

Welcome to Our Webinar:

"Using Hydraulic Profiling Tool (HPT) Logs for Site Characterization"

This presentation will start soon...

Using HPT Logs in Site Characterization Studies

Running HPT logs in the Platte River alluvial aquifer, Clarks, NE.

Wes McCall, MS, PG KS28 (mccallw@Geoprobe.com)

HPT >>> High Resolution Site Characterization

Webinar Outline

- HPT Principles of Operation
- Equipment Needed and Logging Technique
- Interpreting an HPT log
- HPT Log Cross Section and Hydrostratigraphy
- Dissipation Tests ... How and Why?
- Estimating Hydraulic Conductivity (K) with Q & P_c
- Using HPT Logs for Subsurface Interpretation (conceptual site model ... CSM)

HPT Principles of Operation

- A) Water Tank
- B) Pump & Flow Meter
- C) Electronics/computer
- D) Trunkline
- E) Pressure Sensor
- F) Screened Injection Port
- G) Elec. Conductivity Array

How Much Injection Flow?

300 ml/min

=?ml/sec

How much per log?

How Much Injection Flow?

300 ml/min X 1min/60sec

= 5 ml/sec

Advance probe at 2 cm/sec So Inject 5 ml over 2 cm ~ 75 ml/ft of log

Reality ~ 5 gal (20 l) for 60ft log

Example HPT Log

- EC
- Pressure
- Flow

Components of the HPT System: HPT Probe

HPT System Components: Electronics

- Lap Top Computer (with Acquisition software)
- Field Instrument (FI 6000)
- HPT Flow Module (K 6300)

Running an **HPT Log** and Field QA/QC

EC Test Jig on Probe

EC Test Load Used to Verify EC System is Working

Before Every Log Run QA Tests

Pre-Log QA: EC Test Load

Electrical Conductivity Onscreen QA Report (data saved to log file)

Pre-Log QA: HPT Reference Test

HPT Pressure Transducer Onscreen QA Report (data saved to log file)

HPT Probe in Reference Tube to Verify Measurement of $\Delta 6''$ (15cm) of Water Pressure = 0.22 psi (1.52kPa)

IF YOU DON'T DO THE QA TEST DON'T RUN THE LOG!

Running an HPT Log: Advancing the Probe

Live time data review

A Basic HPT Log & Interpretation

Basic Interpretation Rules

HPT Pressure (all formations)

• Increasing P = decreasing permeability

• Decreasing P = increasing permeability

Basic Interpretation Rules

Electrical Conductivity (EC) (in fresh water formations)

- Increasing EC = increasing clay content= lower permeability
- lower EC = coarser grainedhigher permeability

EC Exceptions?

Basic Interpretation Rules

Electrical Conductivity (EC)

- Exceptions!
- Low EC but High Pressure
 - Silts & cementing
 - Not all clays = high EC
- High EC can exhibit low HPT pressure
 - Seawater
 - Oilfield brine
 - Ionic remediation fluids (ionic compounds)

= high EC

Let's use the DI Viewer Software to open a single HPT log and then create a cross section from several HPT pressure logs ...

The DI Viewer software is available as a free down load at: http://geoprobe.com/downloads/direct-image-viewer-16

Hydrostratigraphy with HPT Pressure Cross Section

West East

Facing North: 50 ft spacing between log locations: alluvial deposits

HPT Press. Avg

Hydrostratigraphy ... Water Supply Well Placement

West East

Facing North: 50 ft spacing between log locations: alluvial deposits

HPT Press. Avg

West East

Our Hypothetical Dry Cleaner Site ...

Hydrostratigraphy ... Groundwater PCE Plume

Aquifer Boundaries

East

Hydrostratigraphy ... Groundwater PCE Plume

Aquifer Boundaries

HPT Press. Avg

Hydrostratigraphy ... Groundwater PCE Plume

Hydrostatic Pressure, Dissipation Tests, Water Levels & More

Hydrostatic Pressure =

- 2.31 ft of water = 1 psi
- 0.433 psi/ft water
- 1 meter of water = 9.81 kPa

Hydrostatic Pressure, Dissipation Tests, Water Levels & More

Pressure **Dissipation Tests** yield absolute hydrostatic pressure below the water table.

Prefer to run dissipation tests in sandy zones.

To Run a Dissipation Test ...

- Stop Probe Advancement
- Turn off HPT flow

 Record pressure changes in a time file

This dissipation test was run at 39.5 ft below grade when this log was made.

Let's use the DI Viewer Software to review some dissipation tests ...

Is Slope of the Hydrostatic Pressure Line Correct?

$$21.971 - 20.036 \text{ psi} = 1.935 \text{ psi} = 0.430 \text{ psi/ft} = \text{hydrostatic pressure slope}$$

 $44.0 - 39.5 \text{ ft}$ 4.5 ft

(for a water table aquifer)

Fully Dissipated Tests = Good Hydrostatic Pressure Line and Water level

Corrected HPT Pressure

At each depth increment:

Corrected HPT Pressure (Pc) =

Total HPT Pressure – (Atm. Press. + Hydro. Press)

Corrected HPT Pressure

At each depth increment: Corrected HPT Pressure = Total HPT Pressure – (Atm. Pressure + Hydrostatic Pressure)

Is Your Dissipation Test Fully Dissipated?

