The Tech Art Journey

of creating and optimizing
an asset pipeline

tudo bem?

games
gcap connect
b asia pacific
Who am 1?

Tech Art Lead @ SMG Studio

Previously:
Lead Gameplay Programmer
Data Scientist

Naval Engineer

But also:

Maths Geek

Coffee + Cake Lover
SoulsBorneKiroRing fan

#GCAP24

games
gecap::.
> b asia paciic

What will happen here?

This will be fast

#GCAP24

This talk will be fast as there is a lot of content, but not a lot of time

games
gcapz:.
A < asla paCI C

What will happen here?

This will be fast
This will get technical

#GCAP24

This talk will have technical elements, so be prepared for talking about precision
and bytes

But fret not because this deck will be online and you can get a link at the end!
With all that said, get yourself comfortable, keep your hands inside the vehicle at
all times and off we go!

games
gecap::.
> asia paciic
';J

The Project

#GCAP24

This talk will cover the technology implemented on SMG’s largest game, a
multiplatform party game...

games
4ga connect
asia pacific
<

The Project

#GCAP24

That is still a secret.
The project was intended to be both announced and released by GCAP 2024, but
due to release window complications we’ve delayed until 2025

games
ca connect
asia pacific
<&

The Project’s TECH

#GCAP24

So let’s talk about the tech used in the project instead!

While most projects have a team of 3D artists that models entire assets

On our project we took a different route:

We started by building a library of “Atomic mesh assets” these can be anything,
from a small wall piece, to a door, or anything!

Then we have a design team that create build instructions for each of our scenes
and in some cases even characters!

The Tech art team ingest these instructions into our custom pipeline setting up
culling and features such as compression or lightmap unwrapping

Finally the pipeline outputs meshes in-engine that can be used normally by
anyone in the team.

games
4ga connect
asia pacific
<&

The Project’s TECH

Atomic Mesh

Assets Feature Setup

Scriptable Object Unity Scripted Importer
3D Models .meta file data

Build In-Engine
Instructions Mesh Asset

Human readable file Regular Model
Custom file extension Prefab

#GCAP24

Some details on the different parts:

Atomic Mesh Assets: Scriptable Objects that have 3D models assigned to
them

Build Instructions: human readable files saved with a custom file extension
Feature Setup: Unity Scripted Importer which saves data to the .meta file
(https://docs.unity3d.com/Manual/Scriptedimporters.html)

In-Engine Mesh Asset: Behaves like a regular model, can be dragged around
as a prefab

10

gecap:.
The Project’s TECH

Atomic Mesh
Assets

Build In-Engine

Feature Setup

Instructions Mesh Asset

#GCAP24

Putting all these steps together we get the main part of our pipeline.

11

gecap:.
The Project’s TECH

Atomic Mesh

Assets Optimization

Build In-Engine

Feature Setup

Instructions Mesh Asset

Iteration

#GCAP24

But the pipeline also needs to be simple and flexible to allow for optimization of
the atomic meshes and/or iteration of the final assets due to design changes

12

games
4ga connect
asia pacific
L

The Project’s TECH

Atomic Mesh Pipeline 2.0 (AMP) |

Atomic Mesh e I
Assets <P Optimization

| . Build ' ' In-Engine
Instructions festuisistp

Mesh Asset

M Iteration J

#GCAP24

This pipeline was put in place before my time and | inherited it.

It has heaps of awesome tech and does the job.

