U08	7.72	83.9	6.1	5.4	1.3	5.0	10.0	1.9	3.5	11.5	8.2
	M36 x 4	HM08BPM-NRS03640	9.10	98.9	5.9	5.2	1.3	5.4	9.9	1.6	3.6	13.9	8.6
	M39 x 4	HM08BPM-NRS03940	9.10	98.9	6.0	5.3	1.3	5.4	10.0	1.8	3.7	13.9	8.8
	M42 x 4,5	HM08BPM-NRS04245	9.10	98.9	6.1	5.5	1.3	5.4	10.1	1.9	3.8	13.9	9.0
	M45 x 4,5	HM08BPM-NRS04545	9.10	98.9	6.2	5.6	1.5	5.4	10.3	2.0	3.8	13.9	9.7
HIVIUO-LC	1%"- 8∪N	HM08BP-NRS1375U08	9.10	98.9	5.9	5.2	1.3	5.4	9.9	1.6	3.6	13.9	8.6
	1½"- 8∪N	HM08BP-NRS1500U08	9.10	98.9	6.0	5.3	1.3	5.4	10.0	1.8	3.7	13.9	8.8
	1%" - 8 ∪N	HM08BP-NRS1625U08	9.10	98.9	6.1	5.5	1.3	5.4	10.1	1.9	3.7	13.9	9.0
	1¾"- 8un	HM08BP-NRS1750U08	9.10	98.9	6.2	5.6	1.5	5.4	10.3	2.0	3.8	13.9	9.7
	M39 x 4	HM09BPM-NRS03940	10.59	115.2	6.0	5.4	1.3	5.7	10.0	1.8	3.9	14.3	11.0
	M42 x 4,5	HM09BPM-NRS04245	10.59	115.2	6.1	5.5	1.3	5.7	10.1	1.9	3.9	14.3	13.4
	M45 x 4,5	HM09BPM-NRS04545	10.59	115.2	6.2	5.6	1.5	5.7	10.3	2.0	4.0	14.3	11.2
	M48 x 5	HM09BPM-NRS04850	10.59	115.2	6.4	5.7	1.6	5.7	10.4	2.1	4.0	14.3	12.1
111103-LC	1½"- 8un	HM09BP-NRS1500U08	10.59	115.2	6.0	5.4	1.3	5.7	10.0	1.8	3.8	14.3	11.2
	1%" - 8 ∪N	HM09BP-NRS1625U08	10.59	115.2	6.1	5.5	1.3	5.7	10.2	1.9	3.9	14.3	11.2
	1¾"- 8un	HM09BP-NRS1750U08	10.59	115.2	6.2	5.5	1.5	5.7	10.1	2.0	4.0	14.3	13.2
	1%" - 8 ∪N	HM09BP-NRS1875U08	10.59	115.2	6.4	5.7	1.6	5.7	10.4	2.1	4.0	14.3	11.9
	M42 x 4,5	HM10BPM-NRS04245	12.20	132.6	6.3	5.6	1.3	6.1	10.5	1.9	4.1	18.3	12.6
	M45 x 4,5	HM10BPM-NRS04545	12.20	131.9	6.4	5.7	1.5	6.1	10.6	2.0	4.2	18.3	12.6
	M48 x 5	HM10BPM-NRS04850	12.20	131.9	6.5	5.8	1.6	6.1	10.7	2.1	4.3	18.3	13.4
HM10-LC	M52 x 5	HM10BPM-NRS05250	12.20	131.9	6.7	6.0	1.7	6.1	10.8	2.3	4.3	18.3	13.9
	1%"- 8un	HM10BP-NRS1625U08	12.20	131.9	6.3	5.6	1.3	6.1	10.5	1.9	4.1	18.3	12.6
	1¾"- 8un	HM10BP-NRS1750U08	12.20	131.9	6.4	5.7	1.5	6.1	10.6	2.0	4.2	18.3	12.3
	1%"- 8un	HM10BP-NRS1875U08	12.20	131.9	6.5	5.9	1.6	6.1	10.7	2.1	4.2	18.3	13.2
	2"- 8un	HM10BP-NRS2000U08	12.20	131.9	6.7	6.0	1.7	6.1	10.8	2.3	4.3	18.3	13.9

* Tommy bar is included with Load Cell

HM-Series, HydraMax[®] Topside Tensioners

Load Cell Model Number*	Thread Size **	Adaptor and Bridge Kit Model Number	Cylinder Effective Area	Maximum Load Capacity			Dir	nensio (in)	ons			Load Cell Weight	Adaptor and Bridge Kit
			(in ²)	(tons)	Α	В	С	D	E	F	N	(lbs)	(lbs)
			15.74	171.1	6.6	E 7	15	6.0	10.0	2.0	4.6	00.1	16.2
	1V145 X 4,5	HM11BPM-NRS04545	15.74	171.1	0.0	5.7	1.5	6.9	10.8	2.0	4.0	23.1	17.4
HM11-LC		HM11BPM-NRS04850	15.74	171.1	0.7	0.0	1.0	6.9	11.0	2.1	4.0	23.1	17.4
		HMITIBPM-NRS05250	15.74	1/1.1	0.0	0.0	1.7	0.9	11.0	2.3	4.7	23.1	17.9
	N60 x 5 5	HM11BPM-NRS05055	15.74	171.1	7.0	0.3	2.0	6.9	11.4	2.0	4.8	23.1	10.2
HIVITI-LC	13/ " QUM	HM11BP NDS1750U09	15.74	171.1	1.2	0.3 5.7	2.0	6.0	10.0	2.0	4.9	23.1	19.2
	174 - OUN	HM11BP-NR51750006	15.74	171.1	6.7	5.7	1.0	6.0	10.0	2.0	4.0	20.1	17.4
	1 /8 - OUN	HM11BP-NR510/5000	15.74	171.1	6.0	0.0	1.0	6.0	11.9	2.1	4.0	23.1	17.4
	2 - 00N	HM11BP-NR52000008	15.74	171.1	7.0	6.2	2.0	6.0	11.0	2.0	4.7	23.1	10.4
	274 - OUN	HM12RDM_NIDS04950	10.74	214.4	6.7	5.8	2.0	7.6	11.4	2.0	4.0 5.0	20.1	21 /
	M52 x 5		10.72	214.4	6.8	6.0	1.0	7.6	11.0	2.1	5.1	29.0	21.4
	M56 x 5 5	HM12BPM-NBS05655	10.72	214.4	7.2	6.3	2.0	7.0	11.2	2.0	5.2	29.3	23.6
	M60 x 5 5	HM12BPM-NRS06055	19.72	214.4	7.2	6.3	2.0	7.6	11.5	27	5.2	29.3	22.0
HM12-I C	M64 x 6	HM12BPM-NBS06460	19.72	214.4	7.3	6.5	2.0	7.6	11.7	27	5.3	29.3	24.5
111112-20	1%"- 8UN	HM12BP-NBS1875U08	19.72	214.4	6.7	5.8	1.6	7.6	11.0	2.1	5.0	29.3	21.2
	2"- 8UN	HM12BP-NBS2000U08	19.72	214.4	6.8	6.0	17	7.6	11.2	2.3	5.1	29.3	21.6
	21/4"- 8UN	HM12BP-NRS2250U08	19.72	214.4	7.2	6.3	2.0	7.6	11.5	2.6	5.2	29.3	22.9
	21/2"- 8UN	HM12BP-NRS2500U08	19.72	214.4	7.3	6.5	2.2	7.6	11.7	2.7	5.3	29.3	23.8
	M64 x 6	HM13BPM-NRS06460	26.29	285.9	7.7	6.8	2.2	8.6	12.2	2.7	5.8	38.8	32.0
	M68 x 6	HM13BPM-NRS06860	26.29	285.9	7.7	6.8	2.2	8.6	12.2	2.7	5.9	38.8	36.4
	M72 x 6	HM13BPM-NRS07260	26.29	285.9	8.0	7.1	2.5	8.6	12.5	3.1	6.0	38.8	35.3
HM13-LC	M76 x 6	HM13BPM-NRS07660	26.29	285.9	8.1	7.3	2.7	8.6	12.7	3.2	6.0	38.8	35.9
	2½"- 8un	HM13BP-NRS2500U08	26.29	285.9	7.7	6.8	2.2	8.6	12.2	2.7	5.8	38.8	31.3
	2¾"- 8un	HM13BP-NRS2750U08	26.29	285.9	8.0	7.1	2.5	8.6	12.5	3.1	5.9	38.8	34.8
	3"- 8un	HM13BP-NRS3000U08	26.29	285.9	8.1	7.3	2.7	8.6	12.7	3.2	6.3	38.8	34.8
	M72 x 6	HM14BPM-NRS07260	36.35	395.3	8.0	7.1	2.5	10.2	12.6	3.1	6.8	56.9	45.9
	M76 x 6	HM14BPM-NRS07660	36.35	395.3	8.1	7.3	2.7	10.2	12.7	3.2	6.8	56.9	47.0
	M80 x 6	HM14BPM-NRS08060	36.35	395.3	8.1	7.3	2.7	10.2	12.7	3.2	6.9	56.9	46.7
	M85 x 6	HM14BPM-NRS08560	36.35	395.3	8.5	6.5	2.7	10.2	11.9	3.6	7.0	56.9	50.5
HIVI 14-LC	M90 x 6	HM14BPM-NRS09060	36.35	395.3	8.7	7.8	3.1	10.2	13.3	3.8	7.1	56.9	51.4
	3"- 8un	HM14BP-NRS3000U08	36.35	395.3	8.1	7.3	2.7	10.2	12.7	3.2	6.8	56.9	45.0
	3¼"- 8un	HM14BP-NRS3250U08	36.35	395.3	8.5	6.5	2.7	10.2	11.9	3.6	7.0	56.9	50.0
	3½"- 8∪N	HM14BP-NRS3500U08	36.35	395.3	8.7	7.8	3.1	10.2	13.3	3.8	7.2	56.9	52.7
	M90 x 6	HM15BPM-NRS09060	48.06	522.7	8.7	7.8	3.1	11.7	13.3	3.8	7.8	71.6	66.1
	M95 x 6	HM15BPM-NRS09560	48.06	522.7	8.9	8.1	3.2	11.7	13.5	4.0	7.9	71.6	74.3
HM15-LC	M100 x 6	HM15BPM-NRS10060	48.06	522.7	9.1	8.3	3.5	11.7	13.7	4.2	8.0	71.6	77.4
TINITS-LC	3½"- 8un	HM15BP-NRS3500U08	48.06	522.7	8.7	7.8	3.1	11.7	13.3	3.8	7.8	71.6	65.0
	3¾"- 8un	HM15BP-NRS3750U08	48.06	522.7	8.9	8.1	3.2	11.7	13.5	4.0	7.9	71.6	72.3
	4"- 8un	HM15BP-NRS4000U08	48.06	522.7	9.1	8.3	3.5	11.7	13.7	4.2	8.3	71.6	75.0

* Tommy bar is included with Load Cell

**Contact Enerpac for different thread or pitch sizes. Alternative size adaptor kits can be supplied upon request.

GT-Series, Topside Bolt Tensioners

ENERPAC. 🖉

▼ GT-Series Topside Bolt Tensioners

Accurate & Reliable Extreme Performance Bolt Tensioner

How to Order

To provide maximum flexibility Load Cell and Bridges are ordered separately from Adaptor Kits.

Example, to order a complete tensioner for a M36 x 4 threaded bolt order: 1 x Load Cell and Bridge: **GT2-LCB** 1 x Adaptor Kit: **GT2PM-NRS03640**

- Seven load cells from ⁵/₈" to 4" or from M16 to M105
- Twin ports for quick connection of multiple tools
- Only one size of bridge per size of load cell
- Detachable and rotational bridge simplifies tool positioning
- Full bridge window increased access to socket
- Captive socket eliminates falling object risk
- Piston stroke indicator
- Black surface treatment protects against corrosion
- Anti-slip grip for more secure handling
- Universal and multi-use tool

Load Cell and Bridge Model Number*	Thread Size	Adaptor Kit Model Number	Cylinder Effective Area	Maximum Load Capacity			Din	Load Cell and Bridge Weight	Adaptor Kit Weight				
			(in²)	(ton)	Α	В	С	D	E min.	F	N min.	(lbs)	(lbs)
	M16 x 2	GT1PM-NRS01620	2.32	25.2	5.3	4.4	1.1	3.4	9.6	1.7	2.2	6.6	3.5
	M18 x 2,5	GT1PM-NRS01825	2.32	25.2	5.3	4.4	1.1	3.4	9.6	1.7	2.3	6.6	3.3
	M20 x 2,5	GT1PM-NRS02025	2.32	25.2	5.3	4.4	1.1	3.4	9.6	1.7	2.3	6.6	3.1
	M24 x 3	GT1PM-NRS02430	2.32	25.2	5.3	4.4	1.1	3.4	9.6	1.7	2.4	6.6	2.9
	M27 x 3	GT1PM-NRS02730	2.32	25.2	5.3	4.4	1.1	3.4	9.6	1.7	2.5	6.6	2.6
GT1-LCB	M30 x 3,5	GT1PM-NRS03035	2.32	25.2	5.3	4.4	1.1	3.4	9.6	1.7	2.6	6.6	2.2
	%" - 11 ∪N	GT1P-NRS0625U11	2.32	25.2	5.3	4.4	1.1	3.4	9.6	1.7	2.2	6.6	3.5
	¾" - 10 ∪N	GT1P-NRS0750U10	2.32	25.2	5.3	4.4	1.1	3.4	9.6	1.7	2.3	6.6	3.1
	%" - 9∪N	GT1P-NRS0875U09	2.32	25.2	5.3	4.4	1.1	3.4	9.6	1.7	2.4	6.6	2.9
	1"- 8un	GT1P-NRS1000U08	2.32	25.2	5.3	4.4	1.1	3.4	9.6	1.7	2.5	6.6	2.6
	11⁄8"- 8un	GT1P-NRS1125U08	2.32	25.2	5.3	4.4	1.1	3.4	9.6	1.7	2.6	6.6	2.2
	M30 x 3,5	GT2PM-NRS03035	4.15	45.1	5.4	4.4	1.4	4.2	8.9	1.6	2.9	9.0	5.7
	M33 x 3,5	GT2PM-NRS03335	4.15	45.1	5.4	4.4	1.4	4.2	8.9	1.6	3.0	9.0	5.3
	M36 x 4	GT2PM-NRS03640	4.15	45.1	5.4	4.4	1.4	4.2	8.9	1.6	3.1	9.0	4.9
GT2-LCB	M39 x 4	GT2PM-NRS03940	4.15	45.1	5.4	4.4	1.4	4.2	8.9	1.6	3.2	9.0	4.2
	11∕8" - 8 ∪N	GT2P-NRS1125U08	4.15	45.1	5.4	4.4	1.4	4.2	8.9	1.6	2.9	9.0	5.7
	1¼"- 8un	GT2P-NRS1250U08	4.15	45.1	5.4	4.4	1.4	4.2	8.9	1.6	3.0	9.0	5.3
	1%"- 8un	GT2P-NRS1375U08	4.15	45.1	5.4	4.4	1.4	4.2	8.9	1.6	3.1	9.0	4.9
	1½"- 8∪N	GT2P-NRS1500U08	4.15	45.1	5.4	4.4	1.4	4.2	8.9	1.6	3.2	9.0	4.4

* Tommy bar is included with Load Cell

Topside Bolt Tensioners

ENERPAC 3 67

Aquajack[®] Tensioner EAJ2LC with Quick Fastening Nut

- Compact design
- Long piston stroke
- Misalignment compensation
- Quick, simple hose connection
- Visible piston stroke indication
- 'No spill' overstroke elimination
- Quick fastening or solid reaction nut
- ▼ Guaranteed to save time and increase efficiency, Aquajack[®] tensioners improve diver safety, productivity and reduce diver fatigue.

The Most Cost-Effective Solution to Subsea Bolt or Stud Tightening

Quick Fastening Nut Design

Easily positioned in poor visibility conditions,

Aquajack[®] subsea tensioners feature a compact design and long piston stroke. The unique Split Nut[®] design of these tools allows rapid application to long bolts and damaged threads, and rapid tool removal.

No Oil Spillage or Over-Stroking

Innovative tool design ensures maximum tool strokes can be used without over stroking the piston or oil spillage. Guaranteed to save time and increase efficiency, Aquajack[®] subsea tensioners improve diver safety, productivity and reduce diver fatigue.

- 1. Quick Fastening Reaction Nut
- Long Piston Stroke
 Maximum Stroke
- Indicator Band 4. Self-Energizing Seals
- 5. Hose Connections (2x)
- 6. Tommy Bar
- 7. Compact Body Design
- 8. Lifting Eyes
- 9. Anti-Slip Tool Surface

Hose Reel and Stand

Stainless steel stand with 21,750 psi hoses from 98 ft. up to 885 ft. lengths. All hose reels are built up with multiple 98 ft. length hoses.

Aquajack[®] Subsea Tensioners

- E = Nearest obstruction
- G = Measured across tool centerline
- H = Extra stud length required

Maximum Load Capacity: 17.0-260 US ton Maximum Operating Pressure:

21,750 psi

Load Cell Model Number *	Thread Size	Quick Fastening Nut Model Number	Cylinder Effective Area	Maximum Load Capacity	Stroke	Dimensions T (in)								
			(in²)	(ton)	(in)	A	В	C	D	Ε*	F	G *	H *	(lbs)
	³ ⁄4" - 10 UN	EAJ1QFN0750U10												
EA.III.C	7/8" - 9 UN	EAJ1QFN0875U09	1 56	17.0	0.70	1 19	3 58	0 75	2 60	851	1 38	2 00	3 78	3 31
LAJILO	M20 x 2,5	EAJ1QFNM02025	1.50	17.0	0.75	4.43	0.00	0.75	2.00	0.54	1.50	2.03	5.70	0.01
	M22 x 2,5	EAJ1QFNM02225												
	1" - 8 UN	EAJ2QFN1000U08												
	M24 x 2,5	EAJ2QFNM02425												
EAJ2LC	M27 x 3,0	EAJ2QFNM02730	2.57	28.0	1.18	5.79	4.72	0.98	3.23	11.38	1.97	2.44	4.92	6.61
	11⁄8" - 8 UN	EAJ2QFN1125U08												
	M30 x 3,5	EAJ2QFNM03035												
	11/4" 8 UN	EAJ3QFN1250U08												
EAJ3LC	M33 x 3,5	EAJ3QFNM03335	3.91	42.6	1.18	6.20	5.16	1.10	3.86	12.09	2.28	3.07	5.12	9.92
	13/8" - 8 UN	EAJ3QFN1375U08						_			_		-	
	M36 x 3,5	EAJ3QFNM03635												
	1½" - 8 UN	EAJ4QFN1500008												
EAJ4LC	M39 x 4,0	EAJ4QFNM03040	5.71	62.2	1.18	6.73	5.35	1.30	4.49	12.56	2.48	3.58	5.31	13.23
	1%" - 8 UN	EAJ4QFN1625008												
	M42 x 4,5	EAJ4QFNM04245												
	1%4" - 8 UN	EAJ5QFN1/50008									2.76	4.49	5.51	19.84
	17/1 0 1 N			99.6					7.60	13.46				
EAJ5LC	11/8 - 8 UN		9.16		1.18	7.24	5.75	1.57						
	M56 x 5 5													
	21/4" - 8 LINI	EA IGOEN22501108												
EA IGLC	M60 x 5 5	EAUGORI N2250000	12.88	1/0.2	1 1 8	7 01	634	1 03	6.46	1/ /5	3.23	5/3	5 91	28.66
LAUVEO	21/2" - 8 LIN	EA.I60EN2500LI08	12.00	140.2	1.10	1.01	0.04	1.00	0.40	14.40	0.20	0.40	0.01	20.00
	M64 x 6 0	EA.I6QENM06460												
	M68 x 6 0	EA.I7QENM06860												
	$2^{3/4}$ " - 8 UN	EAJ7QEN2750U08												
EAJ7LC	M72 x 6.0	EAJ7QFNM07260	19.17	208.6	1.18	9.06	7.01	2.95	7.56	15.75	3.74	6.06	6.50	41.89
	M76 x 6.0	EAJ7QFNM07660		20010		0.00	1.01	2.00	1.00	10110	0	0.00	0.00	11.00
	3" - 8 UN	EAJ7QFN3000U08												
	M80 x 6.0	EAJ8QFNM08060												
	31/4" - 8 UN	EAJ8QFN3250U08												
EAJ8LC	M85 x 6.0	EAJ8QFNM08560	23.98	260.9	1.18	9.72	7.60	2.68	8.39 1	16.22	4.29	7.17	6.50	54.01
	31/2" - 8 UN	EAJ8QFN3500U08			-			1.00 2.00		10.22				
	M90 x 6,0	EAJ8QFNM09060												

* Tommy Bar is included with Load Cell.

ENERPAC 🖉 69

Power Generation Bolt Tensioners

PGT-Series Single-Stage and Double-Deck Tensioners

- PGT-Series Bolt Tensioners are designed for critical fastening applications in wind, steam and gas turbines
- A broad range of single stage and double deck tensioners provide high performance in tight spaces associated with **Power Generation applications**
- PGT-Series Bolt Tensioners are loaded with performance enhancing features such as Auto-Retract Pistons, Cycle Counters and a premium coating to offer the ultimate in efficiency, durability and ease of use

1. Auto-retract piston: Simplifies use

2. Long-life puller: For maximum

3. Long-life seals: For maximum durability and extended

service life intervals.