Why do I care?

Incomplete Dissipation Tests ...

... result in incorrect hydrostatic pressure lines (slope), incorrect static water levels and incorrect corrected pressure graphs ...

However, in the real world ...

Estimating Hydraulic Conductivity (K) with HPT Log Data

From Darcy's Law:

Hydraulic Conductivity (K) = f(Q/P)

HPT logs provide both:

Corrected Pressure (P_c)

And Flow Rate (Q)

Estimating K with HPT Q and P_c Data

Empirical Model developed from colocated slug tests and HPT logs to calculate K from Q/P_c ratio.

Performing a Pneumatic Slug Test

Study area next to cottonwood tree

Multi-Level Discrete Interval Slug Tests

K = f(Q/Pc)

Empirical Model for Estimating K with HPT Q & P_c

Estimated K with the DI Viewer Software

How Well Does the Est. K Model Work?

MiHpt Logging, Skuldelev, DK

Co-Located Slug Testing in Skuldelev

Former Schilling AFB: Old Fire Training Area Site

TCE in Groundwater at the Former SAFB

HPT Logging Transect

Logs WS06, 07 and 15

Logs WS06, 07 and 15

SK07 HPT Log Detail

SK07 HPT Log Detail

SK07 Location Slug Test and Groundwater Sample Results

Slug Test K over this interval is:

35.4 ft/day or **1** 10.8 m/day

X-VOC contaminants detected were:

Carbon tet = $13,000 \mu g/l$ Chloroform = 370TCE = 5480

Total X-VOC = 18,850 μg/l

<u>Using HPT Logs for Subsurface Interpretation</u> (<u>Developing a Conceptual Site Model ... CSM</u>)

MiHpt Logs from Skuldelev, DK

MiHpt is a combined membrane interface probe and HPT probe

Skuldelev Location & Site Map

MiHpt Log X

Cross section Line ----

GW Plume & Hot Spot

Logs are spaced 8 m (~25ft) apart.

Skuldelev SK04 Location Log

Sand & Gravel ± Fines

Skuldelev SK05 Location Log

Skuldelev HPT Pressure X-Section

Skuldelev HPT Pressure X-Section

Skuldelev HPT Pressure X-Section

Skuldelev HPT Pressure X-Section = hydrogeologic model = CSM

East West 4.5 -**SK04** SK05 SK12 **SK01** 3.5 -2.5 -1.5 -Paleo-Stream Valley (filled with sand & gravel) -0.5 -Gray Clay-Till (High HPT Pressure) -1.5 --2.5 --3 -

Skuldelev HPT Pressure and XSD Cross Section

Skuldelev HPT Pressure and XSD Cross Section

Skuldelev HPT Pressure and XSD Cross Section

Skuldelev Location & Site Map

MiHpt Log X

Cross section Line ----

GW Plume & Hot Spot

Logs are spaced 8 m (~25ft) apart.

Sand & Gravel ± Fines

Skuldelev SK05 Location Log

SK05 Location

EC & HPT Pressure

Groundwater specific conductance

Skuldelev Location & Site Map

MiHpt Log X

Cross section Line ----

GW Plume & Hot Spot

Persulfate Injection

Logs are spaced 8 m (~25ft) apart.

Skuldelev Location & Site Map

MiHpt Log X

Cross section Line ----

GW Plume & Hot Spot

Persulfate Injection

Logs are spaced 8 m (~25ft) apart.

Cross Section with HPT Pressure & EC

Cross Section with HPT Pressure & EC

HPT Pressure (kPa)

Summary

- HPT Principles of Operation
- Equipment Required for Logging
- Basics of HPT Log Interpretation

- Making a Cross Section with HPT Logs
- Interpreting Hydrostratigraphy with HPT

Summary

- Dissipation Tests, Hydrostatic Pressure & Water Levels
- Correcting HPT Pressure (Pc)
- Estimating Hydraulic Conductivity from Pc and Q
- Developing a CSM with HPT Cross Sections
- Tracking an ionic contaminant or remediation fluid by

combining HPT and EC logs

Certificates of Completion:

You will receive an email asking if you would like to receive a certificate of completion for this webinar.

Simply reply to that email and fill in the webinar code:

"KS28"

You will then receive a .PDF of your certificate.

Questions and Answers ...

Please submit your questions from the "chat" window on the WebEx screen.

Certificate of Completion Code for this Webinar = KS28

To learn more about Geoprobe's HPT logging system or the NEW HPT-GWS (groundwater sampler) and other Direct Image systems like MIP, MiHpt, Low Level MIP, EC, CPT and PST check out this link:

http://geoprobe.com/geoprobe-systems-direct-image-products