It’s based on the Unity’s Assetimporter APl handling the import of a custom file
type that in turn generates an asset in the Unity library similar to a 3D model,
which has a Transform hierarchy and associated meshes.

games
gecap::.
> asia paciic
';J

Procedural Meshes

AMP is Great! VE¢ Il'l_'l'il

Jamming many meshes together

looks great! _ I

But quickly become expensive due £
to large number of verts on the r
inside and MANY repeated parts. =4 :

How can we improve it? ‘W“.II.IIT BI.E““

#GCAP24

This idea of procedural meshes is great, flexible and yield quite intricate detail.
But the output meshes are insanely high poly, mostly due to internal geometry +
geo that will never be seen from our game’s mostly static camera setup

14

games
4ga connect
asia pacific
<&

Procedural Meshes

Visibility Culling

#GCAP24

Our solution was an embedded visibility culling solution

15

games
gecap::.
> b asia paciic

Procedural Meshes

Visibility Culling

1) Setup visibility Cameras + Occluders

#GCAP24

It starts by setting up a rig with cameras that mark all the angle the model will be

seen in-game.
We can also refine it by adding blocks as visibility occluders if we know that a

specific part will be consistently covered by another element, by VFX for
example.

16

games
4$a connect
asia pacific
<

Procedural Meshes

Visibility Culling

1) Setup visibility Cameras + Occluders

2) For each camera
a) Render triangles indices
b) Render Occluders on top

#GCAP24

From there we run a process where we render the model from each camera
angle, but instead of it’s colors we output the triangle index to a uint32 render

texture with depth buffer.
We then render the occluders with a null triangle index as to, well, occlude

triangles.

games
4ga connect
asia pacific
<&

Procedural Meshes

Visibility Culling

1) Setup visibility Cameras + Occluders

2) For each camera
a) Render triangles indices
b) Render Occluders on top
c) Collect Data

[ofo]1]ofo]o]+[1]o[ofo[o]+]o]

#GCAP24

Final step is to run a compute shader and aggregate the data on which triangles
are visible to a ComputeBuffer.
Rinse and repeat for all cameras.

games
4ga connect
asia pacific
<&

Procedural Meshes

Visibility Culling

1) Setup visibility Cameras + Occluders

2) For each camera
a) Render triangles indices
b) Render Occluders on top
c) Collect Data

3) Aggregate Data
4) Remove Invisible Triangles

#GCAP24

Final step is to just read the data back to the CPU and remove any triangles that
are not visible and in turn any vert that is not part of any remaining triangle.

games
4ga connect
asia pacific
<&

Procedural Meshes
Visibility Culling

ViewCuller main method

#GCAP24

Code Reference

Index drawing shader

20

games
g@psgfgﬂsgéiﬁc
Procedural Meshes

Visibility Culling

+90% REDUCT'ON _

#GCAP24

Using a random model as our example
Culling can reduce our meshes up to ~90%!!!
That’s right from 6.5 million down to 4.5 hundred thousand verts!

The Nintendo Switch can breath now.

21

games
4ga connect
asia pacific
<&

Procedural Meshes

Detail Drawer

Many of our atomic meshes have what we call “details”
And they are small, repetitive geo that are everywhere.

Let's dub them BLI NG

#GCAP24

The visibility culling greatly reduced our meshes from millions of verts to
hundreds of thousands, but that was still not enough.

Specially on weaker devices the final meshes were still taking too much time to
process and consuming too much memory.

A lot of the geometry was spent into small details that were repeated all over the
model.

So, to tackle them | created a new feature to render them as instanced meshes.

22

games
gecap::.
> asia paciic
';J

Procedural Meshes

BLING Drawer

. Bling .
Atomic Mesh definition Bling Drawer

assets and position enabled Bling

‘ T Collection
I — Feature Setup

Instructions

In-engine
Mesh asset

#GCAP24

Going back into the AMP I’ve implemented a few changes:

For each atomic mesh that had Bling we would store their definition and position
as data.

When ingesting the instructions, the AMP would check if the Bling Drawer feature
was enabled or not, being able to bake Bling into the geometry or output a
scriptable object with a Bling Collection for the model.

23

games
gmpptﬁ
Procedural Meshes
BLING Drawer

r = . r - " I
Bling Collection Bling Type R+S T
Collection I
|

Bounds i Lightmap
Bling Type OFFSET

+Scale

|
|
|
|
|
| : Material
I Bling Type Bling Element I
: Collection [] Lightmap UV |
|

#GCAP24

This Bling Collection contains the bounds for all Bling in it for visibility evaluation
down the line.