4. Corrosion protection:

corrosion resistance.

6. Over-stroke Preventer:

extending cylinder life. 7. Over-stroke Indicator: Extends cylinder life by helping to prevent over-stroking of cylinder.

5. Interchangeable bridge: For optimal application fit.

durability.

and improves speed of operation.

Zinc coating provides best-in-class

Mechanically prevents over-stroke,

High Precision, Low Maintenance

Tensioner Pumps

Electric, pneumatic and manual high-pressure tensioning pumps are available for use with Enerpac hydraulic tensioners.

Hoses and Fittings High-pressure hoses and fittings for use with Enerpac tensioning systems are available.

Page:

78

Description	PGTS Single Stage	PGTD Double Deck
Auto-Retract Piston	~	~
Zinc Coating	~	~
Geared Nut-Rundown	~	~
Over-stroke Indicator	~	~
Over-stroke Preventer	~	~
Single Male Fitting	~	~
Swivel Manifold	+	+
Cycle Counter	-	+

= Standard on tensioner

= Possible option

= Option not available

- 8. Optional counter: Helps indicate when maintenance is due to maximize uptime.
- 9. Quick-disconnect coupler: For safe, simple hydraulic connection.
- 10. Optional 360° swivel: available for additional hose positioning flexibility.
- 11. Spring-loaded nut engagement: Keeps socket positioned on nut for faster and easier seating process.
- 12. Auto-engage nut rundown: For rapid and accurate seating of nuts.

www.enerpac.com

The model above illustrates a typical tool configuration. Actual model configurations vary.
PGT-Series, Power Generation Bolt Tensioners

Options

Fitting Type

SW = Swivel manifold with single male fitting Example: **PGTS2436<u>SW</u>**

Cycle-Counter

C = Cycle Counter (not available on PGTS-models) Example: PGTD3655<u>SWC</u>

- ① Puller bar square drive
- ② Swivel manifold with single male fitting
- ③ Single male fitting
- ④ Nut run down gear box

Bolt Range: M20 - M72 Load Range: 23 - 334 Tons Maximum Operating Pressure 19: 19,575 - 21,750 psi 19 Max. Pressure varies, see specification table for details.

SPECIFICATION TABLE

Tensioner Type	Thread Diameter	Model Number	Nut Size	Max. Pressure	Hyd. Pres.	Max. Load	Stroke	Dimensions (in)						Weight	Bo Protr	olt usion
		(with single male fitting)	A/F		Area	Cap.		Α	в	с	D	Е	S*		ri)	n)
	(mm)	indio inting,	(mm)	(psi)	(in ²)	(tons)	(in)						(in)	(lbs)	min.	max.
	M20 x 2.5	PGTS2030S	30	21,750	2.10	22.9	0.28	2.52	2.52	1.26	3.19	3.07	3⁄/8	4.41	1.73	2.17
	M24 x 3.0	PGTS2436S	36	21,750	3.02	32.8	0.28	3.03	3.03	1.22	3.86	3.20	3⁄/8	6.39	1.93	2.44
	M27 x 3.0	PGTS2742S	42	21,750	4.10	44.6	0.31	3.62	2.95	1.34	5.08	3.27	3⁄8	10.58	2.36	2.76
	M30 x 3.5	PGTS3046S	46	21,750	4.97	54.0	0.31	3.90	3.35	1.50	5.28	3.46	3⁄/8	12.79	2.68	2.87
	M33 x 3.5	PGTS3350S	50	21,750	6.14	66.8	0.31	4.17	3.54	1.57	5.59	3.54	3⁄/8	14.88	2.95	3.94
	M36 x 4.0	PGTS3655S	55	21,750	6.92	75.3	0.35	4.37	3.54	2.19	5.04	3.75	1⁄2	14.11	2.90	3.74
	M39 x 4.0	PGTS3960S	60	21,750	8.62	93.8	0.39	4.86	4.09	1.81	6.30	3.78	3⁄/8	21.54	3.50	4.53
Single	M42 x 4.5	PGTS4265S	65	21,750	9.70	105.6	0.39	5.28	4.53	2.65	6.97	3.90	1⁄2	20.94	3.11	4.53
Stage	M45 x 4.5	PGTS4570S	70	21,750	11.63	126.6	0.39	5.63	4.69	2.07	6.61	4.02	3⁄/8	29.10	3.86	4.57
	M48 x 4.5	PGTS4875S	75	21,750	13.00	141.5	0.39	5.98	4.92	2.20	6.22	4.17	3⁄/8	29.32	4.06	4.69
	M52 x 5.0	PGTS5280S	80	21,750	15.65	170.2	0.39	6.50	5.28	2.30	6.73	4.25	3⁄/8	3946	4.17	4.65
	M56 x 5.5	PGTS5685S	85	21,750	18.08	196.7	0.39	6.97	5.59	2.44	6.69	4.41	3⁄/8	44.97	4.57	5.04
	M60 x 5.5	PGTS6090S	90	21,750	20.89	227.3	0.39	7.48	5.98	2.60	7.32	4.53	3⁄/8	54.59	4.86	5.39
	M64 x 6.0	PGTS6495S	95	21,750	23.74	258.3	0.39	7.87	6.26	2.70	8.15	4.65	1⁄2	67.68	5.39	5.91
	M68 x 6.0	PGTS68100S	100	21,750	27.11	295.0	0.39	8.41	6.65	2.85	8.11	4.84	1⁄2	75.62	5.35	5.83
	M72 x 6.0	PGTS72105S	105	21,750	30.69	333.9	0.39	8.86	7.01	2.99	8.78	4.96	1⁄2	88.85	5.94	6.57
	M24 x 3.0	PGTD2436S	36	19,575	3.55	34.8	0.24	4.69	3.03	1.22	7.28	3.19	3⁄/8	10.14	2.09	2.34
	M27 x 3.0	PGTD2742S	42	19,575	4.56	44.6	0.24	4.92	2.95	1.34	7.72	3.28	3⁄/8	11.57	2.36	2.68
	M30 x 3.5	PGTD3046S	46	19,575	5.31	52.0	0.28	5.28	3.35	1.46	7.68	3.46	3⁄/8	12.70	2.36	2.76
	M33 x 3.5	PGTD3350S	50	19,575	6.62	64.8	0.28	5.59	3.03	1.52	8.19	3.54	3⁄8	14.70	2.56	3.03
	M36 x 4.0	PGTD3655S	55	19,575	7.74	75.8	0.31	5.98	3.27	1.61	8.58	3.66	1⁄2	17.06	2.76	3.43
	M39 x 4.0	PGTD3960S	60	19,575	9.70	95.0	0.39	6.26	4.09	1.89	10.47	3.78	3⁄8	27.56	3.31	3.66
Doublo	M42 x 4.5	PGTD4265S	65	19,575	10.64	104.2	0.39	6.69	4.09	2.05	9.78	3.90	1⁄2	25.02	3.23	3.58
Deck	M45 x 4.5	PGTD4570S	70	19,575	12.93	126.6	0.39	6.97	4.69	2.09	11.57	4.09	3⁄8	38.91	3.82	4.21
20011	M48 x 4.5	PGTD4875S	75	19,575	14.62	143.1	0.39	4.53	4.92	2.26	11.97	4.17	3⁄8	44.31	4.06	4.45
	M52 x 5.0	PGTD5280S	80	19,575	17.50	171.3	0.39	4.88	5.28	2.40	12.91	4.25	3⁄8	57.54	4.33	4.94
	M56 x 5.5	PGTD5685S	85	19,575	20.06	196.4	0.39	5.20	5.59	2.56	13.62	4.41	3⁄/8	66.14	4.61	5.22
	M60 x 5.5	PGTD6090S	90	19,575	23.30	228.2	0.39	5.55	5.98	2.78	14.65	4.53	3⁄8	81.90	4.92	5.63
	M64 x 6.0	PGTD6495S	95	19,575	26.54	259.9	0.39	5.94	6.26	2.99	15.20	4.69	1⁄2	94.80	5.24	6.00
	M68 x 6.0	PGTD68100S	100	19,575	30.25	296.2	0.39	6.30	6.69	3.15	15.67	4.84	1⁄2	109.13	5.43	6.30
	M72 x 6.0	PGTD72105S	105	19,575	34.06	333.6	0.39	6.73	6.97	3.48	16.89	4.96	1⁄2	132.50	5.75	6.73

* Dimension S = Square Drive of Puller Bar and Gear Box.

ENERPAC 71

FTR-Series, Foundation Bolt Tensioners

▼ FTR-Series Foundation Bolt Tensioner

- FTR-Series Foundation Bolt Tensioners provide fast, accurate and easy tightening of external or internal ring wind tower foundations
- Standard models are available for 75, 150 ksi and metric style Williams, Dyson and Macalloy[®] bar types
- Long-stroke options accelerate process with single-pull tensioning

High Precision, Low Maintenance

FTR-Series Foundation Bolt Tensioners

FTR-Series Foundation Bolt Tensioners are designed specifically for tensioning wind tower foundation bolts. These tensioners provide the speed and precision required by this critical application.

Potential thread fit problems are eliminated through the use of existing rebar hex nuts as a reaction point.

The FTR-Series includes long-stroke models, which provide greater speed and ease of use by enabling applications to be completed in a single pull.

- Corrosion protection: Zinc coating provides best-in-class corrosion resistance.
- Over-stroke indicator: Extends life by helping to prevent over-stroking of cylinder.
- 3. Long-life seals: For maximum durability and extended service life intervals
- 4. Auto-retract piston: Simplifies use and improves speed of operation.
- 5. Quick-disconnect coupler: For safe, simple hydraulic connection. OPTIONAL 360° swivel available for additional hose positioning flexibility.
- 6. Interchangeable bridge: For optimal application fit.

▼ FTR-Series Foundation Bolt Tensioner Wrench

Foundation Bolt Tensioners

0-308 Tons

Maximum Operating Pressure*: 21,750 psi / 1500 bar

* Max. Pressure varies, see specification table for details.

Tensioner Pumps

Electric, pneumatic and manual high-pressure tensioning pumps are available for use with

Enerpac hydraulic tensioners.

Swivel manifold with single 2 male fitting

- ③ Nut run down gear box

FTR....SWG

Hoses and Fittings

High-pressure hoses and fittings for use with Enerpac tensioning systems are available.

Page:

78

▼ SPECIFICATION TABLE

Bar Grade	Bo Diam	olt neter	Bar Size Desig-	Model Number	Nut AF	Maximum Pressure	Hydraulic Pressure Area	Load Capacity	Stroke	Dimensions (in)					Wt.	Min. Bolt Protru- sion
	(in)	(mm)	nation		(in)	(psi)	(in ²)	(tons)	(in)	Α	в	с	D	Е	(lbs)	(in)
	1.38	35	#10	FTR751010S	2.00	17,400	4.86	42.3	0.39	3.90	3.48	1.74	6.42	-	12.9	7.87
	1.38	35	#10	FTR751025S	2.00	17,400	4.84	42.1	0.98	4.53	4.02	1.65	8.64	-	24.1	9.84
75 ksi	1.50	38	#11	FTR751110S	2.25	21,750	4.86	52.8	0.39	3.90	3.86	1.50	7.01	-	12.1	8.66
	1.50	38	#11	FTR751125SG	2.25	21,750	4.84	52.7	0.98	4.53	4.02	2.01	8.92	3.78	25.3	10.24
	1.88	48	#14	FTR751420S	2.75	16,965	9.44	80.1	0.79	5.20	5.20	2.60	10.55	-	40.2	12.40
	1.44	37	1.25	FTR15012510S	2.25	16,965	8.34	90.8	0.39	4.37	4.33	1.57	7.01	-	18.2	8.66
150 ksi	1.56	40	1.375	FTR15013810S	2.50	21,750	8.34	90.8	0.39	4.37	4.33	1.50	7.01	-	17.8	8.86
	2.75	70	2.50	FTR15025025S	4.25	21,750	28.27	307.5	1.00	8.44	8.35	3.39	13.68	-	127.8	17.72
10.9	1.42	36	36	FTR1093610SG	2.36	21,750	5.92	64.4	0.39	4.02	3.90	1.57	6.93	3.74	19.0	7.68

Gear box square drive dimension S = 1/2 inch.

Foundation Bolt Tensioners

▼ FTE-Series Elliptical Foundation Tensioner

- FTE-Series Foundation Bolt Tensioners provide fast and accurate performance in difficult, narrow access foundation tensioning applications
- Standard models are available for 75, 150 ksi and metric style Williams, Dyson and Macalloy[®] bar types
- Ideal universal solution that fits both standard and narrow access applications

High Precision, Low Maintenance

FTE-Series, Foundation Bolt Tensioners

Similar to Standard Foundation Tensioners, Elliptical tensioners

were designed specifically for foundation fastening applications on wind towers, and utilize the existing hex nut as a reaction point in order to eliminate thread fit misalignment.

Unlike Standard FTR-Series Tensioners, FTE-Series Tensioners feature an elliptical geometry, which enables fit in narrow access foundation applications, without reducing load capabilities.

Operators may access the nut with a Tommy bar rather then employing the use of an offset rundown gear.

Elliptical tensioners are ideal for close clearance applications, or as a universal tool that will work in nearly any foundation application, whether standard or narrow access.

- 1. Max. stroke Indicator: Extends life by helping to prevent over-stroking of cylinder.
- 2. Long-life seals: For maximum durability and extended service life intervals.
- **3.** Auto-retract piston: Simplifies use and improves speed of operation.
- 4. Elliptical form: Provides access to close clearance applications.
- Corrosion protection: Zinc coating provides best-in-class corrosion resistance.
- 6. Quick-disconnect coupler (not shown): For safe, simple hydraulic connection. OPTIONAL 360° swivel available for additional hose positioning flexibility.

FTE-Series, Foundation Bolt Tensioner, designed to fit both standard and narrow access foundation applications.

FTE-Series, Foundation Bolt Tensioners (Elliptical)

This is how an FTE-Series Foundation Bolt Tensioner Model Number is Built Up:

1 Product Type

FTE = Foundation Tensioner, Elliptical

2 Bar Grade

75 = 75 ksi **150** = 150 ksi (or metric designation)

3 Bar Size Designation

Example: 10 = No. 10 bar

4 Fitting Type

- **S** = Includes single male fitting
- **SW** = Includes swivel manifold with single male fitting

Load Range: 0-86 Tons

Maximum Operating Pressure*: 21,750 psi / 1500 bar

* Maximum pressure varies, see specification table for details.

Tensioner Pumps

Electric, pneumatic and manual high-pressure tensioning pumps are available for use with

Enerpac hydraulic tensioners.

Hoses and Fittings

High-pressure hoses and fittings for use with Enerpac tensioning systems are available.

Page:

78

▼ SPECIFICATION TABLE

Bar Grade	Bo Diam	olt neter	Bar Size Desig- nation	Model Number	Nut AF	Maximum Pressure	Hydraulic Pressure Area	Load Capacity	Stroke	C	Dimens	ions (ir	ו)	Wt.	Min. Bolt Protru- sion
	(in)	(mm)			(in)	(psi)	(in²)	(tons)	(in)	Α	В	С	D	(lbs)	(in)
75 koj	1.38	35	#10	FTE7510S	2.00	17,400	4.82	41.9	0.39	6.69	3.23	5.59	5.81	18.19	7.87
70 KSI	1.50	38	#11	FTE7511S	2.25	21,750	4.82	52.4	0.39	6.69	3.23	5.59	5.81	18.19	8.66
150 kai	1.44	37	1.25	FTE150125S	2.25	17,400	7.86	68.4	0.39	8.74	3.90	6.34	8.01	41.67	9.45
100 KSI	1.56	40	1.375	FTE150138S	2.50	21,750	7.86	85.6	0.39	8.74	3.90	6.34	8.01	40.81	9.06
8.8	1.42	36	36	FTE8836S	2.36	21,750	4.82	52.4	0.39	5.59	3.23	5.59	5.81	21.32	7.09

ENERPAC 75

Multi-Stud Tensioning

ENERPAC. 🖉

Tensioning Every Single Stud in a Joint Simultaneously

▲ Multi Stud Tensioning Set-Up.

MULTI STUD TENSIONERS

Enerpac Multi Stud Tensioning (MST) systems are capable of tensioning every single stud in a joint simultaneously. By applying a predictable and accurate preload to all studs, problems associated with conventional bolt tightening techniques are avoided. Typical Enerpac Multi Stud Tensioning applications include:

Manway, Hand Hole & Inspection Covers

MST systems are the fastest and most accurate means of loosening and tightening studs on Primary and Secondary Manway Covers, Hand-Hole and Inspection Ports in nuclear facilities. Using special ram areas and strong lightweight materials, the MST's reduce bolting time by as much as 75%.

Coolant Pump

A custom slimline tensioning system for a Nuclear Reactor Coolant Pump, using six equally spaced tensioners and tightening studs in four passes, has reduced bolting times by 25% and significantly increased tensioning accuracy.

Wind Turbine Blade Assembly

Using an Enerpac MST has allowed wind turbine blade assembly times to be reduced by approx. 65% while bolt load accuracy and consistency have improved, resulting in better joint life and reduced maintenance requirements. The MST, comprising four tool segments, is capable of simultaneously tensioning up to 88 bolts connecting a 125 ft long blade to a bearing slew ring. This tool can be custom designed, and built, for virtually any nuclear facility. We specialize in addressing difficult projects that demand accurate loads within tight space envelopes, while also seeking ease of operation and performance.

MST - Multi-Stud Tensioners

- Designed in segments enabling the operator to easily and quickly connect each segment to the joint and link together to provide simultaneous loading.
- Very accurate and fast closure system for large tensioning applications on pumps, valves, and steam generators, for example.
- For ease of handling on-site, Enerpac MST systems can be supplied with an integral lifting frame and trolley.

Multi-Stud Tensioner.

▲ Multi-Stud Tensioning application.

Hydraulic Nuts

A Simple and Effective Method of Tensioning Large Bolts in Difficult to Access Areas

▲ Tensioning with hydraulic nuts.

HYDRAULIC NUTS

Enerpac hydraulic nuts are used in many process-critical bolting applications where the ease of installation and manpower time savings are substantial and ongoing. Moreover, they eliminate many of the uncertainties of torque arising from friction, point loading and load scatter.

Enerpac Hydraulic Nuts are a simple and effective method of tensioning large bolts in difficult to access areas with insufficient space for standard tensioners. Typically used when installing and maintaining bolting systems, hydraulic nuts can replace both conventional hexagon nuts and standard round nuts providing a high and predictable degree of tensioning accuracy.

Threaded directly onto the stud, Enerpac hydraulic nuts apply a direct axial elongation by means of hydraulic force generated via the nut's integral hydraulic cylinder. The nut is held in place either by means of a top or bottom load retaining collar externally located on the nut or by the insertion of mechanical shims. Enerpac hydraulic nuts can be retrofitted to existing plant providing an accurate solution to mechanical jointing problems.

Benefits of Enerpac Hydraulic Nuts

- Highly accurate and repeatable bolt loads
- Ideal where space limitations prevent use of standard detachable tensioners
- Direct Axial Loading No nut rotation required
- · Multiple nuts can be connected and tightened / loosened simultaneously
- Eliminates issues with friction
- Substantial time savings due to the quick set-up and hydraulic nuts remaining in-situ
- No stud or flange damage (Galling, Seizure)
- · No need to change joint hardware system works with existing studs
- Ideal when the tension in bolts needs to be checked regularly such as vibration loosening.

Enerpac Hydraulic Nut Applications Have Included:

The Hydraulic Nut is a permanent fixture, replacing the conventional nut and retaining the high bolt load and extension in small space envelopes where there may not be sufficient space to use tensioners.

- Flange Clamps: Pipeline, Structural
- Turbines: Gas, Wind, Steam
- Pressure & Reactor Vessels
- Diesel Engines
- Nuclear Applications: Steam Generators
- Hydraulic and Mechanical Presses
- Heat Exchangers
- Pipeline Flanges, Valves and Control Systems
- Valves & Pumps
- Cranes Slew Ring Bolts, Tower Cranes
- Shaft Couplings
- Mining: Grinders, Cutters, Earth Moving Equipment

▲ Hydraulic nuts on a diesel engine.

High-Pressure Hand Pump & Accessories ENERPAC

VHPT-1500

- Lightweight and portable high-pressure hand pump
- Two-speed operation displaces a larger volume of oil per stroke, reducing cycle times for many testing applications
- Includes a gauge and coupler for direct connection to **GT-Series bolting tools**
- Integrated relief valve set at 21,750 psi

HPT, HT, B Series

Reservoir Capacity: 155 in³

Flow at 10,000 psi: .037-.99 in³/stroke

Ultra-High Pressure

These pumps operate at ultra-high pressure, use only the specified fittings and

hoses designed for these pressures.

Applications

The Enerpac HPT highpressure Hand Pump is ideally suited for use with hydraulic bolt tensioning tools and hydraulic nuts.

