Statistics

Michael DeDonno Ph.D.

Frequencies and Descriptives

genda

2 . Statistical Significance

• Power, & Effect Size

, Association Research

• Comparison Research

Frequencies

- <u>Frequencies</u>: Sum the number of instances within a particular category
 - 56 males, 37 females
 - 25 psychotics, 15 non-psychotics
 - 15 Hispanics, 22 Native Americans, 8 Asians

Number of Cups of Coffee	Tally	Frequency
0 - 3	//	2
4 - 7	///	3
8 - 11	HHT 111	8
12 - 15	///	3
16 - 19	//	2

Descriptives

• **Descriptive statistics**: Designed to provide information about

distributions of variables

- Mean, Median, Mode
- Maximum, Minimum, Range
- Standard deviation, variance

Variability

- The degree to which scores in a distribution are spread out or dispersed
 - <u>Homogeneity</u>—little variability
 - <u>Heterogeneity</u>—great variability

The Normal Distribution

The curve shows the idealized shape.

Variability in a Normal Distribution

- Variance Deviation from the mean in squared units.
- Standard Deviation Deviation from the mean in original units

Properties of Frequency Distributions

• Skew

- The symmetry of the distribution.
- Positive skew (scores bunched at low values with the tail pointing to high values).
- Negative skew (scores bunched at high values with the tail pointing to low values).
- Kurtosis
 - The 'heaviness' of the tails.
 - Leptokurtic = heavy tails.
 - Platykurtic = light tails.

Skew

Kurtosis

Bimodal and Multimodal Distributions

FIGURE 1.6 Examples of bimodal (left) and multimodal (right) distributions

Statistical Significance

- **Probability "p" value** Identifies the likelihood a particular outcome may have occurred by chance
 - Statistically significant: p < .05
 - Marginally significant: .05

What is a *p*-value?

- Statistical significance
 - Probability *p-value*: Identifies the likelihood a particular outcome may have occurred by chance
 - p < .05 = There is less than a 5% probability the findings occurred by chance

• p = .60 = There is a 60% probability the findings occurred by chance.

A researcher conducted a study comparing the effect of an intervention vs placebo on reducing body weight, and found 5 lbs reduction among the intervention group with p=0.01.

Another researcher conducted a similar study comparing the effect of the same intervention vs the same placebo on reducing body weight, and found the same 5 lbs reduction with the intervention group but could not claim that the intervention was effective because p=0.35.

Why the different results?

What impacts a p-value?

- The effect of the treatment
 - Larger reduction (10 lbs.) in weight by the treatment vs. a smaller reduction (5lbs.)
- Variation in data
 - Larger variation can result in larger p-value
 - Source of variation
 - Between-subject variation
 - Measurement error
 - and what else?

What impacts a *p-value*?

- Sample size!
 - Larger sample size can make p-value smaller!
 - Even a small, clinically meaningless effect can become significant if you keep enrolling patients indefinitely

What sample size do I need?

- Too small Risk non-significant results
- Too large Time consuming (increased risk of error), costly(finite dollars), finite resources (countless hours collecting data)
- Is it even ethical to expose an unnecessary large number of participants?

• Need a sample size estimation!

Why do we need a *p-value*?

- Validates a hypothesis
 - Null Hypothesis (H_o): There is no difference between the treatment and control groups
 - e.g., (H_o): There is no difference in using Crest or water alone in preventing tooth decay.
 - Two possible results
 - Crest is more effective than water alone in preventing tooth decay. Reject the null (p < .05)
 - No evidence Crest is better than water in preventing tooth decay. Fail to reject the null (p>.05):

When making this inferential judgement, two possible (types) of errors can occur

Why do we need a *p*-value?

