
#GCAP24

The Tech Art Journey
of creating and optimizing

an asset pipeline

1

#GCAP24

OI,
tudo bem?

2

#GCAP24

Who am I?

Tech Art Lead @ SMG Studio

Previously:
Lead Gameplay Programmer
Data Scientist
Naval Engineer

But also:
Maths Geek
Coffee + Cake Lover
SoulsBorneKiroRing fan

3

#GCAP24

What will happen here?

This will be fast

This talk will be fast as there is a lot of content, but not a lot of time

4

#GCAP24

What will happen here?

This will be fast
This will get technical

This talk will have technical elements, so be prepared for talking about precision
and bytes

5

#GCAP24

What will happen here?

This will be fast
This will get technical
This deck will be available online

But fret not because this deck will be online and you can get a link at the end!
With all that said, get yourself comfortable, keep your hands inside the vehicle at
all times and off we go!

6

#GCAP24

The Project

This talk will cover the technology implemented on SMG’s largest game, a
multiplatform party game…

7

#GCAP24

The Project

That is still a secret.
The project was intended to be both announced and released by GCAP 2024, but
due to release window complications we’ve delayed until 2025

8

#GCAP24

The Project’s TECH

So let’s talk about the tech used in the project instead!
While most projects have a team of 3D artists that models entire assets
On our project we took a different route:
We started by building a library of “Atomic mesh assets” these can be anything,
from a small wall piece, to a door, or anything!
Then we have a design team that create build instructions for each of our scenes
and in some cases even characters!
The Tech art team ingest these instructions into our custom pipeline setting up
culling and features such as compression or lightmap unwrapping
Finally the pipeline outputs meshes in-engine that can be used normally by
anyone in the team.

9

#GCAP24

The Project’s TECH

Atomic Mesh
Assets

Build
Instructions

Feature Setup

In-Engine
Mesh Asset

Scriptable Object
3D Models

Human readable file
Custom file extension

Unity Scripted Importer
.meta file data

Regular Model
Prefab

Some details on the different parts:
- Atomic Mesh Assets: Scriptable Objects that have 3D models assigned to

them
- Build Instructions: human readable files saved with a custom file extension
- Feature Setup: Unity Scripted Importer which saves data to the .meta file

(https://docs.unity3d.com/Manual/ScriptedImporters.html)
- In-Engine Mesh Asset: Behaves like a regular model, can be dragged around

as a prefab

10

#GCAP24

The Project’s TECH

Atomic Mesh
Assets

Build
Instructions

Feature Setup
In-Engine

Mesh Asset

Putting all these steps together we get the main part of our pipeline.

11

#GCAP24

The Project’s TECH

Optimization
Atomic Mesh

Assets

Build
Instructions

Feature Setup
In-Engine

Mesh Asset

Iteration

But the pipeline also needs to be simple and flexible to allow for optimization of
the atomic meshes and/or iteration of the final assets due to design changes

12

#GCAP24

The Project’s TECH

Optimization
Atomic Mesh

Assets

Build
Instructions

Feature Setup
In-Engine

Mesh Asset

Iteration

Atomic Mesh Pipeline 2.0 (AMP)

This pipeline was put in place before my time and I inherited it.
It has heaps of awesome tech and does the job.
It’s based on the Unity’s AssetImporter API handling the import of a custom file
type that in turn generates an asset in the Unity library similar to a 3D model,
which has a Transform hierarchy and associated meshes.

13

#GCAP24

Procedural Meshes

AMP is Great!

Jamming many meshes together
looks great!

But quickly become expensive due
to large number of verts on the
inside and MANY repeated parts.

How can we improve it?