Page:

62

29 20.75 50° 9.00 22.0 49 2.80

▼ 21,750 ps	si ULTRA-HIGH PRESSURE PUMP		ŀ				
Model	Description	Usable Oil Displacement per			Pressur	e Rating	Weight
Number		Oil	Stro	oke	(ps		
		Capacity	(in ³)				
		(* 3)	1 st	2 nd	1 st	2 nd	(11
		(In ^s)	stage	stage	stage	stage	(IDS)
HPT-1500	Ultra-High Pressure Hand Pump with Gauge	155	.99	0.037	200	21,750	19

▼ 21,750 psi l	HOSES				▼ 21,750 psi COUPLERS								
Model Number	Hoses	End 1	End 2	Length (ft)	Description	Fittings	Complete Set	Female Half	Male Half				
HT-1503		1/4 BSPM 120° Cone	1/4 BSPM 120° Cone	3.28	Quick Disconnect Coupler*		B150	BR150	BH150				
HT-1510		1/4 BSPM 120° Cone	1/4 BSPM 120° Cone	9.84	Quick Disconnect Coupler and Adaptor		DW150AW						
HT-1503HR*		BH150	BR150	3.28	Kit*	-0	BWISUAW	_	-				
HT-1510HR*		BH150	BR150	9.84	Quick Disconnect Blanking Coupler Set*	1620 1820 1	B150B	_	_				

* Includes dust caps

* Includes dust caps

Tensioning Applications

Safe, reliable and repeatable, the use of hydraulic tensioners has many advantages over other less accurate tightening methods. Tensioning requires longer bolts, and a seating area on the assembly around the nut. Tensioning can be done using detachable Bolt Tensioners or Hydraulic Nuts.

Enerpac Subsea Tensioners Apply Uniform Bolt Load to MORGRIP™ Mechanical Connectors

MORGRIP™ Mechanical Connectors have unique pipe gripping and sealing systems which allows them to withstand high internal pressure and external load conditions. As a result, they have a 100% leak-free in-service record, providing the ultimate in-service assurance for all types of metal pipe work, onshore, offshore and subsea.

Safe, Reliable, and Repeatable Tensioning with Compact Hydramax[®] Tensioners to Complete Joint Integrity

With their compact fit and high load generation, and the flexibility to work with all standard flanges, the Enerpac HM-Series HydraMax[®] tools can be used in almost every industry and in many different applications.

On-Site Tensioning Wind Turbines

Versatile – tensioning allows for loading multiple fasteners in a joint at the same time. Reliable – uniform bolt loading ensures a high level of accuracy by applying a consistent force.

ZUTP-Series, Electric Tensioning Pump

ZUTP-1500SB-H

- High-efficiency Universal Motor draws lower amps for superior performance in remote locations with low power quality
- Two-stage pump design provides high flow at low pressure for fast system fills and controlled flow at high pressure for safe and accurate operation
- Compact and lightweight design fits through tight openings and provides easy handling
- Panel mounted 6" pressure gauge, with polycarbonate cover, is set into the protective metal shroud for improved visibility and safety
- Panel mounted user adjustable valve for safe and precise pressure control
- Safety relief valve limits output pressure

Reliability, Power and Precision

Bolting Integrity Software Visit www.enerpac.com to

access our free on-line bolting software application and

obtain information on tool selection, bolt load calculations and tool pressure settings. A combined application data sheet and joint completion report is also available.

The ZUTP-1500 pump is rugged, lightweight, compact for tight openings, and delivers hassle-free operation of bolt tensioning in remote locations with up to two times the speed of competitive pumps.

Electric Tensioning Pump

for the end-user.

ZUTP-Tensioning Pumps

The ZUTP-Series of pumps achieve high pressure without the need for an intensifier. This allows for low maintenance, resulting in less cost

ZUTP-S with Solenoid Valve

The **ZUTP1500-S Series** with pendant-operated solenoid valve is ideal for multiple bolt tensioning applications as it allows for singleperson operation. The operator can pressurize and depressurize the tensioner directly from the pendant.

Reservoir Capacity: **1** gallon

Flow at Rated Pressure: 20.0 in³/min.

Motor Size: **1.7 hp**

Maximum Operating Pressure: 21,750 psi

12 76

- Power Cord
- ③ Solenoid Dump Valve
- ④ Pressure Gauge
- (5) User Adjustable Relief Valve
- 6 Manual Release Valve
- ⑦ Oil Drain
- ⑧ Oil Level Sight Glass
- Breather
- ① Outlet Port with CEJN Coupler (116 Series)

Pump Type	Useable Oil Capacity (gal)	Valve Type	Model Number ¹⁾	Pressure Rating (psi)	Output Flow Rate at 0 psi (in ³ /min)	Output Flow Rate at 21,750 psi (in ³ /min)	Motor Electrical Specification (50 Hz)	Motor Size (hp)	Sound Level (dBA)	Wt.
Ultra-			ZUTP-1500SB				115 VAC, 1-ph			
high	1.0	Solenoid	ZUTP-1500SE ²⁾	21,750	230	20	230 VAC, 1-ph ²⁾	1.7	89	65
pressre			ZUTP-1500SI ³⁾				230 VAC, 1-ph ³⁾			
Ultra-			ZUTP-1500SB-H ⁴⁾				115 VAC, 1-ph			
high	1.0	Solenoid	ZUTP-1500SE-H ^{2) 4)}	21,750	230	20	230 VAC, 1-ph ²⁾	1.7	89	75
pressre			ZUTP-1500SI-H ^{3) 4)}				230 VAC, 1-ph ³⁾			
Ultra-			ZUTP-1500B				115 VAC, 1-ph			
high	1.0	Manual	ZUTP-1500E ²⁾	21,750	230	20	230 VAC, 1-ph ²⁾	1.7	89	65
pressre			ZUTP-1500I ³⁾				230 VAC, 1-ph ³⁾			

All models meet CE safety requirements and all TÜV requirements.
 European plug and CE EMC directive compliant.

With NEMA 6-15 plug.
 Add suffix "H" for factory installation of Heat Exchanger.

ATP-Series Ultra-High Pressure Air Pump

ENERPAC. 🖉

TATP-1500

- General purpose, high-pressure air-driven pump unit for products requiring up to 21,750 psi hydraulic pressure
- Compact, lightweight, rugged steel frame for protection and easy handling
- Prelubricated pump element, does not require an air line lubricator
- Easily adjustable output pressure control
- · Integrated and protected easy to read glycerine-filled gauge
- Safety relief-valve limits output pressure
- ATEX Certified

The ATP-series pump was tested and certified according to the Equipment Directive 94 / 9 / EC "ATEX Directive". The explosion protection is for equipment group II, equipment category 2 (hazardous area zone 1), in gas and/or dust atmospheres. The ATP-series pump is marked with: Ex II 2 GD ck T4.

ATP

Applications

The ATP-pump is ideally suited for use with HM and GT-Series hydraulic bolt tensioning tools and hydraulic nuts. See our

Page:

62

Bolting Tools catalogue or enerpac.com

21,750 PSI HIGH PRESSURE PUMP											
Pump Type	Useable Oil Capacity	Model Number	Pressure Rating	Output Flow Rate at 0 psi	Output Flow Rate at 21,750 psi	Air Pressure Range	Air Consumption	Sound Level	Wt.		
	(gal)		(psi)	(in³/min)	(in³/min)	(psi)	(sfcm)	(dBA)	(lbs)		
Ultra-High pressure	1.0	ATP-1500	21,750	26	4	80-90	70	70	65		

Portable Hydraulic Toolbox

SCR154PGH

- Includes a single-acting cylinder, two-speed lightweight hand pump (P392), gauge adaptor assembly (GA45GC), and 6 ft. rubber hose with couplers (HC9206C)
- Complete and ready-to-use hydraulic system
- Easy to carry sturdy toolbox
- All components ship inside the toolbox as one package

	Cylinder Model	Cylinder Stroke	Cylinder Capacity	Wt.	Toolbox Set Model Number							
		(in)	ton (kN)	(lbs)								
<u></u>	Lifting Wedge											
Contraction of the second	LW-16	0.83	17.6 (157)	19.8	SLW16PGH ²⁾							
E	Wedge Spread	d Cylinder										
- C	WR-5	3.70 ¹⁾	1.0 (8,9)	26.4	SWR5PGH							
	General Purpo	se Cylinders										
ENER	RC-102	2.13	10 (101)	27.1	SCR102PGH							
	RC-106	6.14	10 (101)	31.7	SCR106PGH							
10	RC-154	3.98	15 (142)	33.1	SCR154PGH							
	RC-156	5.98	15 (142)	37.0	SCR156PGH							
63	Low Height Cy	Low Height Cylinders										
	RCS-101	1.50	10 (101)	31.1	SCL101PGH							
	RCS-201	1.77	20 (201)	33.1	SCL201PGH							
	Flat-Jac [®] Cylin	nders										
"	RSM-100	0.43	10 (101)	25.1	SRS100PGH							
	RSM-200	0.43	20 (201)	28.9	SRS200PGH							
	RSM-300	0.51	30 (295)	32.0	SRS300PGH							
	RSM-500	0.63	50 (435)	37.0	SRS500PGH							

¹⁾ Maximum spread of WR-5.

²⁾ With P-142 two-speed lightweight hand pump.

SC, SL, SR, SW Series

Capacity:

<u>1 - 45 ton</u>

Stroke: **0.43 - 6.14 inches** Maximum Operating Pressure:

10,000 psi

Gauge Adaptor Assembly

Toolbox sets include a 45 degree angled gauge adaptor assembly for improved operating

ergonomics and safety.

The Hydraulic Toolbox is a versatile tool and applicable everywhere.

SC-Series, Cylinder Pump Sets

▼ Cylinder-pump set: **SCR-1010H**

The Quickest and Easiest Way to Start Working Right Away

Portable Hydraulic Toolbox Set SWR5PGH Tool box includes P-392

hand pump, gauge adaptor assembly, hose and **WR-5**.

Page:

83

- Optimum match of individual components
- All sets are ready to use and include single-acting cylinder, two-speed pump, 6-foot safety hose, calibrated gauge with gauge adaptor
- Choose between handpump, air driven foot pump or cordless, (battery-powered) pump
- RC-Series DUO, general purpose cylinders for maximum versatility
- RCS-Series, low-height cylinders for maximum versatility
- RCH-Series hollow cylinders for pushing and pulling
- ▼ Cylinder-Pump Sets optimum match of components. The quickest and easiest way to start working right away.

Cylinder Selection	Nominal Set Capacity	Cylinder Model No.	Stroke	Collapsed Height	
	(ton)		(in)	(in)	
	5	RC-55	5.00	8.50	
		RC-102	2.13	4.78	
	10	RC-106	6.13	9.75	
		RC-1010	10.13	13.75	
	45	RC-154	4.00	7.88	
	15	RC-156	6.00	10.69	
-		RC-252	2.00	6.50	
- 111	25	RC-254	4.00	8.50	
		RC-256	6.25	10.75	
B a a		RC-2514	14.25	18.75	
	50	RC-506	6.25	11.13	
	10	RCS-101	1.50	3.47	
8.9	20	RCS-201	1.75	3.88	
- I mar o	30	RCS-302	2.44	4.63	
68 85	50	RCS-502	2.38	4.81	
	100	RCS-1002	2.25	5.56	
	12	RCH-121	1.63	4.75	
- • <u>•</u> •	20	RCH-202	2.00	6.31	
	30	RCH-302	2.50	7.03	
20	60	RCH-603	3.00	9.75	
6	100	RCH-1003	3.00	10.00	

Single-Acting, Cylinder Pump Sets

SELECTION EXAMPLE

Selected Cylinder:

• RC-106, Single-acting cylinder with 6.13" stroke

Selected Pump:

• P-392, Lightweight hand pump

Set Model Number:

• SCR-106H

Included:

1

- HC-7206 hose
- GF-10P gauge
- GA-2 adaptor

SET SELECTION:

Select the cylinder

Select the pump

Find the set model number in the gray field of the matrix

GA45GC Gauge Adaptor ³⁾

Protect yourself from system overloading by simply ordering one

part number for a preassembled gauge, adaptor block and coupler.

enerpac.com

Capacity: 5-100 tons

Stroke: **1.50-14.25 inches** Maximum Operating Pressure:

10,000 psi

🗧 Pump Se	election (See Pur	Accessories Included						
Hand Pump P-142	Hand Pump P-392	Hand Pump P-80	Foot Pump P-392FP	XA-Series Air Pump XA-11	XC-Series Cordless Pump ^{2) 3)} XC-1202MB	Hose Model No.	Gauge Model No.	Gauge Adaptor Model No.
37	Connes - De		A	H			Ø	-
SCR-55H	-	-	-	-	-	HC-7206	GP-10S	GA-4
-	SCR-102H	-	SCR-102FP	SCR-102XA	SCR-102XCB	HC-7206	GF-10P	GA-2
-	SCR-106H	-	SCR-106FP	SCR-106XA	SCR-106XCB	HC-7206	GF-10P	GA-2
-	SCR-1010H	-	SCR-1010FP	SCR-1010XA	SCR-1010XCB	HC-7206	GF-10P	GA-2
-	SCR-154H	-	SCR-154FP	SCR-154XA	SCR-154XCB	HC-7206	GP-10S	GA-2
-	SCR-156H	_	SCR-156FP	SCR-156XA	SCR-156XCB	HC-7206	GP-10S	GA-2
_	SCR-252H	_	SCR-252FP	SCR-252XA	SCR-252XCB	HC-7206	GF-20P	GA-2
-	SCR-254H	-	SCR-254FP	SCR-254XA	SCR-254XCB	HC-7206	GF-20P	GA-2
_	SCR-256H	-	-	SCR-256XA	SCR-256XCB	HC-7206	GF-20P	GA-2
-	_	SCR-2514H	-	SCR-2514XA ¹⁾	-	HC-7206	GF-20P	GA-2
_	_	SCR-506H	-	SCR-506XA ¹⁾	_	HC-7206	GF-50P	GA-2
_	SCL-101H	-	SCL-101FP	SCL-101XA	-	HC-7206	GF-10P	GA-2
_	SCL-201H	-	SCL-201FP	SCL-201XA	_	HC-7206	GF-230P	GA-2
-	SCL-302H	-	SCL-302FP	SCL-302XA	SCL-302XCB	HC-7206	GF-230P	GA-2
_	SCL-502H	-	SCL-502FP	SCL-502XA	SCL-502XCB	HC-7206	GF-510P	GA-2
-	-	SCL-1002H	-	-	SCL-1002XCB	HC-7206	GF-510P	GA-2
SCH-121H	-	-	-	-	-	HB-7206	GF-120P	GA-4
-	SCH-202H	-	SCH-202FP	SCH-202XA	SCH-202XCB	HC-7206	GF-813P	GA-3
_	SCH-302H	-	SCH-302FP	SCH-302XA	SCH-302XCB	HC-7206	GF-813P	GA-3
-	-	SCH-603H	-	SCH-603XA ¹⁾	SCH-603XCB	HC-7206	GF-813P	GA-3
-	-	SCH-1003H	-	-	_	HC-7206	GP-10S	GA-2
			1	1	1		1	

¹⁾ With **XA-12** air pump

²⁾ XC Cordless Pump includes 115 V charger, for 230 V charger replace the "B" in the model number with an "E".

³⁾ XC Pump Sets include only the HC-7206 Hose and GA45GC Gauge Adaptor accessories

Hydraulic Oil & Torque Wrench Hoses

ENERPAC 🖉

FF-101, HF-100, HF-102, LX-101 and THQ-706T

HF Oil

- Specially formulated for power pumps
 - maximum volumetric efficiency
 - maximum heat transfer
 - prevents cavitation
 - anti-sludge, anti-rust, anti-foam additives
- Maximum film protective lubricity
 - anti-oxidation additives

LX Hand Pump Oil

- Specially formulated for hand pumps
 - anti-sludge, anti-rust additives
- Reduced handle effort over HF blue oil
 - good low temperature performance
- Not for use in power pumps

HF, LX, THQ **Series**

Hydraulic Oil Contents: 1 Qt & 1, 5, 55 Gal Hose Lengths: 6.5, 19.5, 39 feet Maximum Operating Pressure: 10,000 psi

Hydraulic Oil									
Contents	Model Number	High viscosity index ensures maximum lubricity							
1 Quart	HF-100	of operation							
1 Gallon	HF-101	temperatures.							
5 Gallons*	HF-102								
55 Gallons	HF-104								
1 Gallon**	LX-101								

* Packed in two 21/2 gallon cans.

** Hand pump oil.

▼ Oil Specifications Chart

	HF Oil	LX Oil
ISO Viscosity Grade	32	15
API Gravity, ASTM D1298	32	34
Viscosity, ASTM D445		
SUS @ 212°F	43.7	38
SUS @ 104°F	151	77.5
Viscosity Index, ASTM D2270	95	100
Pour Point, °F, ASTM D97	-36.5	-47.5
Flash Point, °F, ASTM D92	375	370
Color	Blue	Yellow

NOTE: SAE grades do not apply to hydraulic oil.

Internal Diameter	Hose Assemblies a	Ends nd Couplers *	Hose Length	Model Number	Wt.
(in)	Hose one	Hose two	(ft)		(lbs)
	female half	male half	6	THQ-702T	10
0.25	+	+	19.5	THQ-706T	30
	male half	female half	39	THQ-712T	60

Twin Torque Wrench Hose

- Thermo-plastic safety dual hoses for RSL, S and W-Series hydraulic torgue wrenches and torgue wrench pumps
- For demanding applications, featuring a 4:1 safety factor
- Maximum working pressure of 700 bar
- Outside jacket is polyurethane, to provide maximum abrasion resistance
- Exhibits low volumetric expansion under pressure to enhance overall system efficiency
- Crimped-on rubber strain relief for improved life and durability on all models

* 1/4" Spin-on Torque Wrench Couplers. TR-630 female half, TH-630 male half.

Hydraulic Wedgie and Spread Cylinders

▼ Shown clockwise from top: WR-5, A-92, WR-15

- Single-acting, spring return
- WR-15: For long-stroke spreading applications
- WR-5: For use in very confined work areas
- A-92*: Spreader attachment screws onto RC-Series 10-ton cylinders (except RC-101)

A, WR Series

Capacity: 0.75-1.00 ton

Tip Clearance: 0.50-1.38 inches

Maximum Spread Range: 3.70-11.50 inches

Maximum Operating Pressure: **10,000 psi**

Portable Hydraulic Toolbox Set SWR5PGH

Tool box includes P-392 hand pump, gauge adaptor assembly, hose and **WR-5**.

Best Match Hand Pump

To power your WR5 and WR15 the **P-392** hand pump is an ideal choice. Use H700-Series hose for

hydraulic connection.

www.enerpac.com

WR-15

2 ^{1/4*-14UNS} 1.38 8 8	0.10

A-92

Spreader Capacity	Tip Clearance	Model Number	Maximum Spread	Cylinder Effective Area	Oil Capacity	Weight
(ton)	(in)		(in)	(in²)	(in³)	(lbs)
1.00	.50	WR-5	3.70	1.00	.61	5.0
.75	1.26	WR-15	11.50	2.25	3.91	25.0
1.00	1.38	A-92*	6.25	_	_	8.0

* Maximum system pressure must be limited to half the rated pressure (5000 psi)

 A WR-5 wedgie cylinder is used for maintenance on a bridge bearing.

ATM-Series, Flange Alignment Tools

From left to right: **ATM-4, ATM-9, ATM-2**

The Faster, Simpler and Safer Way to Align Flanges

Adjustable Reach

The highly adjustable reach of the wing and drop leg on the ATM-4 and ATM-9 allows precise alignment.

Gauge and Adaptor

The ATM-9 includes P-142 hand pump and HC-7206C 6 ft. long hose. Enerpac recommend the use of the

pressure gauge **GP-10S** and gauge adaptor **GA-4** for easy mounting of the gauge onto your system or use GA45GC Gauge Adaptor Assembly.

The ATM-9 is shown here with optional pressure gauge and gauge adaptor.

- Enerpac ATM-Series tools rectify twist and rotational misalignment quickly, safely, and without the need for an external power source
- Appropriate for use on most ANSI, API, BS and DIN flanges
- No slings, hooks or lifting gear required
- Can be installed and used in any position (horizontally or vertically)
- Portable, lightweight design enables easy transport and use, even in remote locations
- Stays stable in position under full load
- Reduces set-up time: no need for chains, pulleys or rigs
- Safety strap helps provide secure operation
- Each ATM-model contains a tool and kit box
- The compact ATM-2 is actuated by simply hand turning the crank.

Flange Alignment Tools

Applications

Enerpac ATM-Series Tools help correct flange misalignment, and allow

bolts to be placed into joints. This alignment takes place during pipework construction, or maintenance.

These tools provide pipe installers and maintenance personnel with some of the simplest, safest and most productive solutions available for flange alignment in the market today.

- Extendable wing provides usage on wide variety of flanges.
- ② Portable, light weight design enables easy transport and use.
- ③ Hand-adjustable base for easy positioning by a single operator.
- ④ Safety strap helps provide secure operation from a horizontal or vertical position.

Minimum Bolt Size: .63-1.24 inches

Flange Wall Thickness: .55-9.00 inches

Maximum Lifting Force: 1-10 tons

ATM-2

ATM-9

Maxi Lifting	mum Force	Model Number	Minimum E	Bolt Size**	Flange Wall (ma	Wt.	
(ton)*	(kN)*		(in)	(mm)	(in)	(mm)	(lbs)
1	10	ATM-2	.63	16	.55 - 3.29	14 - 82	3.5
4	40	ATM-4	.95	24	1.18 - 5.23	30 - 133	19
10	90	ATM-9**	1.40	35,5	3.66 - 9.00	93 - 228	32

* At 10,000-psi maximum operating pressure.