- Two possible results (post research):
 - Crest is more effective than water alone in preventing tooth decay. Reject the null (p < .05)
 - This could be an accurate finding
 - This could be an inaccurate finding false positive
 - No evidence Crest is better than water in preventing tooth decay. Fail to reject the null (p>.05)
 - This could be an accurate finding
 - This could be an inaccurate finding *false negative*

Types of Error

- Type 1 error (α): *False Positive*: Falsely concluding a drug is effective when the drug actually has no effect. $\alpha = 0\%$ to 5% ($\alpha = p$)
 - Pregnancy test shows positive, but in realty not pregnant
 - Fire alarm sounds, but no fire
 - Guilty verdict, but actually innocent
- Type II error (β): *False Negative*: Falsely concluding a drug has no effect when the drug is actually effective. $\beta = 0\%$ to 20%
 - Pregnancy test shows negative, but in realty pregnant
 - Fire alarm does not sound, but there is a fire
 - Innocent verdict, but actually guilty

This is the p value, typically .05

Types of Error

- Type 1 error (α): *False Positive*: Falsely concluding a drug is effective when the drug actually has no effect. $\alpha = 0\%$ to 5% ($\alpha = p$)
 - Pregnancy test shows positive, but in realty not pregnant
 - Fire alarm sounds, but no fire
 - Guilty verdict, but actually innocent
- Type II error (β): *False Negative*: Falsely concluding a drug has no effect when the drug is actually effective $\beta = 0\%$ to 20%

ire

• Pregnancy test s negative, but in realty pregnant

This relates to Power

- Fire alarm o
- Innocent ve

Adjusting Power

- Power of a test (1 β): the probability of correctly concluding the drug is effective when it is actually effective. (β = 0 to .20)
 - $(1 \beta) = (1 .20) = .80$
 - $(1 \beta) = (1 .10) = .90$
 - $(1 \beta) = (1 .05) = .95$
 - Increasing power

Adjusting Power

- Power of a test (1 β): the probability of correctly concluding the drug is effective when it is actually effective. (β = 0 to .20)
 - $(1 \beta) = (1 .20) = .80$
 - $(1 \beta) = (1 .10) = .90$
 - $(1 \beta) = (1 .05) = .95$
 - Increasing power

Decreasing beta, increases Power and the probability of concluding drug is effective when it is actually effective How much power do we need? Depends on the research question

- Reducing the risk of a Type I error Reduce the significance level
 - $p = .05 \rightarrow p = .025$
 - Lowers the chance of a false positive (more stringent requirement), but increases the chance of a false negative (Type II error) missing something that is actually occurring
 - Reducing Type I error (Reducing odds of a false positive, but increasing odds of a false negative).
 - Cancer treatment Important to verify treatment actually works. A false positive could be disastrous in treating patients (thinking it helps when it does nothing.) p = .025
 - Training program for dyslexia Better to show any improvement in performance. p = .05.

How much power do we need? Depends on the research question!

- Reducing the risk of a Type II error Decrease β increases power (1β)
 - $(1 \beta) = (1 .20) = .80 \rightarrow (1 \beta) = (1 .10) = .90$
 - Lowers the chance of a false negative (Increased sample size = increased probability of finding a significant difference)
 - Increases chance of a false positive
 - New education program being considered for all public schools in the U.S. A false positive would run the risk of wasting dollars on a program that does not improve educational system
 - Increased sample size is not always possible due to cost, time and resource restraints.

How much power do we need? Depends on the research question!

- Researchers can choose to adjust variables when a Type I or Type II error is preferred.
 - Prefer Type I error
 - Cancer diagnosis
 - Fire Alarm
 - Prefer Type II error
 - Judiciary system

Beyond *p-value*, what is important? Effect size!

- Effect size Measurements that tell us the relative magnitude of the experimental treatment.
 - Tell us the *size* of the experimental *effect*
- Allow us to compare the magnitude of experimental treatments from one experiment to another

Beyond *p-value*, what's important? Effect size!

• Effect Size – A name given to indices that measure the relative magnitude of treatment effect.

