"Third Week of Development"

» Recap:

Fertilization -> 2 cell stage -> 4 cell stage -> 8 cell stage (loose clump of cells) -> 3rd cleavage -> Inner cells + Outer cells (in between inner cells: tight junctions and in between inner and outer cells: gap junctions) -> 16 cell stage (Morula) -> Contains inner cell mass that forms embryoblast and outer cell mass that forms trophoblast -> Travels from ampulla to oviduct to uterus wall -> Blastocoele cavity forms -> Just before implantation, zona pellucida disappears-> L-selectins on trophoblast and receptors on uteral epithelium + laminin and fibronectin cause initiation of implantation -> Embryoblast divides into epiblast and hypoblast and trophoblast divides into cytotrophoblast and syncytiotrophoblast ->

Formation of oropharyngeal memebrane +
amniotic cavity + primitive yolk sac
(exocoelomic cavity) + extraembryonic
somatic and splanchnic mesoderm +
secondary yolk sac -> chorionic plate +
connecting stalk +sinusoids and
lacunae + uteroplacental circulation +
primary villi

Week 3:

- Initially, embryo is a germ disc with epiblast and hypoblast -> Gastrulation occurs -> three germ layers are formed namely Ectoderm, Mesoderm and Endoderm
 - » Step 1: Initiation of Gastrulation:
- Begins with formation of primitive streak
 - Clearly visible in a 15-16 day embryo
 - Is a narrow groove with slightly bulging regions on either side
- The cephalic end of the streak is called primitive node: consists of slightly elevated area surrounding small primitive pit

» Step 2: Invagination:

- When epiblastic cells migrate towards the primitive streak, they become flask shaped and slip beneath it by a process called "invagination"
 - This occurs under the influence of fibroblast growth factor 8 (FGF8)
 - FGF8 is synthesized by streak cells
 - FGF8 down-regulates E-cadherin (E-cadherin binds epiblastic cells together)
 - Epiblastic cells get detached
 - FGF8 then controls cell specification into mesoderm by regulating BRACHYURY (T)
- Movement of epiblastic cells is downward laterally and cranially
 - Some cells displace hypoblastic layer->
 New layer called "endoderm" formed
- Other cells come to lie between epiblast and emdoderm -> Mesoderm formed
 Cells remaining in epiblast -> Form
 Endoderm
 - All three layers derived are from "epiblast"

- Expand:

Cranially: Upto prechordal plate (also formed by invaginating epiblastic cells)
 Laterally: Upto extraembryonic splanchnic mesoderm