** ATM-9 includes an Energac hand pump and hydraulic hose (gauge and adaptor sold separately). ATM-9 weight includes tool only.

Cylinder-Pump Sets

Hydraulic cylinders, jacks and lifting wedges can also be used to assist in pipe line positioning and aligning.

Page:

85

The ATM-Series – the faster, simpler and safer way to align flanges.

FSC, FSH, FSM Series

FSH-14 and FSM-8 with Safety Blocks Sb1

- Integrated wedge concept: friction-free, smooth, parallel wedge movement eliminates flange damage and spreading arm failure
- Unique interlocking wedge design: no first step bending and risk of slipping out of joint
- Requires very small access gap of only .24 inch (6 mm)
- Stepped spreader arm design: each step can spread under full load
- Few moving parts means durability and low maintenance
- Safety block SB-1 and ratchet spanner SW-22 included with FSM-8
- Safety block and Enerpac RC-102 cylinder included with FSH-14

Practical, Portable And Lightweight

FSC-14 with Integrated Hand Pump

Powered by a built-in hydraulic hand pump, the FSC-14 is a ready-to-use

tool – no making or breaking hydraulic connections. This compact tool delivers 14 US tons of force and requires a clearance gap as small as .24 inch.

Stepped Blocks FSB-1

Use this pair of stepped blocks to increase wedge opening up to 3.16 in. (80 mm). Fits **FSC, FSH** and **FSM** models.

AM-Series Control Manifolds

For simultaneously and even spreading of flange joints, 180° apart with FSH-14.

Flange Maintenance Tools

Secure-Grip and Zero-Gap flange speading tools for application on flanges with a zero or small gap.

See pages 104-109.

 Two FSH-14 spreaders used simultaneously with Enerpac handpump, hoses and AM-21 control manifold.

Flange Spreading Wedges

Flange Spreading Wedges

The flange spreading tools have been developed to aid and simplify the

maintenance of flange joints. No longer will those tasked with separating flanges have to rely on using ropes and pulleys, podgers, tirfors, come-alongs or hammers there is a safe, quick and effective alternative, the Enerpac range of

spreaders. These spreaders use mechanical and hydraulic principles for separating flanges and can spread small, medium or large flange joints. Tool selection is made on the basis of the access gap between the flange faces, the flange size and the required scope of work.

Tip Clearance / Maximum Spread¹⁾: 0.24/3.16 inches

Maximum Spread Force: 8-14 tons

Maximum Operating Pressure: 10,000 psi (FSH-14)

2.60

Max. Spreading Force	Model Number	Tip Clearance	Max. Spread ¹⁾	Туре	Oil Capacity	Wt.
(ton)		(in)	(in)		(in³)	(lbs)
14	FSC-14	.24	3.16	Integral hydraulics	-	19.84
14	14 FSH-14*		3.16	External hydraulics	4.76	15.7
8	FSM-8	.24	3.16	Mechanical	-	14.3

¹⁾ Using stepped blocks FSB-1.

* Available as Tool Pump Set, see note on this page.

Safety Lanyard FSC-1

Recommended safety accessory to compliment the safe hands-free bolting. Includes steel cable with carabiners.

Tool Pump Sets

The hydraulic flange spreader is available as a set (pump, tool, gauge, gauge adaptor, couplers and hose) for your ordering convenience.

Spreader	Hand Pump	Set Model
Model No.	Model No.	Number
FSH-14	P-392	STF-14H

▼ Flange maintenance and joint separation with FSH-14 Hydraulic Wedge Spreader.

Single-Acting Hydraulic Nut Splitters

▼ Shown from left to right: NC-3241, NC-1319, NC-1924

- Compact and ergonomic design, easy to use
- Unique angled head allows flush access
- Two blade design (NC-D models) for time saving operation

 nuts are split from two sides in one action
- Single-acting, spring return cylinder
- Heavy-duty chisels can be reground
- Nut Splitters include spare chisel, spare set screw and wrench used to secure the chisel. A CR-400 coupler is standard
- Applications include servicing trucks, piping industry, tank cleaning, petrochemical, steel construction and mining

Tool-Pump Kits Hydraulic Nut Cutters are available as sets (pump,

tool, gauge, adaptor and hose) for your ordering convenience.

Splitter Model Number	Pump Model Number	Set Model Number
NC-1924	P-392	STN-1924H
NC-2432	P-392	STN-2432H
NC-3241	P-392	STN-3241H

High-Pressure Hoses

Enerpac offers a complete line of high-quality hydraulic hoses. To ensure the integrity of your system, specify only genuine

Enerpac hydraulic hoses.

Enerpac hydraulic nut splitters – the safest and easiest way to remove corroded and frozen nuts

GA45GC Gauge Adaptor

Protect yourself from system overloading by simply ordering one part number for a pre-assembled gauge, adaptor block and coupler.

Single-Acting Hydraulic Nut Splitters

Frozen or Corroded Nuts

Often nuts are difficult to remove, while loosening using tightening tools is

possible, it generally requires larger equipment and is time consuming.

The use of cutting torches or hammers and chisels can cause damage to the joint components, requires significantly longer setup and operational time, and can present a potential safety risk. **Hydraulic Nut Cutters**

Nut splitting with the Enerpac Hydraulic Nut Cutters is the safest method. It takes less time and avoids costly damage to joint components. The head design fitted with heavy-duty chisels permits the splitting of nuts on a wide variety of applications. With the two blade models nuts are split from two sides in one action.

Capacity: 5-90 tons

Bolt Range: 0.31-2.88 inches Maximum Operating Pressure:

10,000 psi

Single Blade Models (NC)

Double Blade Models (NC-D)

For Nut Splitter Model No.	Replacement Chisel Model Number Moving Static								
NC-1319	NCB-1319	-							
NC-1924	NCB-1924	-							
NC-2432	NCB-2432	-							
NC-3241	NCB-3241	-							
NC-4150	NCB-4150	-							
NC-5060	NCB-5060	-							
NC-6075	NCB-6075	-							
NC-1924D	NCB-1924	NCB-1924D							
NC-2432D	NCB-2432	NCB-2432D							
NC-3241D	NCB-3241	NCB-3241D							

Bolt Range	Hexagon Nut Range	Capacity	Oil Capacity	Model Number		Dimensions (in)				Weight		
(in)	(in)	(ton)	(in ³)		A	В	С	D	F	н	J	(lbs)
.3150	.5075	5	.92	NC-1319	1.57	7.87	.24	.75	1.10	1.89	.83	1.8
.5063	.7594	10	1.22	NC-1924 *	2.17	8.94	.32	.98	1.50	2.80	1.00	4.4
 .6388	.94-1.13	15	3.66	NC-2432 *	2.60	10.24	.39	1.22	1.93	2.99	1.30	6.6
.88-1.13	1.13-1.56	20	4.88	NC-3241 *	2.95	11.26	.59	1.38	2.60	3.50	1.69	9.7
1.13-1.38	1.56-2.00	35	9.46	NC-4150	3.78	12.80	.83	1.77	2.87	4.29	2.13	18.0
1.38-1.50	2.00-2.25	50	14.64	NC-5060	4.17	14.41	1.06	2.13	3.63	4.96	2.38	26.0
1.50-1.88	2.38-2.88	90	30.00	NC-6075	6.14	14.43	1.06	2.95	4.33	7.09	3.07	75.1
.5063	.7594	10	1.22	NC-1924D	2.17	6.61	0.87	0.98	1.97	2.60	2.60	8.38
.6388	.94-1.13	15	3.66	NC-2432D	2.60	10.83	0.98	1.22	2.56	3.07	3.07	11.90
.88-1.13	1.13-1.56	20	4.88	NC-3241D	3.03	12.00	1.22	1.46	3.15	3.54	3.54	15.87

Ordering Notes: Maximum allowable hardness to split is HRc-44. Not to be used on square nuts. * Available as Tool-Pump set, see note on this page.

ENERPAC 3 93

NS-Series Hydraulic Nut Splitters

NS-7080, NS-70105

- Specially designed to suit standard ANSI B16.5 / **BS1560** flanges
- Single-acting, spring return cylinder
- Tri-blade technology provides three cutting surfaces on a single blade
- Interchangeable heads provide maximum nut range flexibility
- Preset scale allows controlled blade extension, which avoids damage to bolt threads
- Grip tape and handle included for more secure maneuverability
- Nickel-plated cylinder body for excellent corrosion protection and improved durability in harsh environments
- Internal Pressure Relief Valve for overload protection
- CR-400 coupler and dustcap included on all models

 Heavily corroded and weathered nuts are quickly split and removed using an NS-Series Nut Splitter.

Power and Precision High Performance Nut Splitter

Blade Cutting Depth Scale

Adjustable cutting depth scale for controlled blade extension, which avoids damage to bolt threads.

The scale indicates the bolt range in metric and imperial values on each cutting head.

Hydraulic Nut Cutters

The NC-Series models are available featuring an anglehead design for 0.50"-2.88" hexagon nuts.

FS-Series Spreaders

FS-Series Flange Spreaders (FSC, FSH, FSM-Series) provide quick and easy joint separation using hydraulic or

mechanical force.

ATM Flange Alignment Tools

The ATM series provides safe high-precision flange alignment tools that fit most commonly used ANSI, API, BS, and DIN flanges.

> 88 Page:

Hydraulic Nut Splitters

Nut Splitter Sets

To provide maximum flexibility, NS-Series Nut Splitters can also be ordered in sets (NS-xxxSx). Select Nut Splitter

size and pump style from the chart below.

To order additional Cutting Heads (NSH-xxxxx), Cylinders (NSC-xxx) or Replacement Blades (NSB-xxx), see Selection Chart below.

NS Series

Capacity: 103.2-192.5 tons

Hexagon Nut Range: 2.75-5.38 inches

Bolt Range: 1.75-3.50 inches

Maximum Operating Pressure: 10,000 psi

V	Set Model	V	Pu	mp Options		Accessories Included					
Nut Splitter Model Number	Number	Hand Pump Model No.	Air Pump Model No.	Cordless Pump Model No. ¹⁾	Electric Pump Model No.	Gauge Gauge Model No. Adaptor Model No.		Hose Model No.	Storage Case Model No.		
-			H			Q		0			
NS-70105	NS-70105SH	P392	-	-	-	GP-10S	GA-2	HC-7206	CM-4		
NS-70105	NS-70105SA	-	XA-11G*	-	-	integrated* –		HC-7206	CM-4		
NS-70105	NS-70105SCB	-	-	XC-1202MB	-	GA4	15GC	HC-7206	CM-4		
NS-70105	NS-70105SE	-	-	-	PUD-1100B	GP-10S	GA-2	HC-7206	CM-7		
NS-110130	NS-110130SH	P802	-	-	-	GP-10S	GA-2	HC-7206	CM-4		
NS-110130	NS-110130SA	-	XA-11G*	-	-	integrated*	-	HC-7206	CM-4		
NS-110130	NS-110130SCB	-	-	XC-1202MB	_	GA4	15GC	HC-7206	CM-4		
NS-110130	NS-110130SE	-	-	-	PUD-1100B	GP-10S	GA-2	HC-7206	CM-7		

¹⁾ XC Cordless Pump includes 115 V charger, for 230 V charger replace the "B" in the model number with an "E". Example: **NS-70105SCB** (set with XC-Cordless pump, 115V) ; **NS-110130SEB** (set with PU-series electric pump, 115V)

* XA-11G air pump features an integrated pressure gauge.

							* <u>3/8″ N</u>	PTF						G	F
Hexagon Nut	Bolt Range	Cap.	Oil Cap.	Model Number ²⁾			Dim	iensi (in)	ons			Wt.	NS Cylinder ³⁾	NS Cutting Head ³⁾	Replacement Blade
(in)	(in)	(ton)	(in³)	-	A	В	С	D	E	F	G	(lbs)	4		
2.75-3.13	1.75-2.00	103.2	23.0	NS-7080	5.2	1.1	7.1	0.3	3.2	7.3	16.2	81.4	NSC-70	NSH-7080	NSB-70
2.75-3.50	1.75-2.25	103.2	23.0	NS-7085	5.7	1.2	7.1	0.3	3.2	7.7	16.6	82.7	NSC-70	NSH-7085	NSB-70
2.75-3.88	1.75-2.50	103.2	23.0	NS-7095	6.3	1.3	7.1	0.3	3.2	7.9	17	84.9	NSC-70	NSH-7095	NSB-70
2.75-4.25	1.75-2.75	103.2	23.0	NS-70105	6.9	1.4	7.1	0.4	3.2	8.2	17.5	87.1	NSC-70	NSH-70105	NSB-70
4.25-4.63	2.75-3.00	192.5	50.0	NS-110115	7.4	1.4	9.2	0.1	4.4	9.2	18.6	151.6	NSC-110	NSH-110115	NSB-110
4.25-5.38	2.75-3.50	192.5	50.0	NS-110130	8.6	1.6	9.2	0.1	4.4	9.5	19.4	158.3	NSC-110	NSH-110130	NSB-110

¹⁾ Maximum allowable hardness to split is HRc-44. See page 128 for hexagon bolt and nut sizes and related thread diameters.

²⁾ NS-Series Nut Splitters ship in two cases: One containing the NSC Cylinder and one containing the NSH Cutting Head. Assembly required.

³⁾ Both, the NSH-head and the NSC-cylinder include a cutting blade.

FF-Series, Mechanical Flange Face Tool

FF-120

- Refacing made easy hand-operated machine tool can be set up anywhere without the need for air, electric or hydraulic power support
- Lightweight and portable easily transported to remote locations for increased productivity
- Adjustable cutting range for flange diameters between 1-12 inches [25,4-304,8 mm]
- Interchangeable collets for ID mounting range from 1-6 inches allowing the user to work on many different flanges with minimal time between set-ups
- Interchangeable lead screws suitable for refacing damaged raised-face (RF), flat-face (FF) or lens-ring joint flanges
- Tool body with expanding collets centers itself providing real concentric operation
- ▼ The Enerpac FF-120 used to face a pipe flange.

Safe, Efficient and Accurate Refacing of Flat Pipe Flange Surfaces

Complete In-Wheeled Carrying Case

The **FF-120** comes as portable set (15 kg). Can be transported, easy set-up and operated by a single

technician. Set includes:

- **FFL**-kit with locators, O-Rings and extensions
- **FSS**-kit with feed screw and nut ½"-20 UN for surface roughness Ra 64 - 96 μin.
- **FSF**-kit with feed screw and nut ½"-11 UNF for surface roughness Ra 125 250 µin.

Joint Separation Tools

FSC, FSH and FSH-Series parallel wedge spreaders provide quick and easy joint separation using hydraulic or mechanical force.

Flange Alignment Tools

The ATM-Series provide safe and high-precision flange alignment tools that fit most commonly used ANSI, API,

BS and DIN flanges.

Controlled Tightening and Loosening

Use Enerpac Bolting Tools to seal the joint to the precise torque or tension required:

torque multipliers, torque wrenches and hydraulic bolt tensioners.

Mechanical Flange Face Tool

Portable, hand powered tool makes even the hardest to reach pipe flanges resurface-able in a safe and convenient way.

Makes Refacing Easy

A simple and cost effective solution – the FF-120 turns a two man operation with heavy equipment, compressors and portable generators into a one man job.

The FF-120 has interchangeable lead screws that make it suitable for resurfacing damaged flat-faced, raised-face or lens-ring joint flanges to the high safety standards required. After selecting the correct lead screw for the operation, the tool body is inserted in the pipe end and centres itself with adjustable locators to provide real concentric operation. The tool arm is then rotated by hand using a worm-gear mechanism to provide a perfect spiral "gramophone" finish.

The tool can be adjusted with a calibrated slide to define cut depth and the correct finish.

Surface Finish and Accuracy

A serrated finish with 30-55 grooves per inch and a resultant roughness of between Ra 125-492 micro inches $(3,2-12,5 \ \mu m)$.

The FF-120 has same precision and quality of finish as a lathe.

Cost-effective Solution

Small and portable enough to be a permanent addition to your equipment range, Enerpac's FF-120 is the perfect solution to all of your small diameter facing problems.

Dimensions shown in inches.

* without locator extensions.

▼ TOOL SELECTION CHART

Pipe Flang Diamete	ange Cutting eter Range Internal Pipe Mounting Diameter Range			Average R (Ra	loughness a µ)	Model Number	Wt.
(in)	(mm)	(in)	(mm)	(in)	(m)		(lbs)
1.0 - 12.0	25,4 -304,8	1.0 - 6.0	25,4-152,4	125 - 492	3,2 - 12,5	FF-120	15

* When using fine thread feed screw, FF120FSF.

1 Hand-operated cold work tool – no need for external power and hot work permits.

- 2 Calibrated cross slide for accurate cutting control.
- 3 Adjustable cutting head for reface of flat flange surfaces of pipes with flange OD facing range ø 1-12 inch [25,4-304,8 mm].
- 4 Interchangeable lead screws enable selection of surface finish between Ra 125-492 μin.
- 5 Utilizes standard 3/8 inch or 10 mm tool steel.
- 6 Range of interchangeable collets allow the tool to accommodate ø 1 - 6 inch [25,4 - 152,4 mm] pipe ID.
- 7 Tool body with expanding collets centers in the bore ensuring concentric and accurate set-up.
- The Enerpac FF-120 Quick Face has same precision and quality of finish as powered machines.

Tool Block

Knob

12 O-Ring

Swivel Slide

HSS 3/8" Tool Bits

Mandrel Locking

10 Locator Extensions

11 Adjustable Locators

6

7

8

9

Feed Knob

Gear Box

Cutting Depth

Locking Collar

Lead/Feed Screw

Adjustment with

indicator: .005 inch

(0,127 mm) per mark

1

2

3

4

5

ENERPAC 0 97

FF Series

Pipe Flange Cutting Diameter Range: 1-12 in (25-305 mm)

Internal Pipe Mounting Diameter Range:

1-6 in (25-152 mm)

<u>Average Roughness:</u> 125-492 μin (3,2-12,5) μm

ENERPAC. 🖉

The Equalizer[™] range of patented flange spreading tools have been developed to aid and simplify the maintenance of flange joints. No longer will those tasked with separating flanges have to rely on using ropes and pulleys, podgers, tirfors, come-alongs or hammers – there is a safe, quick and effective alternative, the Equalizer[™] range of spreaders. These spreaders use mechanical and hydraulic principles for separating flanges and can spread small, medium or large flange joints. Tool selection is made on the basis of the access gap between the flange faces, the flange size and the required scope of work.

SWi Flange Spreading Wedges:

An innovative flange spreading wedge for use on small, medium or large flange joints with a minimum access gap of 0.16". The SWi range includes ATEX approved options.

The SWi range has set the new standard for spreading flange joints powerfully, efficiently, effectively and safely. The tools offer the following features and benefits:

- Wider spreading using the Standard Stepped Block accessories means the SWi range offers up to 30% more flange spreading distance than a traditional SW tool.
- Unrivalled power the tools now offer up to 27 ton of spreading force when used in pairs, which provides additional confidence when spreading.
- Narrower jaws the SWi5TE tools are only 1.97 inches wide to help them fit more easily between flange bolts.
- Fully rotational handle the handle swivels 360° around the wedge head, so that the SWi tools can be used comfortably in all orientations.
- Easier maintenance end-users will appreciate the ease with which the tools can be maintained. The supplied hex-key and a two-step process is all that's required to disassemble and reassemble the tools.
- No pinch points the SWi range of tools has been engineered to overcome finger pinch-points.

MG Flange Spreading Tool:

A mechanical tool for small diameter, low pressure flanges with a minimum access gap of 0.08 inch.

For use on smaller, lower pressure flange joints, this portable and flexible tool can be assembled in two alternative configurations that gives it twice the application range from one tool. The tool is locked onto the flange joint by the spreading bar preventing the risk of it falling from the flange joint.

SG Flange Spreading Tools:

A unique flange spreader that is ideal for situations where there is no access gap or where there is a spacer, a wafer or butterfly valve positioned between the flanges.

Equalizer's unique Secure-Grip tools spread by locking into the flange bolt holes and pulling the mating flanges away from each other, the Secure Grip flange spreaders are locked on to the flanges when under load making them arguably the world's safest flange spreading tools.

VC Valve Change-Out Tools:

Using the same technology as the SG flange spreaders, the VC range has been developed for valve removal applications.

The Equalizer[™] VC Range of Valve Change-Out tools has been developed to assist in the removal of valves, spades/spacers or gaskets from large flange joints. The span of the tool is longer than a standard Secure-Grip Flange Spreader and is adjustable to enable the tool to operate in a range of applications.

MG7TM

- Reversible leg design giving greater range of applications
- Unique double-angled wedge produces a greater spreading force without reducing spreading distance
- Robust lightweight tool
- Spreading force of 7.6 ton

OPERATING BENEFITS

- Locks on to flange joint
- Safe, quick and easy operation
- Saves time and cost

MG

FLANGE SPREADING TOOL

Spreading Force: **7.6 tons**

Spreading Distance: 0.08 - 1.06 inches

Range of Application

For a detailed range of application please request the MG7TM Operator Instruction Sheet.

