

Biotransformation of Drugs (Drug Metabolism)

Tuesday, October 14, 2025 7:06 PM

◆ Definition

Biotransformation (also called drug metabolism) refers to the chemical modification of a drug within the body to facilitate its inactivation, activation, or excretion.

◆ Importance (Pharmacokinetic relevance)

Biotransformation determines:

- Duration of drug action
- Rate of elimination
- Toxicity or safety profile

◆ Outcomes of Biotransformation

→ Inactivation → Drug converted to inactive form → Excreted

→ Activation → Conversion of prodrug to active form

→ Formation of toxic metabolites → Adverse effects

Sites of Biotransformation

Site	Major Drugs Metabolized
Liver	Paracetamol, Prazosin, Morphine, Nitroglycerine, Propranolol
GIT	Catecholamines, Chlorpromazine, Salbutamol
Lungs	Prostaglandins
Plasma	Suxamethonium
Skin / Kidneys / Adrenals	Minor sites for metabolism

Types of Biotransformation

1. Non-Enzymatic (Spontaneous)

- Occurs without enzymes.
- Due to molecular rearrangement in body fluids.
- Example: Hofmann elimination → Atracurium, Mustine HCl

2. Enzymatic

- Involves specific enzyme systems:
 - Non-microsomal enzymes → Esterases, Amidases, Oxidases, Conjugases
 - Examples:
 - Monoamine Oxidase → *Catecholamines*
 - Alcohol Dehydrogenase → *Ethanol*
 - Microsomal enzymes → Found in smooth endoplasmic reticulum

Microsomal Biotransformation

Occurs in the Endoplasmic Reticulum, forming microsomes during tissue homogenization.

Enzyme System:

Microsomal Mixed Function Oxidase System
(Monooxygenase System)

Also known as Cytochrome P450 system.

❖ Components:

- Cytochrome P450 - Hemeprotein (main enzyme)
- NADPH-Cytochrome P450 Oxidoreductase - Flavoprotein
- NADPH - Reducing agent
- Oxygen molecule (O_2) - Required for oxidation

❑ Flowchart: Microsomal Biotransformation Mechanism

Drug + Cytochrome P450 (Fe^{3+})

Complex formation → Drug-P450 (Fe^{3+}) complex

Electron transfer from NADPH via flavoprotein (FAD/FMN)

$Fe^{3+} \rightarrow Fe^{2+}$ (reduction)

Drug + Cytochrome P450 (Fe^{2+})

Oxygen binds to Fe^{2+} -Drug complex → forms activated oxygen complex

Second electron transfer → Oxygen activation

One O-atom → incorporated into drug → oxidized metabolite formed

Other O-atom → combined with hydrogen → H_2O formed

Cytochrome P450 regenerated (enzyme reused)

Cytochrome P450 (CYP450)

- Hemeprotein enzyme family involved in oxidation of drugs.

- Naming system: e.g. CYP3A4

- Root: CYP
- Family: 3
- Subfamily: A
- Isoform: 4

◆ Genetic Polymorphism:

Some individuals have variable CYP activity → affects drug metabolism (e.g. poor vs extensive metabolizers).

⚗️ Reactions of Biotransformation

Biotransformation occurs in two phases:

🌀 Phase I Reactions (Non-synthetic / Catabolic)

Purpose: Introduce or unmask functional groups (-OH, -COOH, -SH, -NH₂) → makes drug more polar & water-soluble.

Location: Endoplasmic reticulum.

◆ Possible Outcomes

- Inactive metabolite → excreted
- Active metabolite → may undergo phase II or produce pharmacological action
- Toxic metabolite → may cause adverse effects
- Prodrug → activated by phase I

✳ Types of Phase I Reactions

Reaction Type Subtype / Example

Oxidation - Aromatic hydroxylation → *Phenobarbitone*
- Aliphatic hydroxylation → *Meprobamate*
- Dealkylation → *Theophylline*
- N-oxidation → *Aniline*
- S-oxidation → *Chlorpromazine*
- Deamination → *Amphetamine*
- Desulfuration → *Parathion*

Reduction - Azo reduction → *Prontosil*
- Nitro reduction → *Chloramphenicol*
- Carbonyl reduction → *Methadone*

Hydrolysis

- Ester hydrolysis → *Procaine*
- Amide hydrolysis → *Lignocaine*

★ Phase II Reactions (Synthetic / Conjugation)

Purpose: Conjugation of drug (or phase I metabolite) with an endogenous compound, forming polar, inactive, and easily excreted conjugates.