Common Indices of Effect Size

- Comparison Studies
 - Cohen's d
 - Odds ratio (OR)
 - Relative risk or risk ratio (RR)
- Relational studies (all correlations are effect sizes)
 - Pearson's r correlation
 - r² coefficient of determination

Cohen's d

• The difference between two means (e.g., treatment mean minus control mean) divided by the standard deviation of the two conditions

$$d = \frac{\overline{X_1} - \overline{X_2}}{s}$$

- What precisely the standard deviation (s) is, was not originally made explicit by Cohen
 - Defined as, the standard deviation of either population (since they are assumed to be equal)

Cohen's d

• Identified specific effect size values:

• .2 = small effect .5 = medium effect .8 = large effect

<u>NOTE:</u> Ideally, interpretation of results should be grounded in a meaningful context or by quantifying their contribution to knowledge. Where this is problematic, Cohen's effect size criteria may serve as a backup.

Eta-squared (η^2)

- Eta-squared is a measure of effect size typically for use in ANOVA
- Proportion of variance in Y explained by X
- Interpret η^2 (Cohen):
 - .02 ~ Small
 - .13 ~ Medium
 - .26 ~ Large
- Remember! Interpretation of results should be grounded in a meaningful context, or by quantifying their contribution to knowledge.

Odd Ratio (OR)

- Appropriate when both variables are binary
- Research example Influence of positive priming on passing a class
 - Control: 2 students pass for every 1 that fails
 - Odds of passing are two to one (or 2/1 = 2)
 - Treatment: 6 students pass for every 1 that fails
 - Odds of passing are six to one (or 6/1 = 6)
 - Effect size computed by noting the odds of passing in Treatment group are three times higher than the Control group (6 ÷ 2 = 3)
 - OR = 3 (Note: not comparable to Cohen's d)

Relative Risk (RR) aka risk ratio

- The risk (probability) of an event relative to some independent variable
 - Different from odds ratio (OR) in that it compares probabilities instead of odds
- Research example Influence of positive priming on passing a class
 - Control: 2 students pass for every 1 that fails
 - Probability of passing is 2/3 (or 0.67)
 - Treatment: 6 students pass for every 1 that fails
 - Probability of passing is 6/7 (or 0.86)
 - RR = 0.86 / .067 = 1.28 (Note: not comparable to Cohen's d)

Correlation

- Correlation analysis is used when you have measured two continuous variables and want to quantify how consistently they vary together
- The stronger the correlation, the more likely to accurately estimate the value of one variable from the other

Patterns of Correlation

- Linear correlation
- Curvilinear correlation
- No correlation
- Positive correlation
- Negative correlation

Curvilinear Correlation

• Female life expectancy and Doctors per million of population

• Test performance and average hours of sleep per night

Positive Correlation (+1)

- Income and education
- Weight and height
- Extraversion and size of social network

Negative Correlation (-1)

- Time incarcerated and education
- Temperature and amount of clothing
- Speed and average miles per gallon

No Correlation

- Favorite color and IQ
- Hair color and personality
- Height and education curriculum

Confounding Variable Example

- 1940 polio epidemic
- Increased polio diagnoses during summer months
- Children eat a lot of ice cream during the summer months
- A connection was made...

Confounding Variable Example

• Dr. Benjamin Sandler published a paper "The production of neuronal injury and necrosis with the virus of poliomyelitis in rabbits during insulin hypoglycemia" The American Journal of Pathology.

• Results of article - cut out ice cream.

Confounding Variable Example

- Reality
 - Lack of harmless immunizing infections during infancy due to better sanitation that attributed to the epidemic.
 - Not ice cream flush toilets

Linear Regression

- Attempt to predict one variable from another variable
 - Criterion variable (DV) = Exam score
 - Predictor variable (IV) = Score on anxiety scale
 - Want to predict exam score from anxiety scale score

Linear Regression

- Linear Regression examples
 - Predict adult height and weight from height and weight at 2 years old
 - Predict first year college success from SAT
 - Predict first year law school success from LSAT

Linear Regression

- Linear Regression examples
 - Predict average rain fall from geographical information
 - Predict criminal behavior from housing foreclosure rate
 - Predict job performance from letters of recommendation

Chi-Square (χ^2)