This idea of procedural meshes is great, flexible and yield quite intricate detail.
But the output meshes are insanely high poly, mostly due to internal geometry +
geo that will never be seen from our game’s mostly static camera setup

14

#GCAP24

Procedural Meshes

Visibility Culling

Our solution was an embedded visibility culling solution

15

#GCAP24

Procedural Meshes

Visibility Culling

1) Setup visibility Cameras + Occluders

It starts by setting up a rig with cameras that mark all the angle the model will be
seen in-game.
We can also refine it by adding blocks as visibility occluders if we know that a
specific part will be consistently covered by another element, by VFX for
example.

16

#GCAP24

Procedural Meshes

Visibility Culling

1) Setup visibility Cameras + Occluders

2) For each camera
a) Render triangles indices
b) Render Occluders on top

From there we run a process where we render the model from each camera
angle, but instead of it’s colors we output the triangle index to a uint32 render
texture with depth buffer.
We then render the occluders with a null triangle index as to, well, occlude
triangles.

17

#GCAP24

2) For each camera
a) Render triangles indices
b) Render Occluders on top
c) Collect Data

Procedural Meshes

Visibility Culling

1) Setup visibility Cameras + Occluders

0 0 1 0 0 0 1 1 0 0 0 0 1 0

Final step is to run a compute shader and aggregate the data on which triangles
are visible to a ComputeBuffer.
Rinse and repeat for all cameras.

18

#GCAP24

Procedural Meshes

Visibility Culling

1) Setup visibility Cameras + Occluders

2) For each camera
a) Render triangles indices
b) Render Occluders on top
c) Collect Data

3) Aggregate Data
4) Remove Invisible Triangles

Final step is to just read the data back to the CPU and remove any triangles that
are not visible and in turn any vert that is not part of any remaining triangle.

19

#GCAP24

Procedural Meshes

Visibility Culling
ViewCuller main method

Index drawing shader

Index gathering compute shader

Code Reference

20

#GCAP24

Procedural Meshes

Visibility Culling

+90% REDUCTION

Using a random model as our example
Culling can reduce our meshes up to ~90%!!!
That’s right from 6.5 million down to 4.5 hundred thousand verts!
The Nintendo Switch can breath now.

21

#GCAP24

Procedural Meshes

Detail Drawer

Many of our atomic meshes have what we call “details”
And they are small, repetitive geo that are everywhere.

Let’s dub them BLING

The visibility culling greatly reduced our meshes from millions of verts to
hundreds of thousands, but that was still not enough.
Specially on weaker devices the final meshes were still taking too much time to
process and consuming too much memory.
A lot of the geometry was spent into small details that were repeated all over the
model.
So, to tackle them I created a new feature to render them as instanced meshes.

22

#GCAP24

Procedural Meshes

BLING Drawer

Atomic Mesh
assets

Build
Instructions

Feature Setup

In-engine
Mesh asset

Bling
definition

and position

Bling Drawer
enabled Bling

Collection

In-engine
Mesh asset

Going back into the AMP I’ve implemented a few changes:
For each atomic mesh that had Bling we would store their definition and position
as data.
When ingesting the instructions, the AMP would check if the Bling Drawer feature
was enabled or not, being able to bake Bling into the geometry or output a
scriptable object with a Bling Collection for the model.

23

#GCAP24

Procedural Meshes

BLING Drawer

Bling Collection

Bounds

Bling Type
Collection []

Bling Type
Collection

Bling Type

Bling Element
[]

Bling Element

TRS

Material

Lightmap UV
+ Scale

TR + S

10
Lightmap
OFFSET

This Bling Collection contains the bounds for all Bling in it for visibility evaluation
down the line.
It also has an array of Bling Type Collections.
Each of the Type Collections has the bling Type as a string key and another array
of Bling Elements
At the bottom of it all the Bling Element contains a TRS Matrix4x4, an uint for
compressed material and a Vector4 for Lightmap UV + Scale.
If you’re familiar with TRS matrices you know that m30~m32 are set to 0, so we
can sneak the Lightmap UV Offset there.