◆ Outcomes

- Drug (Phase I) → Phase II → Excreted
- Some drugs directly undergo Phase II (e.g. Isoniazid)
- Occasionally form active or toxic metabolites

☰ Types of Phase II Reactions

Type of Conjugation	Endogenous Reactant	Enzyme (Transferase)	Example
Glucuronidation	UDP-Glucuronic acid	UDP-Glucuronyl transferase	Morphine

Acetylation	Acetyl-CoA	N-Acetyl transferase	Isoniazid
Glutathione conjugation	Glutathione (GSH)	GSH-S-transferase	Acetaminophen
Glycine conjugation	Glycine	Acyl-CoA glycine transferase	Salicylic acid
Sulfate conjugation	PAPS (3'-phosphoadenosine-5'-phosphosulfate)	Sulfotransferase	Methyldopa
Methylation	S-Adenosyl methionine (SAM)	Methyltransferase	Epinephrine

Q Flowchart: Overall Drug Biotransformation

Drug (lipid soluble) → Phase I (Oxidation / Reduction / Hydrolysis) → Polar metabolite → Phase II (Conjugation) → Highly polar metabolite → Excreted via kidneys / bile

Q Clinical Significance

- Explains drug interactions (e.g. enzyme induction or inhibition)
- Helps understand dose adjustment in hepatic diseases
- Predicts toxicity of metabolites (e.g. acetaminophen)

toxicity via NAPQI)

Factors Affecting Biotransformation of Drugs

◆ I. Enzyme Induction

Definition:

↑ Drug-metabolizing enzyme activity due to prolonged drug exposure → increased rate of metabolism.

◆ Mechanism

Prolonged drug administration → ↑ Enzyme synthesis or ↓ degradation → Enhanced metabolism → Reduced plasma concentration of drugs

◆ Common Enzyme Inducers

Phenytoin → CYP450 inducer

Phenobarbital → CYP2B, CYP3A

Rifampicin → Broad CYP inducer

Smoking → Induces CYP1A2

Charcoal-broiled foods / Plasticizers → Induce microsomal enzymes

❖ Clinical Significance

→ Slow onset (requires days)

→ Parent drug → Metabolite (↑ rate)

Consequences:

- Therapeutic failure: Oral contraceptives + Rifampicin → reduced efficacy
- Toxicity: Acetaminophen in chronic alcoholics → ↑ NAPQI (hepatotoxic)
- Auto-induction: Carbamazepine induces its own metabolism
- Beneficial effect: Phenobarbital → induces glucuronyl transferase → treats neonatal jaundice

- Dose adjustment required for drugs with *low therapeutic index* (e.g. warfarin, theophylline)

Flowchart: Enzyme Induction

Prolonged drug administration → ↑ Enzyme synthesis →
↑ Drug metabolism → ↓ Drug concentration →
Therapeutic failure / altered efficacy

◆ 2. Enzyme Inhibition

Definition:

↓ Drug-metabolizing enzyme activity → slower biotransformation → ↑ plasma levels.

◆ Mechanism

Competitive or non-competitive binding to CYP enzymes
→ prevents metabolism of other drugs.

◆ Common Enzyme Inhibitors

Cimetidine

Ketoconazole

Macrolides (e.g. Erythromycin)

Grapefruit juice

◆ Clinical Significance

→ Rapid onset

→ Parent drug → metabolite (↓ rate)

Consequences:

- ↑ Toxicity risk (due to accumulation)
- Competition between drugs for same enzyme
- Suicide inhibitors: e.g. Chloramphenicol binds irreversibly to enzymes
- Dose adjustment required for narrow therapeutic index drugs (e.g. phenytoin, warfarin)

Flowchart: Enzyme Inhibition

Drug A (inhibitor) + Drug B (substrate) \rightarrow ↓ Enzyme activity \rightarrow ↓ Drug B metabolism \rightarrow ↑ Plasma concentration of Drug B \rightarrow Potential toxicity

3. Genetic Variations

Definition:

Differences in enzyme expression due to genetic polymorphisms \rightarrow alter metabolism rate between individuals.

