Transfer field bearing to map
Using the Evans Notch map ( $15^{\circ}$ west declination)
Strictly theoretical, because of trees and the heights of the peaks involved you most likely would be unable to see the peaks being referenced. You are on a named but trailless high point in Evans Notch. From where you are you sight a bearing with your compass to the summit of East Royce as $342^{\circ} \mathrm{M}$ located at approximately $\mathrm{N} 44^{\circ} 12.12^{\prime}$ W $71^{\circ} 6.4^{\prime}$ You sight a second point to the summit of Chandler Mountain as $267^{\circ} \mathrm{M}$ located at approximately $\mathrm{N} 44^{\circ} 18.4^{\prime} \mathrm{W} 71^{\circ} 0.4^{\prime}$.

Where are you?

## Answer

There is $15^{\circ}$ West declination on the map.
$342^{\circ} \mathrm{M}$ to East Royce $-15^{\circ}=327^{\circ} \mathrm{T}$
$267^{\circ} \mathrm{M}$ to Chandler Mountain $-15^{\circ}=252^{\circ} \mathrm{T}$

1. Set your compass to $327^{\circ}$

Align one of the lines on the azimuth ring with the north grid lines on the map
Slide your compass up until the edge of the baseplate touches the summit of East Royce.

Or
Set your compass to $327^{\circ}$
Put the edge of your baseplate touching the summit of East Royce
Rotate the compass until the lines in the azimuth ring line up with the north grid lines on the map
2. Now draw a line along the edge of the baseplate, extend it as far as you can
3. Set your compass to $252^{\circ}$

Align one of the lines on the azimuth ring with the north grid lines on the map
Slide your compass up until the edge of the baseplate touches the summit of Chandler Mountain.

Or

Set your compass to $252^{\circ}$
Put the edge of your baseplate touching the summit of Chandler Mountain
Rotate the compass until the lines in the azimuth ring line up with the north grid lines on the map
4. Now draw a line along the edge of the baseplate, extend it as far as you can

Where the lines converge is where you are and should be Stiles Mountain.
If the declination was not subtracted and the bearings of $342^{\circ}$ and $267^{\circ}$ are used the lines would converge just south east of Pine Hill.