It also has an array of Bling Type Collections.

Each of the Type Collections has the bling Type as a string key and another array
of Bling Elements

At the bottom of it all the Bling Element contains a TRS Matrix4x4, an uint for
compressed material and a Vector4 for Lightmap UV + Scale.

If you’re familiar with TRS matrices you know that m30~m32 are set to 0, so we
can sneak the Lightmap UV Offset there.

24

games
gecap::.
> b asia paciic

Procedural Meshes

BLING Drawer

DrawMeshinstanced

UnityUpdate

BlingDrawer Lo

BlingDrawer
BlingDrawer Yes

BlingDrawingLoop BlingDrawer Visible? s BlingDrawingBucket
BlingDrawer

BlingDrawer |
No Early Out

#GCAP24

To tie in with the runtime, we have the following parts:

1. A BlingDrawer component that can be attached to GameObjects and has all
the settings for drawing a Bling Collection, such as material, cull distance
and visibility calculation strategy

2. ABlingDrawingLoop that makes use of the PlayerLoop API to register a
custom update method.

3. When a BlingDrawer gets called by the BlingDrawingLoop and is visible, it will
call the BlingDrawingBucket which renders the collection via a
Graphics.DrawMeshlnstanced call

Culling Group API
https://docs.unity3d.com/Manual/CullingGroupAPl.html

Blog on custom update loops
https://medium.com/@thebeardphantom/unity-2018-and-playerloop-
5c46a12a677

25

games
4ga connect
asia pacific
<&

Procedural Meshes
BlingDrawer main methods

BLING Drawer

BlingDrawinglLoop

ons.Length; 144)

ctiveOramers

8 _transform.hasChanged)

isPlaying)

= _lodHaterials(fathf. Min(_lod, 2)

1543

#GCAP24

Code Reference

games
4ga connect
asia pacific
L

Procedural Meshes

BLING Drawer

BlingDrawingBucket buffer population BlingDrawingBucket render method

id PopulateBuffer(ElementLocator(] blings, Matrixixil LocalToworld) mterial, int layer, int lod)
i < blings.Length; i+) i
tor bling = blings[il;

_preallocatedBuffer[i].color = bling.Hateriallndex;
_preallocatedBuffer[i].lightmapUv = bling.lightmapuv;

FastMultiply(ref localToWorld, bling.trs, _preallocatedBuffer[i] .trs);

#GCAP24

Code Reference

27

games
g@psgfgﬂsgéiﬁc
Procedural Meshes
BLING Drawer

Vertices: 452169 (51.7 MB) Vertices: 392496 (44.9 MB)

Position

15% REDUCTION

#GCAP24

Implementing Bling Drawing on the same mesh as before we get a further 15%
reduction on size plus improved resolution on Lightmaps

28

games
gcap::.

> b asia paciic
AMP WORKS!

- -

A

ITS ALIVE e
! REROFIEND

BurtissLow, VERY sLow
LET’S UNDERSTAND WHY

#GCAP24

All the tech so far works and is amazing.

But ended up being very slow to process.

Could take upwards to 20min to ingest a model, and sometimes get some
computers to run out of memory!!!!

This felt more like Sanic when we needed it to be Sonic!

29

games
gcap:=:
A < asla paCI C

Optimization Bottlenecks

Compression

Vertices: 392496 (44.9 MB) Vertices: 392496 (18.0 MB)

#GCAP24

Why we do it?
Much smaller memory footprint

Update Data formats
Float32 to Float16 or even Norm8

Almost 60% reduction!!!

Our meshes are chunky and don’t suffer from compression in most cases

30

games
4ga connect
asia pacific
<&

Optimization Bottlenecks

Compression
Compress on the CPU
vert by vert

Slow, VERY slow

o

High Compressed Vertex Data [o]o[o[o[o]o]o[o[o]o[o]o]o]o]

#GCAP24

Our first solution was great and functional, which served us well while investing
into a vertical slice.