CAUTION

A minimum of two Flange Spreading Tools must be used when opening flange joints.

This will enable the operator to maintain an equal spreading distance across the flange faces.

MG7TMSTD Standard Kit

2.0

- 1 x MG7TM Tool
- 2 x Spreading Bar 1 x Moulded Plastic
 - Carry Case

Flange Dimensions

Model Number	Туре	Maximum Spreading Force Per Tool	Spreading Distance Maximum	Flange Dimensions Minimum Access Gap A	Wedge Width	Tool Weight	Kit Weight	Case Dimensions	Tool Number
		(ton)	(in)	(in)	(in)	(lbs)	(lbs)	(in)	
MG7TMSTD	Mechanical	7.6	1.06	0.08	1.8	11.02	12.13	14.2 x 11.8 x 3.5	MG7TM

9.9

3.6

Tool retracted and advanced using large (Ø 0.8 in) spreading bar

0.08

6.1

15.6

Tool retracted and advanced using small (Ø 0.6 in) spreading bar

14.4

ENERPAC 🖉

Vi20/25TI

when opening flange joints.

This will enable the operator to maintain

an equal spreading distance across the

flange faces.

- Practical, portable and lightweight
- Revolving handle to aid horizontal or vertical spreading
- Removable handle for improved access
- No finger pinch point
- Increased step depth on upper steps
- Safety lanyard length, 39 inches
- Forged key components for strength and reliability
- Rapid disassembly and assembly
- Narrow jaw teeth improved tool wear

* Using stepped blocks.

SWi5TE - Hydraulid	Flange Spreading Wedge	SWi12/14TM - Mechanical Flange Spreading Wedge						
SWi5TE-S - SWi5TE S I	Kit	SWi1214TMSTDSPB - S	SWi12/14TM STD Kit					
ITE STATE	1 x SWi5TE Flange Spreading Tool 1 x Standard Safety Block 1 x Lanyard 1 x Moulded Plastic Carry Case with Protective Foam Inserts	CO CONTRACTOR	1 x SWi12/14TM Flange Spreading Tool 1 x Torque Wrench with 22 mm Socket 1 x Set of Safety Blocks 1 x Pair of Stepped Blocks 1 x Lanyard 1 x Hex Key 1 x Moulded Plastic Carry Case					
SWI5TE-T - SWI5TE T K	(it							
0-188	2 x SWi5TE Flange Spreading Tools 2 x Standard Safety Blocks	SWi20/25TE - Hydraulic Flange Spreading Wedge						
Or on the line	1 x Moulded Plastic Carry Case with Protective	SWi2025TEMINSPB - SWi20/25TE MIN Kit						
1640016-01 - SWi5TE S	Foam Inserts Stepped Block Kit 1 x Pair of SWi5TE Stepped Blocks 2 x M6 CSK Hex Screw 2 x Retaining Washer 1 x SWi5TE Large Safety Block 2 x Hex Key		1 x SWi20/25TE Flange Spreading Tool 1 x Set Safety Blocks 1 x Pair of Stepped Blocks 1 x Lanyard 1 x Hex Key 1 x Moulded Plastic Carry Case					
6		SWi2025TESTDSPB - SWi20/25TE STD Kit						
		CT C	1 x SWi20/25TE Flange Spreading Tool 1 x 10,000 psi Hydraulic Hose, 6.5' with 90° Elbow 1 x 10,000 psi HP350S Single-Port Sealed Hand Pump with Gauge 1 x Set Safety Blocks 1 x Pair of Stepped Blocks 1 x Lanyard 1 x Hex Key 1 x Moulded Plastic Carry Case					

SWi2025TEMAXSPB - SWi20/25TE MAX Kit

SWi5TI - Integral Hydraulic Flange Spreading Wedge

SWi5TI-S - SWi5TI S Kit

1 x SWi5TI Flange Spreading Tool 1 x Standard Safety Block 1 x Lanyard 1 x Moulded Plastic Carry Case with Protective Foam Inserts

1640016-01 - SWi5TE Stepped Block Kit

1 x Pair of SWi5TE Stepped Blocks 2 x M6 CSK Hex Screw 2 x Retaining Washer 1 x SWi5TE Large Safety Block 2 x Hex Key

SWi20/25TI - Integral Hydraulic Flange Spreading Wedge

SWi2025TISTDSPB - SWi20/25TI STD Kit

- 1 x SWi20/25TI Flange Spreading Tool 1 x Set of Safety Blocks
- 1 x Pair of Stepped Blocks
- 1 x Lanyard
- 1 x Hex Key 1 x Carry-Strap
- 1 x Moulded Plastic Carry Case

ENERPAC.

VSWi20/25TEEX

- ATEX certified
- Practical, portable and lightweight
- Revolving handle to aid horizontal or vertical spreading
- · Removable handle for improved access
- No finger pinch point
- Increased step-depth on upper steps
- Safety lanyard length, 39 inches
- · Forged key components for strength and reliability
- · Rapid disassembly and assembly
- Narrow jaw teeth improved tool wear

Stepped Block

Model Number	Туре	Maximum Spreading	Spreading Distance	Flange Dimensions	Jaw Width	Tool Weight	Kit Weight	Case Dimensions	Tool Number
		Force Per Tool	Maximum *	Minimum Access Gap A	•				
		(ton)	(in)	(in)	(in)	(lbs)	(lbs)	(in)	
SWi1214TMSTDEX	Mechanical	15.7	4.1	0.24	2.4	13.7	37.5	22.8 x 15.7 x 7.1	SWi12/14TME>
SWi2025TEMINEX	External Hydraulic	27	4.1	0.24	2.4	14.1	33.1	22.8 x 15.7 x 7.1	SWi20/25TEEX
SWi2025TESTDEX	External Hydraulic	27	4.1	0.24	2.4	14.1	60.6	26.8 x 22.0 x 7.1	SWi20/25TEEX
SWi2025TEMAXEX	External Hydraulic	27	4.1	0.24	2.4	14.1	85.5	36.6 x 23.6 x 7.1	SWi20/25TEEX
SWi2025TISTDEX	Integral Hydraulic	27	4.1	0.24	2.4	18.7	38.6	22.8 x 15.7 x 7.1	SWi20/25TIEX

* Using stepped blocks.

102

www.enerpac.com

SWi

ATEX CERTIFIED FLANGE SPREADING WEDGES

Spreading Force: 15.7 - 27 ton

Spreading Distance: 0.24 - 4.1 inches

Maximum Operating Pressure: 10,000 psi *

* Only relevant for hydraulic tools

CAUTION

A minimum of two Flange Spreading Tools must be used when opening flange joints. This will enable the operator to maintain an equal spreading distance across the flange faces.

SWi12/14TMEX -ATEX Certified Mechanical

Flange Spreading Wedge

⟨€x⟩ ^{|| 20}

II 2G Ex h IIB T5 Gb II 2D Ex h IIIC T185⁰F Db

SWi1214TMSTDEX - SWi12/14TMEX STD Kit

SWi20/25TIEX -

EQUAL

Flange Spreading Wedge

ATEX Certified Integral Hydraulic

SWi2025TISTDEX - SWi20/25TIEX STD Kit

1 x SWi12/14TMEX Flange Spreading Tool 1 x ATEX Torque Wrench with 22 mm Socket 1 x Set of Safety Blocks 1 x Pair of Stepped Blocks 1 x Lanyard 1 x Hex Key 1 x Aluminium Carry Case with Protective Foam Inserts

1 x SWi20/25TIEX Flange Spreading Tool

x Aluminium Carry Case with Protective Foam

1 x Set of Safety Blocks

1 x Lanyard 1 x Hex Key

1 x Carry-Strap

Inserts

1 x Pair of Stepped Blocks

II 2G Ex h IIB T5 Gb

II 2D Ex h IIIC T212ºF Db

SWi20/25TEEX -ATEX Certified Hydraulic Flange Spreading Wedge

SWi2025TEMINEX - SWi20/25TEEX MIN Kit

- 1 x SWi20/25TEEX Flange Spreading Tool
- 1 x Set Safety Blocks
- 1 x Pair of Stepped Blocks
- 1 x Lanyard
- 1 x Hex Key
- 1 x Aluminium Carry Case with Protective Foam Inserts

SWi2025TESTDEX - SWi20/25TEEX STD Kit

SWI2025TEMAXEX - SWI20/25TEEX MAX Kit

- 2 x SWi20/25TEEX Flange Spreading Tools
- 2 x 10,000 psi ATEX Hydraulic Hose, 6.5 ft. with 90° Elbow
- 1 x 10,000 psi HP550D ATEX Twin-Port Sealed Hand Pump with Gauge
- 2 x Set Safety Blocks
- 2 x Pair of Stepped Blocks
- 2 x Lanvards
- 2 x Hex Keys
- 1 x Aluminium Carry Case with Protective
 - Foam Inserts

These tools have been designed for use in potentially explosive atmospheres which is:

- Group II (Non-mining equipment)
- Equipment category 2 where explosive atmosphere is likely to occur in normal operation
- Can be applied in **zones 1** and **2** of gaseous explosive atmospheres and in **zones 21** and **22** of dust explosive atmosphere
- Gas G or Dust D with type of protection Ex h for non-electrical equipment
- Suitable for use with Group IIB of a gases and vapours (Ethylene group) and Group IIIC of dust (conductive dust)

- For hydraulic tools T5 means that minimum ignition temperature of gas or vapor >212°F; T212°F means that minimum ignition temperature of a dust cloud ≥302°F and minimum ignition temperature of a 0.2 inch (5mm) dust layer ≥347°F
- For mechanical tools T6 means that minimum ignition temperature of gas or vapor >185°F; T185°F means that minimum ignition temperature of a dust cloud ≥261.5°F and minimum ignition temperature of a 0.2 inch dust layer ≥ 320°F

These tools have been designed and manufactured in accordance with the following transposed harmonized European standards:

- EN ISO 80079-36:2016 Explosive atmospheres - Part 36: Non-electrical equipment for explosive atmospheres -Basic method and requirements;
- EN ISO 80079-37:2016 Explosive atmospheres - Part 37: Non-electrical equipment for explosive atmospheres
 - Non-electrical type of protection constructional safety "c", control of ignition sources "b", liquid immersion "k"

ENERPAC.

V SG11TM

- · For use on all flange types with bolt-hole sizes ranging from 0.69 inches to 2.44 inches
- Unique expanding collet technology
- Little or no access gap required
- Secure bolt-hole locking mechanism

OPERATING BENEFITS

- Time-saving, simple operation
- Measurable, controlled flange spreading force
- Virtually universal, the Secure-Grip Flange Spreader range covers ANSI, DIN, SPO, ASME, API and BS flanges

SG

Range of Application For a detailed range of application please request the Secure-Grip Mechanical or Hydraulic Operator Instruction Sheet.

CAUTION

A minimum of two Flange Spreading Tools must be used when opening flange joints.

This will enable the operator to maintain an equal spreading distance across the flange faces.

Model Number	Type *	Maximum Spreading	Spreading Distance	Flange Di (ii	Tool Dimensions (in)						Tool Weight	Kit Weight	Case Dimensions	Tool Number	
		Force Per Tool	Maximum	Minimum Access Gap	n Bolt-hole Diameter		В	C	D	E	F				
		(ton)	(in)	Α	В							(lbs)	(lbs)	(in)	
SG4TMSTD	М	4.2	2.95	0	0.69 - 0.91	15.7	7.5	7.2	3.0	15.2	1.9	9.9	28.2	20.5x14.8x6.5	SG4TM
SG6TMSTD	Μ	6.7	3.15	0	0.94 - 1.18	18.4	9.6	9.9	3.1	17.5	2.0	16.5	35.3	25.2x21.3x6.5	SG6TM
SG11TMSTD	М	12.4	3.54	0	1.18 - 1.54	20.3	9.8	10.4	3.5	18.2	2.4	23.1	44.1	25.2x21.3x6.5	SG11TM
SG13TESTD	Н	14.6	4.53	0	1.50 - 1.93	20.3	11.9	12.4	4.5	24.8	2.8	47.4	89.3	35.0x22.4x6.5	SG13TE
SG15TESTD	Н	16.9	3.94	0	1.87 - 2.44	23.6	13.6	15.0	3.9	28.3	3.1	57.3	99.2	35.0x22.4x6.5	SG15TE

M = Mechanical

H = Hydraulic

SG

FLANGE SPREADING TOOLS

Model Number	Flange Joint Thickness F		Valve / Spacer Thickness V		Flange Clearance C		Radial Space R		Axial Space (for installation) A ₁		Axial Space (installed) A ₂		Tool Number		
	Min. (in)	Max. (in)	Measured: From / To	Min. (in)	Max. (in)	Measured: From / To	Max. (in)	Measured: From / To	Min. (in)	Measured: From / To	Min. (in)	Measured: From / To	Min. (in)	Measured: From / To	
SG4TMSTD	2.4	7.3	Outside	0*	1.8*	Inside	2.0		6.7		6.7		7.9		SG4TM
SG6TMSTD	2.4	8.3	face of	0*	2.0*	face of	2.2	Bolt-hole	9.1	Bolt-hole	7.9	Outside face of	9.2	Inner face	SG6TM
SG11TMSTD	3.8	9.4	flange /	0*	2.4*	flange /	2.4	Largest	9.4	circle /	8.8	flange /	10.2	of flange /	SG11TM
SG13TESTD	4.7	12.2	face of	0*	3.7*	face of	2.8	OD of	11.0	obstruction	12.2	Closest	10.2	obstruction	SG13TE
SG15TESTD	5.5	15.7	flange	0*	3.1*	flange	3.1	vaive/spacer	14.6		15.0	0050 00100	12.4		SG15TE

Short Collet Holder Kits (SCH) are available which can offer improved range of application.

SG4TM MECHANICAL TOOL KIT

- 1 X SG4TM Tool
- 1 X 6" Vernier Calliper
- 1 X 3/8" Drive Torque Wrench and 16 mm Socket
- 1 X Safety Block
- 2 X M16 (5/8") Collets
- 2 X M20 (3/4") Collets
- 1 x Aluminium Carry Case with Protective Foam Inserts

SG6TM MECHANICAL TOOL KIT

- 1 x SG6TM Tool
- 1 X 6" Vernier Calliper
- 1 X 3/8" Drive Torque Wrench and 21 mm Socket
- 2 x M24 (7/8") Collets
- 2 x M27 (1") Collets
- 1 x Aluminium Carry Case with Protective Foam Inserts

SG11TM MECHANICAL TOOL KIT

1 x SG11TM Tool

- 1 x 6" Vernier calliper
- 1 x 1/2" Drive torque wrench and 24 mm socket
- 1 x Safety block
- 2 x M30 (1-1/8") Collets
- 2 x M33 (1-1/4") Collets
- 2 x M36 (1-3/8") Collets
- 1 x Aluminium Carry Case with Protective Foam Inserts

SG13TE HYDRAULIC TOOL KIT

- 1 x SG13TE Tool 1 x 10,000 psi HP550S Single Port
- Sealed Hand Pump with Gauge
- 1 x 10,000 psi Hydraulic Hose, 78.7" 1 x 6" Vernier Calliper
- 1 x 1/2" Square Drive Flexible Handle
- 1 x 1-1/8" Socket
- 1 x Safety Block
- 2 x M39 (1-1/2") Collets
- 2 x M42 (1-5/8") Collets
- 2 x M45 (1-3/4") Collets
- 1 x Aluminium Carry Case with Protective Foam Inserts

SG15TE HYDRAULIC TOOL KIT

- 1 x SG15TE Tool 1 x 10,000 psi HP550S Single Port
 - Sealed Hand Pump with Gauge
 - 1 x 10,000 psi Hydraulic Hose, 78.7"
 - 1 x 12" Vernier Calliper
 - 1 x 1/2" Square Drive Flexible Handle
 - 1 x 1/2" Socket
 - 1 x Safety Block
 - 2 x M48 (1-7/8") Collets
 - 2 x M52 (2") Collets
 - 2 x M56 (2-1/4") Collets 1 x Aluminium Carry Case with Protective
 - Foam Inserts

- 1 x Safety Block

ENERPAC. 🖉

V SG18TE & SG25TE

- Applicable for larger-sized flanges
- Actuated by an external hand pump
- Suitable for bolt holes from 2.34 to 4.25 inches

SG18TE

Model Number	Туре	Maximum Spreading	Spreading Distance	Flange D	imensions in)	Tool Weight	Kit Weight	Case Dimensions	Tool Number
		Force Per Tool	Maximum	Minimum Access Gap	Bolt-hole Diameter B				
		(ton)	(in)	Α		(lbs)	(lbs)	(in)	
SG18TESTD	Hydraulic	20.2	3.93	0	2.34 - 2.95	30.9	99.2	35 x 22.4 x 6.5	SG18TE
SG25TESTD	Hydraulic	28.1	4.72	0	2.95 - 4.25	52.9	110.2	35 x 22.4 x 6.5	SG25TE
Equalizer Flange Spreading Tools

SG

Model Number		Flang Thic	je Joint kness F	Radial Space R		Axial Space (for installation) A ₁		Axial Space (installed) A ₂		Axial Plug Space (for installation) P ₁		Axia	Tool No.	
	Min. (in)	Max. (in)	Measured: From / To	Min. (in)	Measured: From / To	Min. (in)	Measured: From / To	Min. (in)	Measured: From / To	Min. (in)	Measured: From / To	Min. (in)	Measured: From / To	
SG18TESTD	7.5	17.7	Outside face of	2.2	Bolt-hole circle /	24.4	Outside face of	35.4	Inner face of	11.1	Outside face of	11.1	Inner face of	SG18TE
SG25TESTD	8.3	22.4	face of flange	2.2	obstruction	29.5	obstruction	43.3	obstruction	15.0	obstruction	15.0	obstruction	SG25TE

SG18TE HYDRAULIC TOOL KIT

- 1 x SG18TE Tool
- 1 x Spreading Plug
- 1 x 10,000 psi HP550S Single Port Sealed Hand Pump with Gauge
- 1 x 10,000 psi Hydraulic Hose, 6.5'
- 1 x 12" Vernier Calliper
- 1 x 0.5" Spacer Plate
- 1 x 5mm Allen Key
- 1 x 2.0" Spacer
- 1 x Safety Block
- 2 x M60 (2-3/8") Collets
- 2 x M64 (2-1/2") Collets
- 2 x M70 (2-3/4") Collets
- 1 x Aluminium Carry Case with Protective Foam Inserts

SG25TE HYDRAULIC TOOL KIT

- 1 x SG25TE Tool
- 1 x Spreading Plug
- 1 x 10,000 psi HP550S Single Port Sealed Hand Pump
- with Gauge
- 1 x 10,000 psi Hydraulic Hose, 6.5'
- 1 x 12" Vernier Calliper
- 1 x 0.5" Spacer Plate
- 1 x Safety Block
- 1 x Aluminium Carry Case with Protective Foam Inserts

SG25TE COLLETS (AVAILABLE SEPARATELY)

Model Number	Description
673601-01	2 x M76 (3") Collets
673901-01	2 x M80 (3-1/4") Collets
674501-01	2 x M84 (3-3/8") Collets
674801-01	2 x M90 (3-1/2") Collets
675101-01	2 x M95 (3-3/4'') Collets
675601-01	2 x M100 (4'') Collets

Equalizer Flange Spreading Tools

ENERPAC.

VALVE

VC10TE

- Assists in the removal of wafer/butterfly valves, spades/ spacers or gaskets from large flange joints
- Tool span is longer than a standard Secure-Grip Flange Spreader
- Adjustable to enable the tool to operate in a range of situations

PATENTED SECURE-GRIP SYSTEM:

- Unique expanding collet technology
- Secure bolt-hole locking mechanism
- Unique technology makes the Secure-Grip arguably the safest flange spreader available in the world today
- Virtually universal, the Secure-Grip Flange Spreader range will cover ANSI, DIN, Norsok L005, ASME, API and BS Flanges
- Time-saving, simple operation

CHANGE-OUT TOOLS Spreading Force: 11.2 tons

Spreading Distance: 0 - 22.8 inches

Maximum Operating Pressure: 10,000 psi

VC

CAUTION

A minimum of two Flange Spreading Tools must be used when opening flange joints.

This will enable the operator to maintain an equal spreading distance across the flange faces.

The Actuator and Extension Subassembly can be assembled into 4 different configurations to suit a variety of applications. For a detailed range of application please request

the VC10 Operator Instruction Sheet.