- Compare expected value with observed value (categorical variables)
 - Sample of 100 students
 - 30 males, 70 females
 - 10 Asians
 - It would be expected that among the Asians, 3 would be male and 7 female
 - If this was the case, χ^2 would have a *p* value above .05

Chi-Square (χ^2)

- If there is a large discrepancy between the observed values and the expected values
 - X^2 statistic would be large, suggesting a significant difference
 - *p* value of .05 (p < .05) demonstrates significant difference

Chi-Square (χ^2)

- Examples
 - Compare ethnicity percentiles of a school based on local ethnic population
 - City of Boston
 - Harvard
 - Compare ethnic population at FAU vs. ethnic population in south Florida

The *t*-test

- *t-test*: Compare two means, see if there is sufficient evidence to infer that the means of corresponding population distributions also differ
 - Does treatment A yield a higher rate of recovery than treatment B?
 - Does one advertising technique produce higher sales than another technique?
 - Do men or women score higher on a measure of empathic tendency?

The *t*-test

- The key word is two: *t tests* always compare two different means or values
 - One independent variable
 - Males vs. females,
 - Treatment A vs. treatment B
 - Married vs. unmarried

One-Way Analysis of Variance (ANOVA)

- ANOVA most easily explained by contrasting it with *t tests*
 - *t tests* compare two distributions
 - Male vs. female on a quiz
 - ANOVA able to compare many distributions
 - Native Americans, African Americans, Hispanics, and Asians on a quiz

Two-Way ANOVA

- One-Way ANOVA compares multiple groups on a single variable
 - IV = Ethnicity, DV = quiz score
- Two-Way ANOVA compares multiple groups (multiple IV's)
 - IV(1) = Ethnicity, IV(2) = gender, DV = quiz score

Two-Way ANOVA (cont.)

- Two-Way ANOVA allows us to explore:
 - A main effect for ethnicity
 - Does ethnicity have an effect on quiz scores?
 - A main effect for gender
 - Does gender have an effect on quiz scores?
 - A ethnicity by gender interaction
 - Does the interaction between ethnicity and gender have an effect on quiz scores?

Two-Way ANOVA (cont.)

- Interaction example
 - Antipsychotic drug Thorazine
 - Reduces symptoms such as delusions and hallucinations
 - Alcohol
 - Typical depressant
 - Thorazine and alcohol interaction
 - Breathing difficulties Potentially fatal

Two-Way ANOVA (cont.)

- Interaction example
 - Headache
 - Physiological discomfort
 - Kids screaming
 - Increased irritability
 - Headache and kids screaming interac
 - Loss of temper

Two-Way ANOVA

- Misc. Terminology
 - Within group effects
 - Effects within a group such as ethnicity or gender
 - Between group effects
 - Between groups such as interaction between ethnicity and gender

Tests and Measures

- Scales of Measurement
- Mean, Median, Mode
- Variance and Standard Deviation
- Z-scores

Scales of Measurement

	Magnitude	Equal Interval	Absolute Zero
<u>N</u> ominal			
<u>O</u> rdinal	Х		
<u>I</u> nterval	Х	Х	
<u>R</u> atio	Х	Χ	X

Standard Scores

- **Standard Score** Characterizing the relative position of scores in a distribution
- **Z-score** a standard score in a normal distribution
 - Z score = $-1 \sim$ Score is 1 standard deviation below the mean
 - Z score = $0 \sim$ Score is equal to the mean score
 - Z score = $1 \sim$ Score is 1 standard deviation above the mean
 - Z score = $1.5 \sim$ Score is 1.5 standard deviations above the mean

Z Score Examples

- Mean Score = 80, Standard Deviation = 5
 - Z score = $1 \sim$ Score is 85 (1 SD above the mean)
 - Z score = $-1 \sim$ Score is 75 (1 SD below the mean)
 - Z score = $1.5 \sim$ Score is 87.5 (1.5 SD above the mean
 - Z score = $-0.5 \sim$ Score is 77.5 (.5 SD below the mean)

End of Review

Michael A. DeDonno Ph.D.

www.michaeldedonno.com