It just used C# to read and convert the data from regular Float32 into smaller
Half16 or SByte4, following the format outlined by our
HighCompressedVertexData struct

But this process is linear and greatly suffer from very large meshes with a long
vert strip.

31

games
gcap:=:
A < asla paCI C

Optimization Bottlenecks

Running code on Compute Shaders

Compression

Repetitive Task?

Has well-defined contraints?

COMPUTE SHADERS
TO THE RESCUE!!!

#GCAP24

Compute shaders works wonders on well defined parallelized tasks such as
stride defined vert strips!
20% reduction on total processing time

32

games
4ga connect
asia pacific
<&

Optimization Bottlenecks

Compression
xData[] vertexData = HighCompre a[vertexCount];

er ouputBuffer = r(vertexCount, Marshal.SizeOf((Hic

ouputBuffer.GetData(vertexData);

Setting the data to a defined format is easy
to setup, but..

No Normals? Different format

No Colors? Different format

You gotta tell ‘'em

But.. Aren't we just moving bytes around?
#GCAP24

But this first approach is hardcoded on HighCompressedVertexData struct vertex
format, which might need to be cleaned afterwards if the input did not have all

attributes.
And despite having meshes with more or less channels, the compression per

channelis consistent across the project.

But it’s all just bytes...

gecap::.
Optimization Bottlenecks

Compression: CPU Side

Original
Vertex Data
uintl] Compressed P st
VertexData —> '
uintll g

=

Mesh layout

| Compressed

layout

#GCAP24

Instead of relying on HighCompressedVertexData struct, we can use a plain uint
array, where bytes can be directly read from the GPU and applied to the mesh via
the method Mesh.SetVertexBufferData() afterwards.

This is done by extracting the vertex data and mesh layout with Unity’s own
methods.

The data gets passed as is to the compute shader, while the layout is passed as
Booleans, such as _hasNormal, or _Texcoord1Has4Channels.

After compression the data is fetched back into the CPU, the mesh has it’s layout
updated and finanly it receives the now compressed data.

34

games
geap: .
Optimization Bottlenecks
Compression: GPU Side (Float32x4 — Float16x4 example)

CPU

| |
Floatz2 1 1 Float16
| |

Float32 Uint Uint Float16

Uint Uint Float16

I

I

|

I Floats2 Uint Uint Float16
| . F32toF16

I

|

|

Float32

|

|
|
|
L———a

o[L -
|

#GCAP24

On the GPU side we just need to read the bytes for each uncompressed value as
their uint representation, such as a float3 becomes uint3, given they both have
the same bit count (4 bytes * 3).

From there we can compress following any rule we need, as long as each
channel fit withing the multiple of 4 byte count, e.g.: float3 is fine (4 bytes * 3 =
12), but half3isn’t (2 bytes * 3 = 6).

It’s also important to note that the output will be packed into uints, which are 4
bytes each, so 2 halfs need to be packed into a single uint, or 4 Unorm8 into the
same single uint.

Finally all these uint soup is appended to the output buffer sequentially, which
we can parallelize as we know the exact stride (or size) of each vert data.

35

games
4ga connect
asia pacific
<&

Optimization Bottlenecks

- Compression on the CPU
Compression

(vertexCount, r.Tenp);

Compressed Layout

stor[] HighComps
tion = p
data.position
data.posit: Jposition.y;
position.z
data_position
y eadf ron(; data.normal);

- ReadFron(’ data. tangent);

data.color = coters[il;

Compressed Vertex Format LR (Sexoos Lot 210)

ReadHal f4Fromectord(i data. texCoords:

ayoutkind. Sequential)]