Flange Dimensions

Model Number	Туре*	Maximum Spreading	Spreading Distance	Flange Di (pu	mensions ulg)	Tool Kit	Pump Kit	Gross Kit	Tool Case Dimensions	Pump Case Dimensions	Tool No.
		Force Per Tool	Maximum	Minimum Access	Bolt-hole Diameter	Weight (2 per Maxi Kit)	Weight	Weight			
		(ton)	(in)	A	, D	(lbs)	(lbs)	(lbs)	(in)	(in)	
VC10/13TESTD	Н	11.2	22.8	0	1.50 - 1.93	110	60	170	21.7 x 47.2 x 6.7	21.7 x 47.2 x 6.7	VC10/13TE
VC10/13TEMAX	Н	11.2	22.8	0	1.50 - 1.93	110	66	287	21.7 x 47.2 x 6.7	21.7 x 47.2 x 6.7	VC10/13TE
VC10/15TESTD	Н	11.2	22.0	0	1.87 - 2.44	117	60	176	21.7 x 47.2 x 6.7	21.7 x 47.2 x 6.7	VC10/15TE
VC10/15TEMAX	Н	11.2	22.0	0	1.87 - 2.44	117	66	300	21.7 x 47.2 x 6.7	21.7 x 47.2 x 6.7	VC10/15TE
VC10/18TESTD	Н	11.2	20.2	0	2.34 - 2.95	128	60	187	21.7 x 47.2 x 6.7	21.7 x 47.2 x 6.7	VC10/18TE
VC10/18TEMAX	Н	11.2	20.2	0	2.34 - 2.95	128	66	322	21.7 x 47.2 x 6.7	21.7 x 47.2 x 6.7	VC10/18TE
VC10/25TESTD	Н	11.2	19.3	0	2.95 - 4.25	128	60	187	21.7 x 47.2 x 6.7	21.7 x 47.2 x 6.7	VC10/25TE
VC10/25TEMAX	Н	11.2	19.3	0	2.95 - 4.25	128	66	322	21.7 x 47.2 x 6.7	21.7 x 47.2 x 6.7	VC10/25TE

* H = Hydraulic

Equalizer Flange Spreading Tools

VC

VALVE CHANGE-OUT TOOLS

Model Number	Flange Joint Thickness F		e Joint ness	Valve / Spacer Thickness V			Flange Clearance C	Radial Space R	Axial Space (for installation) A ₁	Axial Space (installed) A ₂	Tool Number
	Min. (in)	Max. (in)	Measured: From / To	Min. (in)	Max. (in)	Measured: From / To	Measured: From / To	Measured: From / To	Measured: From / To	Measured: From / To	
VC10/13TESTD	4.3	27.2		0*	22.8*						VC10/13TE
VC10/13TEMAX	4.3	27.2		0*	22.8*						VC10/13TE
VC10/15TESTD	5.1	27.2	Outside	0*	22.0*	Inside face of	Bolt-hole	Bolt-hole	Outside	Inner face	VC10/15TE
VC10/15TEMAX	5.1	27.2	flange /	0*	22.0*	flange /	Largest	circle /	flange /	of flange /	VC10/15TE
VC10/18TESTD	6.9	27.2	Outside	0*	20.2*	Inside	OD of	obstruction -	Closest	obstruction -	VC10/18TE
VC10/18TEMAX	6.9	27.2	face of	0*	20.2*	face of	valve/spacer -	min. 14.2"	obstruction - min_11.8"	min. 14.6"	VC10/18TE
VC10/25TESTD	7.9	27.2	nange	0*	19.3*	nange	11ux. 0.1				VC10/25TE
VC10/25TEMAX	7.9	27.2		0*	19.3*						VC10/25TE

* Short Collet Holder Kits (SCH) are available which can offer improved range of application.

TOOL KITS (1 PER STD KIT, 2 PER MAX KIT)

VC10/18TE

Inserts

VC10/25TE

Inserts

1 x VC10/25TE Tool

1 x Aluminium Carry Case

with Protective Foam

1 x VC10/18TE Tool

2 x M60 (2-3/8") Collets

2 x M64 (2-1/2") Collets

2 x M70 (2-3/4") Collets

1 x Aluminium Carry Case

with Protective Foam

VC10/13TE

- 1 x VC10/13TE Tool
- 2 x M39 (1-1/2") Collets 2 x M42 (1-5/8") Collets
- 2 x M45 (1-3/4") Collets
- 1 x Aluminium Carry Case with Protective Foam Inserts

VC10/15TE

- 1 x VC10/15TE Tool
- 2 x M48 (1-7/8") Collets
- 2 x M52 (2") Collets 2 x M56 (2-1/4") Collets
- 1 x Aluminium Carry Case with Protective Foam Inserts

PUMP KITS

For STD Tool Kits

- 1 x 10,000 psi HP550S Single Port Hydraulic Hand Pump
- 1 x Hydraulic Gauge with Manifold
- 1 x 10,000 psi Hydraulic Hose, 6.5'
- 1 x Secure Grip Safety Block
- 1 x Square Drive Flexible Handle
- 1 x Vernier Calliper
- 1 x Aluminium Carry Case with Protective Foam Inserts

For MAX Tool Kits

- 1 x 10,000 psi HP1000D Twin Port Hydraulic Hand Pump
 - 2 x Hydraulic Gauges with Manifolds
 - 2 x 10,000 psi Hydraulic Hoses, 6.5'
 - 2 x Secure Grip Safety Blocks
 - 1 x Square Drive Flexible Handle
 - 1 x Vernier Calliper
 - 1 x Aluminium Carry Case with Protective Foam Inserts

Collet Sizing

It is important that the correct size of collet is used. An undersized collet could

allow the collet holder to pull through its bore. An oversized collet has the potential to become jammed in the bolt-hole.

Range of Application

For a detailed range of application please request the Hydraulic Secure-Grip Valve Change-Out Tool Operator Instruction Sheet.

VC10/25TE COLLETS (AVAILABLE SEPARATELY)

Model Number	Description
673601-01	2 x M76 (3") Collets
673901-01	2 x M80 (3-1/4'') Collets
674501-01	2 x M84 (3-3/8'') Collets
674801-01	2 x M90 (3-1/2'') Collets
675101-01	2 x M95 (3-3/4'') Collets
675601-01	2 x M100 (4'') Collets

Equalizer Flange Alignment Tools

ENERPAC. 🖉

TFA15TI

The TFA Wind Turbine Tower Flange Alignment Tools have been developed to aid the alignment of large flanges on the inside of wind turbine towers during their assembly or installation.

- Assists in aligning / de-ovalizing large internal pipe flanges
- Helps resolve bolt-hole misalignment within tower sections of wind turbine towers
- Can be used both on and offshore

TFA

WIND TURBINE TOWER FLANGE ALIGNMENT TOOLS

Hook Force: **4.5 - 30.3 tons**

Aligning Distance: **1.7 - 2.6 inches**

TFA4TM Mechanical Tool Kit

- 1 x TFA4TM Tool 1 x Torque Wrench
- 1 x Moulded Plastic Carry Case

TFA12TE / TFA15TE External Hydraulic Tool Kit

- 1 x TFA12TE or TFA15TE Tool
- 1 x Safety Lanyard
- 1 x Aluminium Carry Case with Protective Foam Inserts

TFA12TI / TFA15TI Internal Hydraulic Tool Kit

- 1 x TFA12TI *or* TFA15TI Tool 1 x Aluminium Carry Case with
- Protective Foam Inserts

Model Number	Туре*	Maximum Hook	Maximum Aligning	Maximum Operating		Flang	e Dime (in)	ensio	ons		Tool Weight	Kit Weight	Box/Case Dimensions	Tool Number
		Force Per Tool	Distance	Pressure	Α	В	С	D	Е	F				
		(ton)	(in)	(psi)				mın		min	(lbs)	(lbs)	(in)	
TFA4TMSTD	М	4.5	1.7	-	1.4-5.3	0-2.2	0-9.1	0.98	0-4.1	0.94	17.9	39.7	23.6 x 14.6 x 7.9	TFA4TM
TFA12TEMIN	Н	27.0	2.6	7,400	5.1-7.0	4.3-9.5	0-16.6	1.8	3.4-4.9	2.4	42.5	62.6	25.2 x 21.3 x 6.5	TFA12TE
TFA15TEMIN	Н	30.3	2.6	10,000	3.5-5.4	4.3-9.5	0-16.6	1.8	3.4-4.9	2.4	41.7	61.7	25.2 x 21.3 x 6.5	TFA15TE
TFA12TISTD	Н	27.0	2.6	-	5.1-7.0	4.4-9.5	0-16.6	1.8	3.4-4.9	2.4	48.3	68.3	23.0 x 35.4 x 6.3	TFA12TI
TFA15TISTD	Н	30.3	2.6	-	3.5-5.4	4.4-9.5	0-16.6	1.8	3.4-4.9	2.4	47.4	67.5	23.0 x 35.4 x 6.3	TFA15TI

M = Mechanical H = Hydraulic

Equalizer Flange Pulling Tool

▼ FC10TE

- Applicable to all flanges with a bolt-hole diameter of 1 inch or greater, including ANSI, DIN, Norsok L005, ASME and BS flanges
- Slide and lock collet system
- Low profile tool
- Can be used on all vertical and horizontal flanges including ANSI, API, BS, DIN & Norsok L005
- Robust yet light weight
- Subsea compatible
- Reciprocating hydraulic action

OPERATING BENEFITS

- Reduction in operator fatigue
- Reduction in pinch point
- Quick and easy to use

ן 🔤	•	Α			
<u>+</u>					
Ţ				<u>د</u>	
				Mm .	~
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
_				-	
	/////		/////		

Flange Dimensions

FC

FLANGE CLOSING TOOL

Closing Force: 11.2 tons

Closing Distance: 22.4 - 0 inches

Maximum Operating Pressure: 10,000 psi

A minimum of two flange closing tools must be used when flange pulling. This will

enable the operator to maintain an even gap between flange faces and prevent flange / gasket damage.

FC10TESTD STD Kit

- 1 x FC10TE Tool
 - 1 x 10,000 psi Hydraulic Hose, 6.5' long
 - 1 x 10,000 psi HP550S Single Port Sealed Hand Pump with Gauge
 - 1 x Aluminium Carry Case with Protective Foam Inserts

FC10TEMAX MAX Kit

- 2 x FC10TE Tool
- 2 x 10,000 psi Hydraulic Hoses, 6.5' long
- 1 x 10,000 psi HP550D Twin Port Sealed Hand Pump with Gauge
- 1 x Aluminium Carry Case with Protective Foam Inserts

Model Number	Туре	Maximum Closing	Closing Distance	Flange	Dimens (in)	ions	Tool Weight	Kit Weight	Box/Case Dimensions	Tool Number
		Per Tool		A B C min.						
		(ton)	(in)				(lbs)	(lbs)	(in)	
FC10TESTD	Hydraulic	11.2	22.4	0.63-22.4	1*	1.3	24.3	51.8	35.0 x 22.4 x 6.5	FC10TE
FC10TEMAX	Hydraulic	11.2	22.4	0.63-22.4	1*	1.3	24.3	80.5	35.0 x 22.4 x 6.5	FC10TE

For hole diameter greater than 1.7 inches, please contact Enerpac.

39.4 15.2 20 23.6

ENERPAC 111

Equalizer Hand Pumps & Hoses

ENERPAC. 🖉

VHP350D

- HP-S, HP-D and HP-SD pump ranges are operable at all angles and are highly resistant to accidental spillage of hydraulic fluid (certified)
- The Single-Port and Twin-Port Hand Pumps are also available with ATEX rating, which are certified for use in hazardous areas II 2G Ex h IIB T5 Gb, II 2D Ex h IIIC T212° F Db

HP

HYDRAULIC SEALED HAND PUMPS

Maximum Pressure Rating: 1st Stage: 197 psi 2nd Stage: 10,000 psi

Pump Type: 2-Speed

Pump Ratings

The Hydraulic Single Port,Twin Port and Double-Acting Hand-Pump (and hoses) are tailored for use with hydraulic equipment.

Each pump's output is regulated to 10,000 psi and is delivered from threaded 3/8" NPT output ports. The pumps and hoses can be used with any 10,000 psi rated hydraulic equipment within their oil capacity specification. The HP range of hydraulic hand-pumps have been designed with a seal oil reservoir, which allows the pumps to be used in any orientation without the risk of oil spills or air contamination.

10,000 PSI HOSES AVAILABLE TO PURCHASE SEPARATELY

Model Number	Description
302701-01	Hydraulic Hose 78.7"
302702-01	Hydraulic Hose 157.5"
302705-01	Hydraulic Hose 118.1"
302706-01	Hydraulic Hose 196.9"
302707-01	Hydraulic Hose 236.2"
1440008-01	ATEX Hydraulic Hose 78.7"
1440013-01	ATEX Hydraulic Hose 157.5"
1440014-01	ATEX Hydraulic Hose 236.2"

Model Number		**	Capacity	Capacity		Oil Volume per Stroke (CC)		troke	ength	nsions	eight)	ight	mber
Standard	ATEX	Type	Nominal Oi (cc	Useable Oi (co	1st Stage	2nd Stage	Max. Handl (lbf)	Piston S (in)	Overall L (in)	Box Dim (ir	Pump W (lbs)	Kit Wei (lbs)	Tool Nu
HP350SMIN	HP350SMINEX	SA, SP	21.4	18.3	0.221	0.047	72.75	0.71	21.8	9.8 x 7.1 x 23.6	9.7	10.8	HP350S
HP550SMIN	HP550SMINEX	SA, SP	33.6	35.4	0.221	0.047	55.12	0.71	25.3	9.8 x 7.1 x 27.6	11.2	13.0	HP550S
HP1000SMIN	HP1000SMINEX	SA, SP	61.0	67.7	0.221	0.047	46.30	0.71	34.1	9.8 x 7.1 x 35.4	13.4	15.7	HP1000S
HP350DMIN	HP350DMINEX	SA, TP	21.4	18.3	0.221	0.047	72.75	0.71	22.8	9.8 x 7.1 x 23.6	14.3	15.9	HP350D
HP550DMIN	HP550DMINEX	SA, TP	33.6	35.4	0.221	0.047	55.12	0.71	26.3	9.8 x 7.1 x 27.6	15.9	17.9	HP550D
HP1000DMIN	HP1000DMINEX	SA, TP	61.0	67.7	0.221	0.047	46.30	0.71	35.2	9.8 x 7.1 x 35.4	15.7	20.5	HP1000D
HP350SDMIN	N/A	DA	21.4	18.3	0.221	0.047	72.75	0.71	18.0	9.8 x 7.1 x 23.6	11.7	12.5	HP350SD
HP550SDMIN	N/A	DA	33.6	35.4	0.221	0.047	55.12	0.71	22.8	9.8 x 7.1 x 27.6	12.6	13.2	HP550SD
HP1000SDMIN	N/A	DA	61.0	67.7	0.221	0.047	46.30	0.71	30.3	9.8 x 7.1 x 35.4	13.0	13.9	HP1000SD

* SA = Single Acting SP = Single Port

DA = Double Acting

TP = Twin Port

Product Training

Product Training

Equalizer designs and builds products of the highest quality, using the best components. This quality ethos extends to training and a range of training components are offered to ensure the optimal use of the tools. In addition to online training materials, Equalizer has a hands-on training facility, class-room based training and an onsite training system with a mobile demo trailer which travels around providing on-site introductions and training. Through this, users can experience first-hand how quick, simple and easy the tools are to apply and use on a series of custom-built flanges.

Class-Room Based Training

Commercial and technical presentations provide distributors with the necessary information to respond to a wide range of customer enquiries and challenges.

On-Site Training

- Custom built trailer, containing the full range of Equalizer[™] tools
- Portable training rig with flange joints
- Flange aligning, spreading and pulling tool demonstrations.

Hands-On Training and Demonstration

Practical demonstrations and hands-on training provide distributors and customers with valuable knowledge, information and experience to safely use the full range of Equalizer products. This in turn strengthens Equalizer's reputation as the expert in tools for flange maintenance within the oil and gas, chemical, power generation, nuclear, water, mining and renewable energy sectors world-wide.

ENERPAC. 🖉

For the Toughest On-Site Machining Jobs

▲ Flange facing machining.

FLANGE FACING MACHINES

If you mention flange facing machines to an on-site machinist, the chances are the first manufacturer they'll think of is Mirage. This success stems from their precision construction, the results they deliver, and how easy they are to set-up on-site. Choose from external and internal mount options in a wide range of sizes.

LINEAR MILLING MACHINES

These are available in 2 and 3 axis configurations. Each includes the latest workshop tool technology in a portable format. Choose our optional switch magnets and chain clamps for a fast and efficient set-up onto pipe diameters.

ORBITAL MILLING MACHINES

Mirage orbital milling machines deliver fast material removal and achieve high accuracy across large diameters. The WP orbital milling range is designed especially for companies manufacturing wind turbine rotor blades and towers.

HOT TAPPING MACHINES

Hot tapping is a high-pressure intervention and the Mirage range of machines can help you achieve a safe and effective solution. Innovations used include a helical gear drive located close to the cutting head to ensure maximum efficiency, rotary pressure seals, and four fixed feeds.

Portable Machine Tools to Power Your Success

Decades of engineering knowhow combined with a continuing drive to innovate has resulted in a wide range of world-class portable machining products - each one robust enough to handle the toughest of on-site machining challenges.

 Flange facing machines to ensure flange joint integrity.

 Orbital milling machines used in shipbuilding and power generation industries.

 Orbital milling machines for wind turbine manufacture.

Mirage Portable Machining Products

Our Mission is to Help You Create Success Stories, for Both You and Your Customers

A Pipe cutters and weld preparation.

LINE BORING MACHINES

Mirage Line Boring Machines produce workshop quality tolerances on site - eliminating costly dismantling and production downtime. Many configurations are possible by choosing different bar diameters and lengths, along with a wide range of inserts, boring arms and facing heads.

DECOMMISSIONING SAWS

Mirage provides a range of saws for a diverse range of heavyduty tubular severance projects. Band saws deliver a costeffective solution to cold cutting requirements and our diamond wire saws are ideal for quickly cutting through dissimilar materials.

DRILLING AND TAPPING MACHINES

Mirage heavy-duty drilling and tapping machines offer high torque and easy operation through their heavy duty spindles with ISO standard tapers. Optional switch magnet mounts and chain clamps enable a quick and easy setup. For large scale offshore decommissioning projects Mirage casing pin drills provide an effective solution for creating lift holes in casings.

DL RICCI CLAMSHELL CUTTERS

Throughout the world, the DL Ricci name is synonymous with pipe cutting and beveling. Mirage is now able to offer these pioneering machines, each capable of delivering an outstanding performance in industries such as construction, decommissioning, maintenance, fabrication and refurbishment.

High Performing Portable Machine Tools

Creating machines to deal with the toughest machining challenges doesn't just happen by accident. It comes from decades of engineering knowhow, from the relentless need to innovate - and above all, from placing the customer at the heart of everything we do.

A Pipe cutters and weld preparation.

▲ Line boring machines for power generation and maintenance of construction vehicles.

High torque portable drilling machines.

Bolting Yellow Pages

ENERPAC.

Enerpac "Yellow Pages" Stand For Hydraulic Information!

If selecting hydraulic equipment is not your daily routine then you will appreciate these pages. The "Yellow Pages" are designed to help you work with hydraulics. They will help you to better understand the basics of hydraulics, of system set-ups and of the most commonly used hydraulic techniques. The better your choice of equipment, the better you will appreciate hydraulics. Take the time to go through these "Yellow Pages" and you will benefit even more from Enerpac High Pressure Hydraulics.

ENERPAC WARRANTY STATEMENT

www.enerpac.com

Visit our website for the complete Enerpac Global Warranty or call your Enerpac Authorized Service Center.

Enerpac is certified for several quality standards. These standards require compliance with standards for management, administration, product development and manufacturing.

ENERPAC, 199 Gateway Court, Columbus WI 53925 USA

Enerpac's Quality Management System is certified to the ISO 9001-2015 requirements.

CE Marking & Conformity

Enerpac provides Declarations of Conformity, Declarations of Incorporation, and CE marking for products that conform to the European Community Directives.

power units meet the design, assembly and test requirements of The Standards Council of Canada (CAN C22.2 No. 68-92), and UL73 for the United States. Units were tested and certified for both USA and Canada by TUV and CSA, Nationally Recognized Testing Laboratories.

Section	Page
Safety Instructions	118 🕨
Bolting Theory	120 🕨
Torque Tightening	122 🕨
Tensioning	124 🕨
Bolting Integrity Software	126 🕨
Hexagon Bolt & Nut Sizes	128 🕨
Key to Measurement	129 🕨
Bolting Service & Safety Enerpac Academy About Enerpac	130 > 131 > 132 >

EMC Directive

Where specified, Enerpac electric power pumps meet the requirements for Electromagnetic Compatibility per EMC Directive 2014/30/EU.

ATP-1500, ZA and XA-Series air-motor driven pumps, and S- and W-Series Torque Wrenches are tested and certified according to the Directive 2014 / 34 / EU "ATEX Directive". The explosion protection is for equipment group II, equipment category 2 (hazardous area zone 1), in gas and/or dust atmospheres. ATP-1500, ZA and XA-Series pumps are marked with: Ex II 2 GD ck T4.

ASME B30.1-2015

Our cylinders fully comply with the criteria set forth by the American Society of Mechanical Engineers (except RD, BRD, CUSP, HCL, and LPL-Series).

ISO1402

Enerpac thermoplastic and rubber hoses are tested to the criteria set forth in this standard.

Product Design Criteria

All hydraulic components are designed and tested to be safe for use at maximum 10,000 psi unless otherwise specifically noted.