24

#GCAP24

Procedural Meshes

BLING Drawer

BlingDrawer

BlingDrawingLoop

UnityUpdate
Loop

BlingDrawer
BlingDrawer
BlingDrawer
BlingDrawer
BlingDrawer

BlingDrawingBucketVisible?
Yes

No
Early Out

DrawMeshInstanced

To tie in with the runtime, we have the following parts:
1. A BlingDrawer component that can be attached to GameObjects and has all

the settings for drawing a Bling Collection, such as material, cull distance
and visibility calculation strategy

2. A BlingDrawingLoop that makes use of the PlayerLoop API to register a
custom update method.

3. When a BlingDrawer gets called by the BlingDrawingLoop and is visible, it will
call the BlingDrawingBucket which renders the collection via a
Graphics.DrawMeshInstanced call

Culling Group API
https://docs.unity3d.com/Manual/CullingGroupAPI.html

Blog on custom update loops
https://medium.com/@thebeardphantom/unity-2018-and-playerloop-
5c46a12a677

25

#GCAP24

Procedural Meshes

BLING Drawer

BlingDrawingLoop

BlingDrawer main methods

Code Reference

26

#GCAP24

Procedural Meshes

BLING Drawer

BlingDrawingBucket buffer population BlingDrawingBucket render method

Code Reference

27

#GCAP24

Procedural Meshes

15% REDUCTION

BLING Drawer

Implementing Bling Drawing on the same mesh as before we get a further 15%
reduction on size plus improved resolution on Lightmaps

28

#GCAP24

AMP Works!

But is slow, VERY slow
Let’s understand why

All the tech so far works and is amazing.
But ended up being very slow to process.
Could take upwards to 20min to ingest a model, and sometimes get some
computers to run out of memory!!!!
This felt more like Sanic when we needed it to be Sonic!

29

#GCAP24

Optimization Bottlenecks

Compression

~50% LESS MEMORY

Why we do it?
Much smaller memory footprint

Update Data formats
Float32 to Float16 or even Norm8
Almost 60% reduction!!!

Our meshes are chunky and don’t suffer from compression in most cases

30

#GCAP24

Optimization Bottlenecks

Compression

Compress on the CPU

vert by vert

Slow, VERY slow

0 0 0 0 0 0 0 0 0 0 0 0 0 0Position

0 0 0 0 0 0 0 0 0 0 0 0 0 0Normal

0 0 0 0 0 0 0 0 0 0 0 0 0 0UV 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0UV 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0High Compressed Vertex Data

0 0 0 0 0 0 0 0 0 0 0 0 0 0ETC…

Our first solution was great and functional, which served us well while investing
into a vertical slice.
It just used C# to read and convert the data from regular Float32 into smaller
Half16 or SByte4, following the format outlined by our
HighCompressedVertexData struct
But this process is linear and greatly suffer from very large meshes with a long
vert strip.

31

#GCAP24

Optimization Bottlenecks

Compression

Repetitive Task?

Has well-defined contraints?

COMPUTE SHADERS
TO THE RESCUE!!!

Compute shaders works wonders on well defined parallelized tasks such as
stride defined vert strips!
20% reduction on total processing time

32

#GCAP24

Optimization Bottlenecks

Compression

Setting the data to a defined format is easy
to setup, but…

No Normals? Different format

No Colors? Different format

But… Aren’t we just moving bytes around?

But this first approach is hardcoded on HighCompressedVertexData struct vertex
format, which might need to be cleaned afterwards if the input did not have all
attributes.
And despite having meshes with more or less channels, the compression per
channel is consistent across the project.

But it’s all just bytes…

33

#GCAP24

Optimization Bottlenecks

Compression: CPU Side

Original
Vertex Data

uint[] Compressed
Vertex Data

uint[]
Mesh layout

GPU

Compressed
layout

Instead of relying on HighCompressedVertexData struct, we can use a plain uint
array, where bytes can be directly read from the GPU and applied to the mesh via
the method Mesh.SetVertexBufferData() afterwards.
This is done by extracting the vertex data and mesh layout with Unity’s own
methods.
The data gets passed as is to the compute shader, while the layout is passed as
Booleans, such as _hasNormal, or _Texcoord1Has4Channels.
After compression the data is fetched back into the CPU, the mesh has it’s layout
updated and finanly it receives the now compressed data.