◆ Examples

Enzyme / Gene	Variation	Effect / Drug Example
Pseudocholinesterase	Genetic deficiency	Prolonged action of <i>succinylcholine</i>
CYP2C9 (*1 / *2 / *3)	Polymorphism	Alters <i>warfarin</i> metabolism
CYP2D6 (PM / UM types)	Polymorphism	Affects <i>tamoxifen, amitriptyline</i>
N-acetyltransferase (NAT2)	Fast / slow acetylators	<i>Isoniazid</i> metabolism

Key Concept:

- Fast metabolizers → ↓ plasma levels → ↓ toxicity risk
- Poor metabolizers → ↑ plasma levels → ↑ toxicity risk

→ Foundation of pharmacogenetics / personalized medicine

4. Age

Extreme age groups show altered biotransformation:

Age Group	Reason	Example / Effect
Neonates / Infants	Immature enzyme systems	<i>Chloramphenicol</i> → gray baby syndrome
Elderly	↓ hepatic blood flow, polypharmacy	↑ sensitivity to <i>diazepam</i> , <i>propranolol</i>

→ Dose calculation must consider age (mg/kg basis).

S. Gender

- Influenced by basal metabolic rate (BMR) and hormonal levels
- Drugs: *Salicylates, Benzodiazepines, Propranolol* show variation
- Pregnancy: Hormonal changes alter metabolism

6. Pathological Conditions

Diseases can reduce enzyme activity:

Condition	Effect
Hepatic disease	↓ enzyme synthesis
Cardiovascular disease	↓ hepatic blood flow
Pulmonary disease	↓ oxidation reactions
Thyroid disorders	Alter metabolism rate

7. Diet & Nutritional Status

Dietary Factor

Effect

High protein / vitamin / mineral diet

↑ enzyme activity

Malnutrition

↓ metabolism

Charcoal-broiled foods / Cruciferous vegetables

Enzyme induction

Grapefruit juice

Enzyme inhibition

Chronic alcoholism

Enzyme induction (CYP2E1)

8. Environmental Factors

- Smoking → induces CYP1A2

- Pesticides / Pollutants → alter hepatic enzyme function

9. Racial Differences

Different ethnic groups may show variation in enzyme activity.

E.g. Caucasians, Africans, and Asians differ in CYP2D6 and NAT2 polymorphisms.

10. Drug Interactions

- Competition: Two drugs for same enzyme → inhibition
- Induction / Inhibition: One drug alters metabolism of the other → therapeutic failure or toxicity

11. Chemical Structure of Drug

- The structure determines its metabolic pathway.

- Minor structural differences → major differences in metabolism.

12. Drug Dose / Concentration

- High doses may saturate enzyme systems → alternate toxic pathways used.
- Example:

Acetaminophen

- 95% → Glucuronidation / Sulfation (safe)
- ~5% undergoes oxidation via CYP2E1 → forms toxic intermediate → N-acetyl-p-benzoquinone imine (NAPQI) → NAPQI is neutralized by conjugation with Glutathione (GSH) → harmless
- In overdose → GSH depleted → unconjugated NAPQI binds to hepatocellular proteins → cell necrosis → acute liver damage / hepatic failure

13. Route of Administration

First-Pass Metabolism (Pre-Systemic Metabolism)

Definition:

The metabolism of a drug *before it enters the systemic circulation* — mainly when given orally.

Sites:

- Liver
- Gastrointestinal (GIT) wall

Effect:

Reduces the bioavailability of the drug.

Example:

Nitroglycerine → undergoes extensive first-pass metabolism

→ therefore administered sublingually to bypass the

liver and reach systemic circulation directly ❤

⑤ Flowchart: Summary of Factors Affecting Biotransformation

Drug metabolism rate

← Influenced by →

- Enzyme induction / inhibition
- Genetics
- Age / Gender
- Disease states
- Diet & Environment
- Drug interactions / Dose / Route

↓

Alters → Drug plasma level → Therapeutic efficacy /
Toxicity