#GCAP24

Code Reference

games
4ga connect
asia pacific
<&

Optimization Bottlenecks

Compression
Getting original data and running the compute shader

nt[] RunComputeShaderComprs HeshLayout meshLayout)
{

omputeShader ssionCompute. ComputeShader;

conputeShader . GetKernelThreadGroups ComputeShaderkernel, threadCount,

Calling the compute method,
setting up the mesh layout
and setting the vert data

iginalBuffer);
meshLayout);
ut_UintStride];
outputBuffer = ompu ength,
computeShad tBuffer(ComputeShaderkernel, 3 , outputBu
er . Dispatch(ComputeShaderkernel , ilTo esh. vertexC t)threadCount), 1,

outputBuffer.GetData(vertexData);

outputBuffer.

originalBuffer.D

return v

#GCAP24

Code Reference

games
4ga connect
asia pacific
<&

Optimization Bottlenecks

Compression
Kernel Method Data Reading Compression Methods

S i (s d = (U ert) 6;

Cvalue) asfloat(_Input.Load3CinputIndex + offset));

(_Input.Loadd(inputIndex + offset));

This is the beginning of the
ReadUncompressedVert method. These are our compression methods
The rest will just read the other mesh data to convert Float32 values into lower

Beginning of the compute shader, it keeps precision values

going depending on the mesh layout.

But it's just more of the same from here
#GCAP24

Code Reference

<

games
v@a connect
< ' < asia pacific

Optimization Bottlenecks

Compression

Vertices: 392496 (44.9 MB) Vertices: 392496 (18.0 MB)

#GCAP24

Taking the starting case

39

gecap::.
Optimization Bottlenecks

Compression

9007% FASTER

25% total time reduction

#GCAP24

The Compute Shader method is ~900% faster!
Which cascades as the entire AMP being 25% faster!

THE FASTEST
THINGS ON EARTH

T D

CHEETAH AIRPLANE

©
(== e =)
SPEED OF LIGHT mm@}ﬂj

40

ggap Connect
b asia pacific
Optimization Bottlenecks

Caching and Serialization

Talking about bytes and precision, did you know that different
platforms handle these differently?

To ensure the resulting assets are the same across every computer
and build we created a cache system.

' Files in the computer |

|
| B A |
| E '
|

Instruction .cache~ I

#GCAP24

Different platform could generate slightly different results for the mesh
generation, specially lightmap unwrapping using xAtlas.

To ensure that the results would be stable and reliable (as well as faster) we
created a cache system where the AMP, when importing an instruction file it
would check for an adjacent .cache~ file;

If it finds one the .cache~ is read and the result mesh is added to the Unity
library, but if it’s missing (due to being a new instruction file) it would be
generated from scratch and a .cache~ would be then created and committed to
the repo.

41

games
gecap::.
> b asia paciic

Optimization Bottlenecks

e

Caching and Serialization
The caching is done by serializing the result

meshes to a file as binary. pBl“nn

But how is the binary serialization done?

JSON

All the data was being interpreted as numbers ISON
Then as text e
Then concatenated into JSON

e _ Y
4 »
Then converted into bytes s““ﬁa BIIHGIITEHATIIIH

Finally wrote to disk Y-

AND BACK!!! FLOAT AS STRING

#GCAP24

N

-

The process was sound and seemed great, but how did it work?

Via JSON strings.

Converting data into text and then into binary so it could be written to disk, and
the inverse when reading.

This was bad as not only it was quite slow, it also ate up a lot of memory AND lost
precision, as different hardware round floating point numbers differently on
ToString().

The memory situation was so bad that some instruction files couldn’t be
ingested as it would require more memory than people’s computer had!

Also found out that whenever a mesh was generated, we’d serialize it to disk and
then immediately deserialize it back, wasting lots of time when (re)generating a
cache.

42

games
4ga connect
asia pacific
<&

Optimization Bottlenecks

Caching and Serialization

Mesh Binary Serializer

name
layout

size length
b Array
LI | : lues
triangles va
etc..
Raw
MeshVertData —E [o]efo[o[o]e[ofo]o[o[o]o[o]o]

Data

|
|
| Value =) raw data
|
|

scratch

#GCAP24

The improvement was a new serializer, that works in the following way:

We start with a mesh, then create a new Serializer, which contains a large byte
array that we’ll call the scratch.