Bolting Solution and Application Worksheet

Please complete the following information prior contacting Energac for your bolting proposal:

Requested By:			Requested Date:				
Company:		Industry:					
Contact:		Title:					
Phone:	Fax:	Email:					
Description of Application (pre	ovide drawings if possible	ə):					
Type of Application:							

APPLICATION TECHNICAL DATA Bolt Quantity:_____ **Application Position:** Bolt Diameter: Vertical Top-side Inverted Bolt Threads per Inch/Pitch:_____ Bolt Grade: Bolt Coating: _____ Gasket Type: _____ \cap App. Operating Temp., °C or °F: m ш **Known Bolting Values:** Load (Lbs. / kN)____ % of Yield (psi/Nmm²) Stretch-Bolt Length Specify Dimensions: INCH MM (Metric) (inch / mm)_____ A ____ B ____ C ____ D ____ E ____ Turn of Nut (Preload / Degrees)____ Distance to Closure: Torque Current Lubrication: Type _____ Brand _____ (Ft.lbs / Nm / Kgm)____

ENERPAC 117

Safety Instructions

When used correctly, hydraulic power is one of the safest methods of applying force to your work. And to that end we offer some DO's and

DON'Ts, simple common sense points which apply to practically all Enerpac hydraulic products.

- · Lift slowly and check the load often
- Avoid standing in the line of force
- Anticipate possible problems and take steps to avoid them.

The line drawings and application photos of Enerpac products throughout this catalog are used to portray how some of our customers have used hydraulics in industry.

In designing similar systems, care must be taken to select the proper components that provide safe operation and fit your needs.

Check to see if all safety measures have been taken to avoid the risk of injury and property damage from your application or system. Enerpac can not be held responsible for damage or injury, caused by unsafe use, maintenance or application of its products.

ENERPAC 2

Please contact the Enerpac office or a representative for guidance when you are in doubt as to the proper safety precautions to be taken in designing and setting up your particular system.

In addition to these tips, every Enerpac product comes with instructions spelling out specific safety information. Please read them carefully.

Safety Instructions

General

80% Manufacturer's rating of load and stroke are maximum safe limits. 80% Good practice encourages using only 80% of these ratings!

ENERPAC.

Function of Bolts and Nuts

Threaded fasteners are used across industry to assemble products ranging from pipelines to heavy-duty earth movers and from cranes to bridges and many more. Their principle function is to create a clamping force across the joint which is able to sustain the operating conditions without loosening. Correctly tightened bolts make use of their elastic properties, to work well they must behave like springs. When load is applied, the bolt stretches and tries to return to its original length. This creates compressive force across the joint members.

Hooke's Law of Physics

Behavior of Bolts and Nuts

Elasticity is defined in Hooke's Law of physics: The stress in a bolt is directly proportional to its strain. The stressstrain of a bolt has an **elastic range** and a **plastic range**. In the elastic range Hooke's Law is true.

All of the elongation applied within the elastic range is relieved when the load is removed. The amount of elongation increases when more load is applied. When a bolt is stressed beyond its **proof load** (maximum load under which a bolt will behave in an elastic manner), the elastic elongation changes to plastic deformation and the strain will no longer be proportional to the stress. In the plastic deformation a part of the elongation will remain after the load is removed. The point where this permanent elongation occurs is called the yield strength. The further application of load takes the bolt to a point where it begins to fail this is termed its **ultimate tensile strength** (UTS). At this UTS-point, if additional force is applied to the bolt it will continue to elongate until it finally breaks. The point at which the bolt breaks is called the **tensile point**.

Careful attention must be paid to the grade of bolt being used as bolt grades differ in the elastic range.

Uniform preload (residual load)

- 1. Bolt loosens due to cycle loads of vibration.
- 2. Sealing face surface damage.
- 3. No compression.
- 4. Cracking.
- 5. Flange rotation.
- 6. Yielding of bolts.
- 7. Over compression of gasket.

Preload

The main purpose of a bolt and nut is to clamp parts together with the correct force to prevent loosening in operation. The term **preload** refers to the loading in a bolt immediately after it has been tightened.

The amount of preload (residual load) is critical as the joint can fail if the load in the bolt is too high, too low or not uniform in every bolt.

Uneven Bolt Loads can Result in:

- Some bolts being loose while others are overloaded.
- Crushing of the gasket on one side, leakage on the other side.

Preload is normally dictated by the joint design, (see Enerpac Bolted Joint Integrity) for information on common joint types or contact your local representative.

1

Tightening Methods

Principally there are two modes of tightening: "Uncontrolled" and "Controlled".

Uncontrolled Tightening

Uses equipment and/or procedures that cannot be measured. Preload is applied to a bolt and nut assembly using a hammer and spanner or other types of impact tools.

Controlled Tightening

Employs calibrated and measurable equipment, follows prescribed procedures and is carried out by trained personnel. There are two main techniques: Torque tightening and Bolt tensioning.

- 1. **Torque Tightening** Achieves preload in a bolt and nut assembly via the nut in a controlled manner using a tool.
- 2. **Bolt Tensioning** Achieves preload in a bolt and nut assembly by stretching the bolt axially using a tool.

Advantages of Controlled Tightening

Known, Controllable and Accurate Bolt Loads

Employs tooling with controllable outputs and adopts calculation to determine the required tool settings.

Uniformity of Bolt Loading

Especially important on gasketed joints as an even and consistent compression is required for the gasket to be effective.

Safe Operation Following Prescribed Procedures

Eliminates the dangerous activities of manual uncontrolled tightening and requires that the operators be skilled and follow procedures.

Reduces Operational Time Resulting in Increased Productivity

Reduces tightening time and operator fatigue by replacing manual effort with the use of controlled tooling.

FRIEDRAG

Reliable And Repeatable Results

Using calibrated, tested equipment, following procedures and employing skilled operators achieves known results consistently.

The Right Results First Time

Many of the uncertainties surrounding in-service joint failures are removed by ensuring the correct assembly and tightening of the joint are carried out the first time.

Bolting Integrity Software

A comprehensive on-line software solution for Bolted Joint Integrity.

Integral databases hold data for:

- ASME B16.5, ASME B16.47, API 6A and API 17D flanged joints
- Common gasket materials and configurations
- Comprehensive range of bolt materials
- Comprehensive range of lubricants
- Enerpac's Controlled Bolting Equipment including: Torque Multipliers, Hydraulic Wrenches and Bolt Tensioning tools

Custom Joint information can also be entered.

The software offers Tool selection, Bolt Load calculations and Tool pressure settings, as well as, a combined Application data sheet and Joint completion report.

Calculations	Inquiries	Help		Contact Us	Enerpac.co	m
ne > Calculations	ANSI/MSS/150	1 100	Logged In an kells	v.upaludv@renerpwc.com Los	out Change Password	Update Pr
orque Cal	culation					
				Diagram Values	10	nm (1 375
Calculatio	n Information			Flange OD (d):	311m	m (12.24")
Tiphiono Mate	vi.	1	-h-+	Total Flange Length (h	1 1240	mm (9.5" nm (4.87"
Tigonetining Passing	IO .		b [+	Flange Thickness (b):	54n	nm (2.13*
OTensioning C	Torquing	1		Weld Neck OD (m):	1620	1m (6.38"
NOT Series () St	Andard OHeavy	1	T-	Hope op (a).	4.47	mm (was
Deservery Linter	Day Captur	0.1		Tightoning Values		
Mersone munici	Abd Capita	11		Residual Stress	334 N/mm ² 48	394 lbs/in
Pripamus E	µ advised as 0.12 (0.12µ \$		1-1	Bolt Load	209956 N 1102 Nm	47200 m
Linas E	Métric \$	117	1	Lubricant	µ advised as 0.	12 (0.12)
Standard [ANSI 🕴		-	-		
Breakout.	No				lick here to view	N
				AN I	roduct informa	tion
Flange Sale	100mm (4")	Tooling Options				-
Flange Class	1500 (PN250) *	\$3000		1 1 1 1	3	100
Flange Material	Carbon Steel	W2000		CONTRACTOR OF		AL.
Gesher I	Spiral Wound	W4000				100
Joint Type	Standard :	SQD-25		Selected Tool	No Tor	ol Selecte
Bult Material	ASTM A193 B7	SQD-50 SQD-75	U	E-Date Bridge		
		SQD-100	+	Joint Data	1254	am (4.93
Advanced Calcul	ation Settings 🕈			(basic)	1250	nm (4.93
				(Extra)		0mm (0*
				Min Bolt Length	2114	8 x M3
		Messages		NUT A/F	S0m	m (1 1/1"
				Minimum To Seal	254.49 N/mm ² (36909 Ps
				Yield Stress Allowable Stress	7	24 N/mm
				PROMOLIC DO ESS	01.	Are reprint to
				% Residual Yield:		469

Visit **www.enerpac.com** to access our free on-line bolting software application and obtain information on tool selection, bolt load calculations and tool pressure settings. A combined application data sheet and joint completion report is also available.

ENERPAC. 2 121

ENERPAC.

Torque Tightening

Stretch of Fastener (Pre-load)

What is Torque?

It is a measure of how much force acting on an object which causes that object to rotate.

What is Torque Tightening?

The application of preload to a fastener by the turning of the fastener's nut.

Torque Tightening and Preload

The amount of preload created when torqueing is largely dependant on the effects of friction.

Principally there are three different "torque components":

- torque to stretch the bolt
- torque to overcome the friction in bolt and nut threads
- torque to overcome friction at the nut spot face (bearing contact surface).

Friction points should always be lubricated when using the torque tightening method.

Example of how a lubricant can reduce the effect of friction and convert more torque to bolt preload.

Preload (residual load) = Applied Torque *minus* Frictional Losses

Lubrication Reduces Friction

Lubrication reduces the friction during tightening, decreases bolt failure during installation and increases bolt service life. Variation in friction coefficients affect the amount of preload achieved at a specified torque. Higher friction results in less conversion of torque to preload. The value for the friction coefficient provided by the lubricant manufacturer must be known to accurately establish the required torque value.

Lubricant or anti-seizure compounds should be applied to both the nut bearing surface and the male threads.

Frictional Losses (dry steel bolt)

Torque Tightening

Manufacturer's rating of pressure and torque are maximum safe limits. Good practice encourages using only 80% of these ratings!

Torque Procedure

When torquing it is common to tighten only one bolt at a time, this can result in Point Loading and Load Scatter. To avoid this, torque is applied in stages following a prescribed pattern:

Torque Sequence

- Step 1: Spanner tight ensuring that 2-3 threads extend above nut
- **Step 2:** Tighten each bolt to **one-third** of the final required torque following the pattern as shown above.
- Step 3: Increase the torque to twothirds following the pattern shown above.
- Step 4: Increase the torque to full torque following the pattern shown above.
- Step 5: Perform one final pass on each bolt working clockwise from bolt 1, at the full final torque.

Select the Correct Wrench

Choose your Enerpac torque wrench using the untightening rule of thumb:

- When loosening a nut or bolt more torque is usually required than when tightening.
- For general conditions it can take up to 2½ times the input torque to breakout.
- Do not apply more than 75% of the maximum torque output of the tool when loosening nuts or bolts.

Conditions of Bolted Joints

- Humidity corrosion (rust) requires up to twice the torque required for tightening.
- Sea water and chemical corrosion requires up to 21/2 times the torque required for tightening.
- Heat corrosion requires up to 3 times the torque required for tightening.

Minimum Output Torque

• The recommended minimum torque value of a hydraulic wrench is 10% of the maximum rated value.

Bolting Integrity Software

A comprehensive on-line software solution for Bolted Joint Integrity.

Integral databases hold data for:

- ASME B16.5, ASME B16.47, API 6A and API 17D flanged joints
- Common gasket materials and configurations
- Comprehensive range of bolt materials
- Comprehensive range of lubricants
- Enerpac's Controlled Bolting Equipment including: Torque Multipliers, Hydraulic Wrenches and Bolt Tensioning tools Custom Joint information can also be entered.

The software offers Tool selection, Bolt Load calculations and Tool pressure settings, as well as, a combined Application data sheet and Joint completion report.

1

Breakout Torque

When loosening bolts a torque value higher than the tightening torque is normally required. This is mainly due to corrosion and deformations in the bolt and nut threads.

Breakout torque cannot be accurately calculated, however, depending on conditions it can take up to 2½ times the input torque to breakout.

The use of penetrating oils or anti-seize products is always recommended when performing breakout operations.

ENERPAC 123

ENERPAC.

Tensioning Requires Longer Bolts

What is Bolt Tensioning

Tensioning is the direct axial stretching of the bolt to achieve **preload**. Inaccuracies created through friction are eliminated. Massive mechanical effort to create torque is replaced with simple hydraulic pressure. A uniform load can be applied by tensioning multiple studs simultaneously. Tensioning requires longer bolts, and a seating area on the assembly around the nut. Tensioning can be done using detachable Bolt Tensioners or Hydraulic Nuts.

Preload (residual load) = Applied Load minus Load Losses

What is Load Loss

Load loss is a loss of bolt elongation depending on factors such as thread deflections, radial expansion of the nut, and embedding of the nut into the contact area of the joint. Load loss is accounted for in calculation and is added to the preload value to determine the initial **Applied Load**. The preload depends on Applied Load and Load Loss (load loss factor).

GLOSSARY OF TERMS

Applied Load: The load applied to a bolt during tensioning which includes an allowance for Load Loss.

Bolt Tensioning: A method of controlled tightening which applies preload to a bolt by stretching it axially.

Breakout Torque: The amount of torque required to loosen a tightened bolt. (Usually more torque is required to loosen a bolt than was used to tighten it.)

Elastic Range: The range on a bolt's stress / strain curve where stress is directionally proportional to strain.

Load Loss: The losses in a bolt which occur on transfer of load from a tensioning device to the bolt assembly (these may arise from phenomena such as thread deflection and embedding of the nut to the contact area of the joint, and is calculated as a factor of the length to diameter ratio of the bolt).

Load Scatter: The spread of differing loads in a sequence of bolts after they have been loaded. It is mostly due to the elastic interaction of the bolts and the joint member; as subsequently tightened bolts further compress the joint, previously tightened bolts are subject to some relaxation.

Plastic Range: The range on a stress/strain curve where the tensile load applied to a bolt results in permanent deformation.

Preload: The load in a bolt immediately after it has been tightened.

Proof Load: Proof load is often used interchangeably with Yield Strength but is usually measured at 0.2% plastic strain.

Tensile Point: The point at which the tensile loading on a bolt causes the bolt to rupture.

Torque Tightening: The application of Preload to a bolt by turning of the bolt's nut.

Ultimate Strength: The maximum tension which can be created by tensile load on a bolt.

Yield Strength: The point at which a bolt begins to plastically deform under tensile loading.

NOTE: Bolt is used as a generic term for a threaded fastener.

Manufacturer's rating of pressure and load are maximum safe limits. Good practice encourages using only 80% of these ratings!

Tensioning Operation

Tensioning permits the simultaneous tightening of multiple bolts; the tools are connected in sequence via a highpressure hose assembly to a single pump unit. This ensures each tool develops the exact same load and

provides a uniform clamping force across the joint. This is especially important for pressure containing vessels requiring even gasket compression to affect a seal.

General Procedure

- Step 1: The bolt Tensioner is fitted over the stud.
- Step 2: Hydraulic pressure is applied to the tensioner which then stretches the stud.
- Step 3: The Stud's nut is wound down against the joint face.
- Step 4: Pressure is released and the tool removed.

Less than 100% Tensioning

Not all applications allow for the simultaneous fit of a tensioning device on each bolt, in these cases at least two tensioning pressures are applied. This is to account for a load loss in those bolts already tensioned as the

The bolt behaves like a spring, when the pressure is released the bolt is under tension and attempts to contract, creating the required clamping force across the joint.

next sets are tightened. The load losses are accounted for in calculation and a higher load is applied to allow the first sets to relax back to the target preload.

Set-up Using a 50% **Tensioning Procedure**

Half the bolts are tensioned simultaneously, the tools are relocated on the remaining bolts and they are subsequently tensioned.

Read Instruction Manuals

Please refer to the product Instruction Sheets for safe use guidelines and detail on the correct set up and operation of the equipment.

Set-up Using a 100% **Tensioning Procedure**

All bolts are tensioned simultaneously.

Bolting Integrity Software

ENERPAC. 🖉

Enerpac Bolting Integrity Software Solutions play a key role in implementing and managing an Integrity Program for bolted connections. The software is used extensively within Enerpac and increasingly by a wide range of clients worldwide often interfacing with maintenance, construction and commissioning management systems.

- First developed over 20 years ago, we have continued to update and enhance the software based on user feedback, technology advances and our roles on industry standard committees, to produce the most comprehensive suite of joint integrity software available.
- Recommended bolt loads for standard joints are derived from independently verified calculation methods and traceable back to standards

Integral databases hold data for:

- ASME B16.5, ASME B16.47, API 6A and API 17D flanged joints
- Common gasket materials and configurations
- · Comprehensive flange and bolt materials
- Comprehensive range of lubricants
- Enerpac controlled bolting equipment includes torque, multipliers, hydraulic wrenches and bolt tensioners.
- · Custom joint information can also be entered.

INERPAC 2	-					0 0 1 mm berr
second in the second diversion of			Conception Respect			And Disasters
-	1004		The second secon			
			and the		1.0	1
nin P.	Property Property	· · · · · · · · ·	- International Const.	10.00	and and a second	- K }-
mark Tange			Antonio fatturagio	TRADE OF	- 0.001	
	And Date		s build	45.44	tiger.	
and in the second second	-		The second second	COLUMN STR	and the local division of the local division	Bage Set
			 Newsyar Serie Transport 	6.00	10.000	
-)B	Barrison .		a hear	. 470.54	10.017	
the state	-Islani Tarr.					
at team of the	Section (Section 4)	erine(heat-item				-
	Same Property					
008	Trans.					475 Nm
teres &	ines in		A CONTRACTOR OF A CONTRACTOR O			
Barrissi Section	a subscription in the subscription of the subs	-	The report of the base	and the second		350 lbf.ft
		Sectores.			1995 and Alfred and Al	Transfer Transfer Transfer
Because of the	0.95	- Terthalmi	0.0		and and and	Page 1
and a second second second	a ra altra-	Manual Diseases		-	ri Waters	1 and Pa
	1000	and house manin	PCD PCD			
		80 - 100 - 100 80 - 200 - 200 80 - 200 - 200	· · ·			
		manyout lives	AN ADDRESS . March . COMMON ANALASSA	anime. Portraints.		Contract Contract
and the second second	and division success					

▲ Standard flange calculation menu (INFORMATE)

The Enerpac Bolting Software Suite includes:

- **Bolt-Up** Online bolt load calculator. Free access and use on www.enerpac.com.
- INFORMATE Advanced calculation and procedure software. Contact Enerpac for user licenses and dedicated support.
- **IDMS Integrity Data Management System** A complete Integrity Assurance project management package for managing bolted joints from cradle to grave. Contact Enerpac for user licenses and dedicated support.

Bolt-Up

Bolt-Up is a simple to use online calculator, built upon the Informate calculation engine, providing reliable, repeatable bolt loads for:

- Carbon steel weldneck ANSI 16.5 standard flanges, using a limited range of bolt materials; selected gasket options and a fixed lubrication value.
- Inputting basic joint configuration information allows Bolt-Up to determine: bolt load; bolt stress and the required torque. These outputs are displayed alongside basic flange and bolt information e.g. joint thickness and bolt size/ quantity.

Bolting Integrity Software

The software offers Tool selection, Bolt Load calculations and Tool pressure settings, as well as, a combined Application data sheet and Joint completion report.

This software includes following hydraulic tools selections:

- RSL, S and W-Series Torque Wrenches,
- HM-Series HydraMax[®] and GT-Series Bolt Tensioners.

Software	INFORMATE Subscriptions
Model No.	Contact Enerpac for details
BSOFIN1	1x user license
BSOFIN1 S	1x user license + dedicated support
BSOFIN5	5x user licenses
BSOFIN5 S	5x user licenses + dedicated support

Bolting Integrity Software

Comment Summing Printers -				Concession in such as			And Description
and a	true .			Art Shi		100	
and a second sec				And Teamer	and see	1097	
Lines.	And address of the local diversion of the loc			No. of Concession, Name		Tag-	-1 1 1-
Angeneration"				Annual deg Direct	an arms	100004	1 1-
destination of	the average		-	Annual live Tax	and	Barn.	
State B.							State State
Trend See	1.00						
Bet Son / Santhy							
Named and Post of the O							
All Descent div	matt Pres-						
and Persons.	and one						
denomination of	-						504 Nm
Same Dava Descard &	1000						
Sprang Section 4	a fair fair a	10		and Deligners, " Set maps			372 lbf.ft
Bernard B	Intel B				the last		and the second s
	and here a	an resident a first					
and the second s	and been				111113 3/11/1		
Proceed in concession.		Sectored.	_				August Stream
Senting Transmiss & 1					111113 211111	C	Press 1
Section Print P		Statement Statement			111112 = 511111		100.00
and the second s		10 10 10 10 11			min sum		0.000 Pe
and and a state of the state of		45% 1001-055 45% 8801-0.0711			1.		
	_	Million and Arra			3.3		
							Contribute 1 Add Street

▲ Engineered Joint menu (INFORMATE)

INFORMATE Bolt Load Calculation Software

INFORMATE can be used on a huge range of flanged joints and clamped connections in virtually any situation from process piping to custom-designed flange connections.

- Calculate bolt loads and stresses, determine tooling pressures for Enerpac torque and tensioning equipment; analyse existing connections and test custom designed connections.
- Extensive material database covering all common standards:
 - Common and industry specific lubricants
 - 200+ bolting materials
 - 500+ flange materials
 - 60+ gasket materials
- Engineered Joint Calculation Features allows for different types of bolted application for non-circular or structural applications.
- Installed direct to the desktop or accessed via the internet, Informate is available in a single version that is configurable to client requirements and includes multiple international standards and the latest and forthcoming regulatory data, when taken with a maintenance package.