34

#GCAP24

Optimization Bottlenecks

Compression: GPU Side (Float32x4 → Float16x4 example)

CPU

Float32

Float32

Float32

Float32

CPU

Float16

Float16

Float16

Float16

GPU

Uint

Uint

Uint

Uint

Uint

Uint

Uint

Uint

Uint

Uint

F32toF16

4B 25 FF 0A 00 00 83 1E AF 6D 83 1E

On the GPU side we just need to read the bytes for each uncompressed value as
their uint representation, such as a float3 becomes uint3, given they both have
the same bit count (4 bytes * 3).
From there we can compress following any rule we need, as long as each
channel fit withing the multiple of 4 byte count, e.g.: float3 is fine (4 bytes * 3 =
12), but half3 isn’t (2 bytes * 3 = 6).
It’s also important to note that the output will be packed into uints, which are 4
bytes each, so 2 halfs need to be packed into a single uint, or 4 Unorm8 into the
same single uint.
Finally all these uint soup is appended to the output buffer sequentially, which
we can parallelize as we know the exact stride (or size) of each vert data.

35

#GCAP24

Optimization Bottlenecks

Compression Compression on the CPU

Compressed Vertex Format

Compressed Layout

Code Reference

36

#GCAP24

Optimization Bottlenecks

Compression

Calling the compute method,
setting up the mesh layout

and setting the vert data

Getting original data and running the compute shader

Code Reference

37

#GCAP24

Optimization Bottlenecks

Compression
Kernel Method

Beginning of the compute shader, it keeps
going depending on the mesh layout.
But it’s just more of the same from here

Data Reading

This is the beginning of the
ReadUncompressedVert method.
The rest will just read the other mesh data

Compression Methods

These are our compression methods
to convert Float32 values into lower
precision values

Code Reference

38

#GCAP24

Optimization Bottlenecks

Compression

Taking the starting case

39

#GCAP24

Optimization Bottlenecks

Compression

900% FASTER
25% total time reduction

The Compute Shader method is ~900% faster!
Which cascades as the entire AMP being 25% faster!

40

#GCAP24

Optimization Bottlenecks

Caching and Serialization

Talking about bytes and precision, did you know that different
platforms handle these differently?
To ensure the resulting assets are the same across every computer
and build we created a cache system.

Unity Library

mesh

Files in the computer

Instruction
file

.cache~

Different platform could generate slightly different results for the mesh
generation, specially lightmap unwrapping using xAtlas.
To ensure that the results would be stable and reliable (as well as faster) we
created a cache system where the AMP, when importing an instruction file it
would check for an adjacent .cache~ file;
If it finds one the .cache~ is read and the result mesh is added to the Unity
library, but if it’s missing (due to being a new instruction file) it would be
generated from scratch and a .cache~ would be then created and committed to
the repo.

41

#GCAP24

Optimization Bottlenecks

Caching and Serialization
The caching is done by serializing the result
meshes to a file as binary.
But how is the binary serialization done?

JSON
All the data was being interpreted as numbers
Then as text
Then concatenated into JSON
Then converted into bytes
Finally wrote to disk

AND BACK!!!

The process was sound and seemed great, but how did it work?
Via JSON strings.
Converting data into text and then into binary so it could be written to disk, and
the inverse when reading.
This was bad as not only it was quite slow, it also ate up a lot of memory AND lost
precision, as different hardware round floating point numbers differently on
ToString().
The memory situation was so bad that some instruction files couldn’t be
ingested as it would require more memory than people’s computer had!
Also found out that whenever a mesh was generated, we’d serialize it to disk and
then immediately deserialize it back, wasting lots of time when (re)generating a
cache.

