

Michael A. DeDonno Ph.D. mdedonno@health.fau.edu

Why n-1?

Why do we use n in certain calcualtions and n-1 in other calculations? It can be very confusing!

Why
$$n - 1?$$

$$\sigma^2 = \frac{\sum (\mathbf{X} - \overline{\mathbf{X}})^2}{N}$$

$$s^2 = \frac{\sum (X - \overline{X})^2}{N - 1}$$

Population & Sample Size	240 / n	240 / (n – 1)
4	60	80
6	40	48
8	30	34.2
10	24	21.8
20	12	12.6
_ ~	$()^2$	

Assume $\sum (X - \overline{X})^2 = 240$

Why n-1?

By using *n* – 1, we are effectively increasing the variance (for small samples), thereby increasing our chance of including the population mean in our data