Clamp menu (INFORMATE)

Integrity Data Management System (iDMS)

iDMS is a flexible data management and activity planning system specifically for use on assets featuring bolted connections.

Designed to store the entire lifecycle data relating to every critical bolted joint on an installation, it aids planning, ensures joint integrity, as well as reducing construction and maintenance schedules and costs.

- Provides managers and technicians with essential information about joint components used in assembly, in addition it specifies the tools and the torque or tension values to deliver a leak-free joint.
- Allows planner and maintenance engineers to rapidly build packages of work complete with all documentation and then track them to completion
- Whenever a joint is worked on, all of the previous history and experience of that joint is available, allowing any particular requirements of the joint to be taken into account proactively prior to joint assembly and tightening.

iDMS Custom Tailored Solutions available to meet client needs, for example:

- Embedded Informate bolted joint calculator
- · Export and import of data to asset management systems
- Exporting data to populate customer documentation
- Colour coding of the joint provides an instant review of the status.

Contact Enerpac for User License

Hexagon Nut and Bolt Sizes

ENERPAC 0

	METRIC SIZES	
D	S	
Thread Size D (mm)	Hexagon Size S (mm)	Hexagon Size J (mm)
M 10	17	8
M 12	19	10
M 14	22	12
M 16	24	14
M 18	27	14
M 20	30	17
M 22	32	17
M 24	36	19
M 27	41	19
M 30	46	22
M 33	50	24
M 36	55	27
M 39	60	27 (30)
M 42	65	32
M 45	70	-
M 48	75	36
M 52	80	36
M 56	85	41
M 60	90	46
M 64	95	46
M 68	100	50
M 72	105	55
M 76	110	60
M 80	115	65
M 85	120	70
M 90	130	70 (75)
M 95	135	-
M 100	145	85
M 105	150	-

	IMPERIAL SIZE	S
	S	
Thread	Hexagon	Hexagon
D	Size	
(in)	(in)	(in)
5 _{/8} "	1 ¹ /16"	1/2"
3/4"	1 ¹ /4 "	5/8"
7 _{/8} "	1 7/16"	3/4"
1"	1 ⁵ /8"	3/4"
1 1/8 "	1 ¹³ /16"	7 _{/8} "
1 ¹ /4"	2"	7/8"
1 ³ /8"	2 ³ /16"	1"
1 1/2"	2 ³ /8"	1"
1 5⁄/8"	2 ⁹ /16"	-
1 ³ /4"	2 ³ /4"	1 ¹ /4"
1 7/8"	2 ¹⁵ /16"	1 ³ /8"
2"	3 ¹ /8"	1 ⁵ /8"
2 ¹ /4"	3 ¹ /2"	1 ³ /4"
2 ¹ /2"	37/8"	1 7/8"
2 ³ /4"	4 ¹ /4"	2"
3"	4 ⁵ /8"	2 ¹ /4"
3 ¹ /4"	5"	2 ¹ /4"

* Heavy hexagon nuts.

Determine the maximum torque according to the bolt (nut) size and grade. Always consult the manufacturers instructions or engineering recommendations when making bolted connections.

IMPORTANT

The hexagon sizes shown in the tables should be used as a guide only. Individual sizes should be checked before specifying any equipment.

Use Only Heavy-Duty Impact Sockets for power driven torquing equipment, according to ISO2725 and ISO1174; DIN3129 and DIN3121 or ASME-B107.2/1995. Page: 10

M 110

M 115

M 120

M 125

M 130

M 140

M 150

155

165

170

180

185

200

210

_

_

_

_

_

Key To Measurements

Volume:

= 16,387 cm³ = 0.061 in³

 $= 61,02 \text{ in}^3$

= 0,264 gal $= 3,785 \text{ cm}^{3}$

= 25,4 mm = 0,039 in = 0,3048 m = 3,2808 ft $= 6,452 \text{ cm}^2$ $= 0,155 \text{ in}^2$ = 0,746 kW = 1,340 hp = 0,738 Ft.lbs = 1,356 Nm = 224,82 lbs = 4,448 N

Key to Measurements

All capacities and measurements in the catalog are expressed in uniform values.

The conversion chart provides helpful information for their translation into equivalent systems.

FDI	M Conversion Ch	nart
Inches	Decimal	mm
1⁄16	0.06	1,59
1⁄8	0.13	3,18
3⁄16	0.19	4,76
1⁄4	0.25	6,35
5⁄16	0.31	7,94
3⁄8	0.38	9,53
7⁄16	0.44	11,11
1/2	0.50	12,70
9⁄16	0.56	14,29
5⁄8	0.63	15,88
11/16	0.69	17,46
3⁄4	0.75	19,05
¹³ /16	0.81	20,64
7/8	0.88	22,23
15/16	0.94	23,81
1	1.00	25.40

Pressure:

1 psi	= 0,069 bar	1 in ³	= 16,387
1 bar	= 14,50 psi	1 cm ³	= 0,061 ir
	= 10 N/cm ²	1 liter	= 61,02 ir
1 kPa	= 0,145 psi		= 0,264 g
1 MPa	= 145 psi	1 US gal	= 3,785 c
	·		= 3,785 l
Force:			= 231 in ³
1 lbf	= 4.45 N		
1 klbf	= 1000 lbf	Other measu	urements:
1 kN	= 1000 N	1 in	= 25,4 mr
		1 mm	= 0,039 ir
Weight:		1 ft	= 0,3048
1 pound (lb)	= 0,4536 kg	1 m	= 3,2808
1 kg	= 2,205 lbs	1 in ²	= 6,452 c
1 metric ton	= 2205 lbs	1 cm ²	= 0,155 ir
	= 1000 kg	1 hp	= 0,746 k
1 ton (short)	= 2000 lbs	1 kW	= 1,340 h
. ,	= 907,18 kg	1 Nm	= 0,738 F
		1 Ft.lbs	= 1,356 N
Temperature):	1 kN	= 224,82
To Convert °	C to °F:	1 lb	= 4,448 N
T°F = (T°C x	1,8) + 32		
	-		

To Convert °F to °C: $T^{\circ}C = (T^{\circ}F - 32) \div 1.8$

Torque Conversion Factors

Units to be converted	International System - S.I. (Nm)	Imperial (Lbf.ft)	Metric (kgf.m)
1 Ft.lbs	1,356	1,000	0,138
1 Nm	1,000	0,738	0,102
1 kgf.m	9,807	7,233	1,000

Bolting Integrity Software

A comprehensive on-line software solution for Bolted Joint Integrity.

Integral databases hold data for:

- ASME B16.5, ASME B16.47, API 6A and API 17D flanged joints
- Common gasket materials and configurations
- Comprehensive range of bolt materials
- Comprehensive range of lubricants
- Enerpac's Controlled Bolting Equipment including: Torque Multipliers, Hydraulic Wrenches and Bolt Tensioning tools Custom Joint information can also be entered.

The software offers Tool selection, Bolt Load calculations and Tool pressure settings, as well as, a combined Application data sheet and Joint completion report.

ENERPAC 129

About Enerpac

ENERPAC. 🖉

Torque Calculation Engine

Enerpac's Bolting Calculator is our free web-based calculator designed to technically support our products. The software will calculate as well as recommend bolt load/stresses for your bolted applications. You may choose between torque or tension as your tightening method and all calculations include hydraulic tool pressures based on tool selection.

Calculation Features

ANSI B16.5 & B16.47 Flanges API 6A & 17D Flanges

Custom Calculations

Customer Support Features Access to Technical Documents Engineering Inquiry Section Procedures and Guidance

Log on to the bolting calculator at www.enerpac.com

Enerpac is the leading global provider of high-pressure hydraulic tools and solutions with a broad range of products, local expertise and worldwide distribution network. With a proven track record in a wide range of markets, Enerpac designs and manufactures highquality tools and solutions for all industrial applications.

Enerpac has gained unique experience in delivering hydraulic solutions for the controlled movement and positioning of heavy objects. Enerpac supports your business by offering the right solutions and service to help you get your work done efficiently and safely.

www.enerpac.com for latest Enerpac information

Visit the Enerpac Web Site and find out about:

- Bolting Calculator
- · Learn more about hydraulics
- Promotions
- New products
- Electronic Catalogs
- Trade shows
- Manuals (instruction and repair sheets)
- Nearest Distributors & Service Centers
- Enerpac products in action
- Heavy Lifting Technology

Ordering Products and Catalogs

To find the name of the closest Enerpac distributor or service center, to request literature or technical application assistance, go to **www.enerpac.com**

Enerpac Bolting Van

Enerpac's Bolting Van offers full bolting tool service and maintenance wherever you need it.

- Demonstrate Enerpac Bolting Tools on your premises
- Repair and calibrate all Bolting Tool brands
- Training for the safe and efficient use of Bolting Tools

Enerpac catalogs/brochures to meet your needs: To obtain your copy just give us a call, or visit our Internet site www.enerpac.com

E329 Industrial Tools Catalog

Contains our full line of cylinders, pumps, presses, pullers, tools, valves and system components, bolting solutions and heavy-lifting technology.

E215 Workholding Catalog

Offers innovative products and solutions to provide powerful clamping and positioning force to every type of manufacturing process. Enerpac Workholding solutions increase product quality and production output.

At Enerpac, we are committed to safety. Unfortunately, serious incidents can happen on a job site. Nevertheless, such mishaps may be avoidable if workers pay attention to the hazards and potential risks, and know how to use tools correctly. Whether you work in maintenance or production, power plant, shipyard, mine, shop floor or construction site; learning to use hydraulic tools safely is mandatory.

Our Goal Zero initiative is part of our global commitment to improve workplace safety. We are committed to achieve the Goal of Zero harm to customers and end-users of our products.

Enerpac Academy - The Power of Knowledge

The Enerpac Academy is our in-house training program, offering Enerpac product operators and maintenance staff the opportunity to be trained in the use and maintenance of high-pressure hydraulic tools.

Operating these tools requires sound knowledge of how they work and how they should be maintained. Correct use of these tools increases safety and reduces risk – both for the operator and the environment in which the tools are used. Having the right training enables the operator to use the tools safely and properly.

Enerpac Academy

- Safety focus for operators, tools and environment
- Dedicated in-house Enerpac training centers
- Both standard training courses and specialized training services
- Highly experienced trainers
- Selection of training courses with a proven (value-added) track record
- Knowledge and experience sharing

In-House Training Centers

Do you work with high-pressure hydraulic tools on a regular basis or even every day? The training courses are designed to be highly interactive with a strong hands-on element. Each training course is led by a qualified trainer, an Enerpac specialist capable of providing high quality training. A written or practical exam is part of certain training courses.

Training Center Locations

- Columbus, Wisconsin (USA)
- Ede (The Netherlands)
- Hosur, Tamil Nadu (India)
- Singapore
- Sydney (Australia)

Enerpac Academy offers a meticulously compiled training program covering tool knowledge, repairs and maintenance, and safe operation of Enerpac hydraulic tools. If you would like to schedule a training course, please contact Enerpac for a training calendar, application form, and brochure at www.enerpac.com.

About Enerpac

ENERPAC. 🖉

WWW.ENERPAC.COM for latest Enerpac information

- · Learn more about hydraulics
- Promotions
- New products
- Electronic Catalogs
- Trade shows
- Manuals (instruction and repair sheets)
- Nearest Distributors & Service Centers
- Enerpac products in action
- Heavy Lifting Technology

Ordering Products and Catalogs

To find the name of the closest Enerpac distributor or service center, to request literature or technical application assistance, contact Enerpac at: **enerpac. com/contact-us** Enerpac is the leading global provider of high-pressure hydraulic tools and solutions with a broad range of products, local expertise and worldwide distribution network. With a proven track record in a wide range of markets, Enerpac designs and manufactures high-quality tools and solutions for all industrial applications.

Enerpac has gained unique experience in delivering hydraulic solutions for the controlled movement and positioning of heavy objects. Enerpac supports your business by offering the right solutions and service to help you get your work done efficiently and safely.

While every care has been taken in the preparation of this catalog and all data contained within is deemed accurate at the time of printing, Enerpac does reserve the right to make changes to the specifications of any product, or discontinue any product, contained within this catalog without prior notice.

All illustrations, performance specifications, weights and dimensions reflect the nominal values and slight variations may occur due to manufacturing tolerances. Please consult Enerpac if final dimensions are critical.

All information in this catalog can be changed due to product improvements without prior notice.

© Copyright 2019, Enerpac.

All rights reserved. Any copying or other use of material in this catalog (text, illustrations, drawings, photos) without express written consent is prohibited.

Model Number Index | Enerpac Worldwide Locations

A											I	D	a	g	e:
Α														8	37
AOT															7
ATM												8	8	-8	39
ATP														8	32
R															

B, Bl	Η																78
BLT																	42
BSH																	10
BS0																1	26
BUS									1	1,	, 1	2	6,	;	34	4,	36
BW																	78

C

CM 95

	E	-
--	---	---

-	
Ε	4-5, 45, 48-49
EAJ	68-69
ED	
EP	45, 48-49
ERA	33, 42
ERT	
ETW	40-42

_			_										
FC .												1	11
FF												96	-97
FFL.													96
FRL												38-	-39
FSB												90-	-91
FSC												90-	-91
FSF.													96
FSH												90-	-91
FSM												90-	-91
FSS													96
FTE.												74	-75
FTR												72-	-73

GA .								8	83	, 85,	88,	95
GA45	i .									83,	88,	95
GF.												85
GP.										85,	88,	95
GT .			•					•		53,	66	-67

HC														į	8	5,	9	5
HF																	8	6
HP																1	11	2
ΗM															6	2	-6	5
ΗN																	7	7
HP1	Г,	ł	11	Γ													7	8

MCS														44
MG												9	8	-99
MST														76

Ν												
NC												92-93
NS												94-95

Р Page: **P** 83, 85, 87 **PGT** 70-71 **PTW** 38-39, 42

R **RC** 83-84 RCH, RCS..... 83-84 **RLP** 27-32, 35 **RSL** 26-37, 45

S
S 6-9, 45
SB 55, 61
SC 83, 84-85
SD, SDA
SG 98, 104-107
SLR
SLW
SRA 8, 42
SRS 9, 83
STF
STN 92
SWH 6, 12, 22
SWi 98, 100-103
SWR 83

Т

V

TFA	 	 	110
TH, THQ	 	 	86
TR	 	 	86s
TSP	 	 	6, 9, 12, 24
TW, TWP .	 	 	33, 41
TQ	 	 	. 45, 50-51

VC 98, 108-109

W																
W .										1	2	-2	25	<i>,</i> '	45)
WTE															24	
WR												8	33	,	87	'
WRP															24	
W-SI												1	22	-	23	ł

XA																	8	35,	ĉ	95
XC	•	•	•			•			4	5	,	4	6	-	4	7,	8	35,	ŝ	95

ΖΑ									45, 5	8-	61
ZE									45, 5	6-	57
ZHE .											55
ZRC .									5	5,	61
ZTM .									5	5,	61
ZUTP									8	0-	81
ZU4T									45, 5	2-	55

00 **67** 107, 109

144												112
302												112

Australia and New Zealand

Actuant Australia Pty Ltd. P.O. Box 6867, Wetherill Park, NSW 1851 Block V Unit 3, Regents Park Estate 391 Park Road, Regents Park NSW 2143, Australia Tel: +61 287 177 200 Fax: +61 297 438 648

Australia Toll Free: +1800 225 084 New Zealand Toll Free: +0800 363 772

Brazil

Power Packer do Brasil Ltda. Rua Luiz Lawrie Reid, 548 09930-760 - Diadema (SP)-Brasil +55 11 5687 2211 Tel: Toll Free: 0800 891 5770

China (Taicang)

Actuant (China) Industries Co.Ltd. No.6 Nanjing East Road, Taicang Economic Dep Zone, Jiangsu, China Tel: +86 0512 5328 7500 Fax: +86 0512 5335 9690 Toll Free: Tel: +86 400 885 0369

Enerpac Heavy Lifting Technology B.V. Zuidelijke Havenweg 3, 7554 RR Henaelo P.O. Box 421, 7550 AK Hengelo The Netherlands Tel: +31 74 242 20 45

Fax: +31 74 243 03 38 France and French speaking

Switzerland

ENERPAC Une division d'ACTUANT France S.A.S. 6 rue du 4 septembre, Immeuble Le Poversy, Bâtiment B - 6ème étage, 92130 Issy-les-Moulineaux, France Tel: +33 1 60 13 68 68 Fax: +33 1 69 20 37 50

Germany, Austria, German speaking Switzerland, Central and Eastern Europe, Baltic States and CIS countries

Actuant GmbH P.O. Box 300113, D-40401 Düsseldorf Willstätterstrasse 13, D-40549 Düsseldorf Germany Tel: +49 211 471 490 Fax: +49 211 471 49 28

India

Actuant India Private Limited No. 10, Bellary Road, Sadashivanagar, Bangalore, Karnataka - 560 080 India Tel: +91 80 3928 9000

Italy, Greece and Turkey

ENERPAC S.p.A. Via Leonardo da Vinci, 97 20090 Trezzano sul Naviglio (Milano) Italv +39 02 4861 111 Tel: Fax: +39 02 4860 1288

Japan

Enerpac Co., Ltd. Besshocho 85-7 Kita-ku, Saitama-shi 331-0821, Japan Tel: +81 48 662 4911 Fax: +81 48 662 4955

Middle East, North Africa and Caspian Sea Countries ENERPAC Middle East FZE

Swiss Tower, Office 902, Cluster Y, Jumeirah Lake Towers Dubai-United Arab Emirates Tel: +971 4 803 9000

Norway

ENERPAC AS Kirkegata 3, NO-2000, Lillestrom P.O. Box 3051, NO-2028, Lillestrom, Norway Tel: +47 91 578 300

Russia

Rep. office Enerpac Russian Federation Admirala Makarova Street 8 125212 Moscow, Russia Tel: +7 495 98090 91 Fax: +7 495 98090 92

Southeast Asia, Hong Kong and Taiwan

Actuant Asia Pte Ltd. 83 Joo Koon Circle, Singapore 629109 +65 68 63 0611 Т F +65 64 84 5669 Toll Free:

Tel: +1800 363 7722

South Korea

Actuant Korea Ltd. 3Ba 717, Shihwa Industrial Complex Jungwang-Dong, Shihung-Shi Kyunggi-Do Republic of Korea 429-450 Tel: +82 31 434 4506 Fax: +82 31 434 4507

Spain and Portugal

ENERPAC SPAIN, S.L. Avenida Valdelaparra Nº 27 3ª - L8 28108 Alcobendas (Madrid), Spain Tel: +34 91 884 86 06 Fax: +34 91 884 86 11

South Africa and other

English speaking African countries ENERPAC AFRICA (PTY) Ltd. Cambridge Office Park, Block E 5 Bauhinia Avenue Highveld Techno Park, Centurion 0157 Republic of South-Africa Tel: 0027 (0) 12 940 0656

Sweden, Denmark, Finland and Iceland Enerpac Scandinavia AB

Box 83, 82222 Alfta, Sweden Tel: +46 (0) 415 000

The Netherlands, Belgium,

Luxemboura ENERPAC B.V. Galvanistraat 115, 6716 AE Ede P.O. Box 8097, 6710 AB Ede The Netherlands Tel: +31 318 535 911 Fax: +31 318 535 848

United Kingdom and Ireland

Actuant Operations UK LTD 5 Coopies Field, Morpeth, Northumberland NE61 6JR, England Tel: +44 1670 5016 50 Fax: +44 1670 5016 51

USA, Latin America and Caribbean

ENERPAC World Headquarters P.O. Box 3241 Milwaukee, WI 53201-3241 USA N86 W12500 Westbrook Crossing Menomonee Falls, Wisconsin 53051 Tel: +1 262 293 1600 Fax: +1 262 293 7036 User inquiries: Tel: +1 800 433 2766 Distributor inquiries/orders: Tel: +1 800 558 0530 Fax: +1 800 628 0490

CONTROLLED TIGHTENING and LOOSENING

Manual Multipliers Hydraulic Square Drive Torque Wrenches Hydraulic Hexagon Torque Wrenches Pneumatic Torque Wrenches Electric Torque Wrenches Page 4-44

TORQUE WRENCH PUMPS

Cordless Torque Wrench Pumps Electric Torque Wrench Pumps Air Driven Torque Wrench Pumps Page 45-61

TENSIONING TOOLS and PUMPS

Bolt Tensioners Tensioning Hand Pump Electric Tensioning Pumps Air Driven Tensioning Pumps Hoses and Couplers Page 62-82

Cylinder-Pump Sets Spread Cylinders Flange Alignment Tools Flange Spreaders Nut Cutters Page 83-97

FLANGE MAINTENANCE TOOLS

Flange Spreading Tools Flange Pulling Tools Valve Change-Out Tools Wind Tower Flange Alignment Tools Portable Machining Products Page 98-115

YELLOW PAGES

Safety Instructions Tightening & Tensioning Theory Bolting Integrity Software Solutions Enerpac Bolting Van Enerpac Academy & Training Centers Page 116-129

ENERPAC.