First we extract the info from the mesh, such as name, attribute layout, triangles,
etc...

That info can be separated into a few different types:

The first type is “Values”, which contain 2 parts

- the type size, for example Bounds is a Vector3, so 3 floats for 4 x 3 bytes

- theraw data, the actual binary representation of the value

The type size ends up being a raw data itself, and all raw data can be copied into
the scratch

The second type is “Arrays”, which also contain 2 parts

- the length, which can be saved as a Value

- the actual values, which can be copied as raw data

Raw data is highlight as a third type because we can serialize the MeshVertData

from the mesh directly.
Then all this get written to disk as a string representation of the scratch

43

The inverse of this process is done for deserializing and this ended up being 25%
faster for deserializing .cache~ files as well as massively reducing the memory
usage, allowing the team to handle any instruction that they encountered since
without crashes!

43

games
4ga connect
asia pacific
<&

Optimization Bottlenecks

Caching and Serialization

Main Serialize Methods

Code Reference

Main Deserialize Methods

#GCAP24

High-Level Methods

ILow—Level Methods

44

ggap Connect
b asia pacific
Optimization Bottlenecks

Caching and Serialization

55% Faster Write 65% Faster Read

25% Faster AMP + NO crashes +
Platform agnostic!

#GCAP24

Using the same mesh we’ve compressed before, the new serializer is 55% faster
when writing and 65% faster when reading (which happen more often!)

This led to another speed up of 25% of the AMP!!!

It also prevented memory related crashes

45

games
4ga connect
asia pacific
<&

Productivity

Why should we care?

It's common to ignore Editor Tools performance

But at the end of the day that's the team productivity being wasted
watching loading bars

Running AMP (busy for 42m)...

Ingesting Instructions

#GCAP24

And why do all this just for an Editor tool? No one cares if it’s slow.

In reality we all SHOULD care if it’s too slow.

Because it’s people’s time we’re talking about, it’s not a big deal if a button takes
a few seconds.

But if it takes many minutes, you might want to look into it.

There is a balance as some process are done sparingly and can be slow, but in
those cases it shouldn’t crash after 30min or it will be a huge source of

frustration.

46

games
gcapz:.
A < asla paCI C

Productivity

How to identify the problem?

You might wonder how much time | spent using the AMP.
Almost zero, nada, zilch.

So how could | identify the problems?

Product
features

Although | put a lot of effort into understanding and improving the tool, | barely

used it.

So how could | identify issues?

By doing 3 main things:

1) Asking the team how they were doing, what was bad and annoying

2) Having an open call policy, whenever they wanted to complain about
something I’m always a slack call away

3) By lurking on their open huddles and paying attention to how they work so |
can spot pain points

games
4ga connect
asia pacific
<&

Productivity

Do you need to do it all yourself?

NO!

The same way that you're doing this for the team, rely on them for help
Engage your team in coming up with solutions, even with coding tasks

This helps people to stay motivated and yourself a little bit saner!

#GCAP24

48

g p asia pacific
<

This guy just talked like a train wreck, what happened here?

TL:DR:

* Profile frequently

+ Assets are just byte soups
* GPU not only draw frames

» Ask questions and listen to your team

YES, THIS IS AMP SUPRORT

#GCAP24

Profile frequently
* Profile the game and profile the
engine, your tools might be killing
you
Assets are just byte soups
* Don’t be afraid to treat them like
SO

* Compute shaders are a powerful

49

tool for grunt work and even draw
calls can be used to “paint” data
* Ask guestions and listen to your
heart, | mean, your team
* Talk to people who use your tools,
they might not know how it works,
but they know how it doesn’t

49

Questions?

50

The Tech Art Journey
of creating and optimizing an asset pipeline

Obrigado!

In /vicnascimento

SLIDES
#GCAP24

51

fic

asla pacl

O
o Q
& c
M O
(@)I®)

52