42

#GCAP24

Optimization Bottlenecks

Caching and Serialization

name
layout

size
bounds

triangles
etc…

Value

Array

Raw
Data

length

values

raw data

Mesh Binary Serializer

1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

.cache~

MeshVertData

scratch

The improvement was a new serializer, that works in the following way:
We start with a mesh, then create a new Serializer, which contains a large byte
array that we’ll call the scratch.
First we extract the info from the mesh, such as name, attribute layout, triangles,
etc…
That info can be separated into a few different types:
The first type is “Values”, which contain 2 parts
- the type size, for example Bounds is a Vector3, so 3 floats for 4 x 3 bytes
- the raw data, the actual binary representation of the value
The type size ends up being a raw data itself, and all raw data can be copied into
the scratch
The second type is “Arrays”, which also contain 2 parts
- the length, which can be saved as a Value
- the actual values, which can be copied as raw data

Raw data is highlight as a third type because we can serialize the MeshVertData
from the mesh directly.
Then all this get written to disk as a string representation of the scratch

43

The inverse of this process is done for deserializing and this ended up being 25%
faster for deserializing .cache~ files as well as massively reducing the memory
usage, allowing the team to handle any instruction that they encountered since
without crashes!

43

#GCAP24

Optimization Bottlenecks

Caching and Serialization
Main Serialize Methods Main Deserialize Methods

Low-Level Methods

High-Level Methods

Code Reference

44

#GCAP24

Optimization Bottlenecks

Caching and Serialization

55% Faster Write 65% Faster Read

25% Faster AMP + NO crashes +
Platform agnostic!

Using the same mesh we’ve compressed before, the new serializer is 55% faster
when writing and 65% faster when reading (which happen more often!)
This led to another speed up of 25% of the AMP!!!
It also prevented memory related crashes

45

#GCAP24

Productivity

Why should we care?

It’s common to ignore Editor Tools performance

But at the end of the day that’s the team productivity being wasted
watching loading bars

And why do all this just for an Editor tool? No one cares if it’s slow.
In reality we all SHOULD care if it’s too slow.
Because it’s people’s time we’re talking about, it’s not a big deal if a button takes
a few seconds.
But if it takes many minutes, you might want to look into it.
There is a balance as some process are done sparingly and can be slow, but in
those cases it shouldn’t crash after 30min or it will be a huge source of
frustration.

46

#GCAP24

Productivity

How to identify the problem?

You might wonder how much time I spent using the AMP.
Almost zero, nada, zilch.
So how could I identify the problems?

Although I put a lot of effort into understanding and improving the tool, I barely
used it.
So how could I identify issues?
By doing 3 main things:
1) Asking the team how they were doing, what was bad and annoying
2) Having an open call policy, whenever they wanted to complain about

something I’m always a slack call away
3) By lurking on their open huddles and paying attention to how they work so I

can spot pain points

47

#GCAP24

Productivity

Do you need to do it all yourself?

NO!
The same way that you’re doing this for the team, rely on them for help

Engage your team in coming up with solutions, even with coding tasks

This helps people to stay motivated and yourself a little bit saner!

48

#GCAP24

This guy just talked like a train wreck, what happened here?

TL;DR:

• Profile frequently

• Assets are just byte soups

• GPU not only draw frames

• Ask questions and listen to your team

• Profile frequently
• Profile the game and profile the

engine, your tools might be killing
you

• Assets are just byte soups
• Don’t be afraid to treat them like

so
• GPU not only draw frames

• Compute shaders are a powerful

49

tool for grunt work and even draw
calls can be used to “paint” data

• Ask questions and listen to your
heart, I mean, your team
• Talk to people who use your tools,

they might not know how it works,
but they know how it doesn’t

49

#GCAP24

Questions?

50

#GCAP24

The Tech Art Journey
of creating and optimizing an asset pipeline

/vicnascimento

Obrigado!

SLIDES

51

52

