Birth Defects and Prenatal Diagnosis

Monday, August 11, 2025 4:58

BIRTH DEFECTS & PRENATAL DIAGNOSIS

Key Terms & Definitions

- Birth defect / congenital malformation / congenital anomaly → Structural, behavioral, functional, or metabolic disorders present at birth.
- Teratology \rightarrow Study of causes, mechanisms, and patterns of abnormal development (*Gr. teratos* = *monster*).
- Dysmorphology → Clinical study of congenital anomalies; dysmorphologists usually work in clinical genetics departments.

Epidemiology & Significance

- Major structural anomalies: ~3% of liveborn infants.
- Leading cause of infant mortality $\rightarrow \approx 25\%$ of infant deaths.
- Rank: 5th leading cause of years of potential life lost before age 65.
- Global consistency: Equal frequencies across

ethnicities.

• Disability impact: Major contributor to lifelong disabilities.

Causes of Birth Defects

Cause	% of Cases
Unknown	40-45%
Genetic factors (chromosomal abnormalities, mutant genes)	~28%
Environmental factors	3-4%
Multifactorial inheritance (genetic + environmental)	20-25%
Twinning	0.5-1%

Minor Anomalies

- Occur in ~15% of newborns.
- Examples:

- Microtia (small ears)
- · Pigmented spots
- Short palpebral fissures
- · Usually harmless but may indicate major defects:
 - \circ 1 minor anomaly \rightarrow 3% risk of major defect
 - \circ 2 anomalies \rightarrow 10% risk
 - $\circ \geq 3$ anomalies $\rightarrow 20\%$ risk
- Ear anomalies = strong clue \rightarrow seen in almost all syndromic malformations.

Types of Abnormalities

1. Malformations

- Occur during formation of structures (organogenesis).
- May cause complete/partial absence or altered configuration.
- Causes: environmental and/or genetic factors.
- High-yield fact. Most originate during 3rd-8th weeks of gestation.

2. Disruptions

 Alteration of already formed structures due to destructive processes.

- Examples:
 - Vascular accidents → transverse limb defects
 - Amniotic bands → constrictive defects

3. Deformations

- Caused by mechanical forces over prolonged periods.
- O Example: Clubfoot from uterine compression.
- Often musculoskeletal; may be reversible postnatally.

4. Syndrome

- Group of anomalies with a known common cause.
- · Risk of recurrence known.
- · Example: Down syndrome.

S. Association

- \circ Nonrandom occurrence of ≥ 2 anomalies without known cause.
- Example: VACTERL association
 (Vertebral, Anal, Cardiac, Tracheoesophageal, Renal, Limb anomalies).
- Recognition helps search for other anomalies in the group.

Environmental Factors in Birth Defects

- Before 1940s \rightarrow Believed mostly hereditary.
- 1941 Rubella discovery (N. Gregg): Maternal rubella early in pregnancy → congenital defects.
- 1961 Thalidomide disaster (W. Lenz): Sedative → limb defects; showed drugs can cross placenta and cause malformations.
- Teratogens = environmental agents causing birth defects (e.g., infections, drugs, chemicals, radiation, hyperthermia, maternal diseases).

Exam Tip / Key Points to Remember

- 3rd-8th weeks = most sensitive period for structural malformations.
- Minor anomalies are important diagnostic clues for hidden major defects.
- Ear anomalies often point toward syndromic conditions.
- Multifactorial inheritance accounts for a large proportion \rightarrow important in counseling.

- Always distinguish between:
 - Malformation (developmental failure)
 - Disruption (destruction of formed tissue)
 - O Deformation (mechanical force)

Principles of Teratology

Teratology studies how environmental agents (teratogens) cause abnormal development. The following principles determine whether and how a teratogen will cause a birth defect:

- 1. Genotype-Environment Interaction
 - · Susceptibility depends on:
 - \circ Genotype of conceptus \rightarrow how its genetic makeup interacts with environmental factors.
 - \circ Maternal genome \rightarrow influences drug metabolism, infection resistance, biochemical pathways.
 - Key point. The same teratogen can cause severe damage in one conceptus but minimal/no effect in another due to genetic differences.
- 2. Timing of Exposure

- Most sensitive period = 3rd-8th weeks (embryogenesis/organogenesis).
- Organ systems have specific susceptibility windows:
 - O Cleft palate can be induced:
 - Day 6 blastocyst stage
 - Day 14 gastrulation
 - Sth week early limb bud stage
 - 7th week palatal shelf formation
- Key point: No stage is completely safe defects may occur before (e.g., gametogenesis, preimplantation) or after embryogenesis.
- 3. Dose-Duration Relationship
 - Severity of abnormality increases with higher dose or longer duration of teratogen exposure.
 - Exam tip: Dose threshold varies for different teratogens.
- 4. Specific Mechanisms of Action
 - Teratogens disrupt development via specific molecular/cellular mechanisms:
 - Inhibiting a biochemical pathway

- o Inducing cell death
- · Reducing cell proliferation
- Altering cell migration/differentiation
- ullet This disruption leads to abnormal pathogenesis ullet structural or functional defects.

5. Possible Outcomes of Teratogenesis

- · Death
- Malformation
- Growth retardation
- Functional disorders (e.g., cognitive impairment, sensory deficits)

Infectious Agents as Teratogens (High-Yield for Exams)

Remember TORCH group (Toxoplasma, Other [syphilis, varicella, parvovirus], Rubella, CMV, Herpes)

Rubella Virus

- ullet Causes Congenital Rubella Syndrome o previously a major cause of defects.
- Vaccine programs have almost eliminated CRS in many countries.

Cytomegalovirus (CMV)

- Most common viral teratogen.
- Mother often asymptomatic.
- Effects:
 - \circ Severe illness at birth \rightarrow sometimes fatal.
 - Delayed-onset: hearing loss, visual impairment, intellectual disability.
- Key fact. CMV can be symptomatic or silent at birth but still cause late damage.

Herpes Simplex Virus (HSV)

- Teratogenic cases are rare.
- ullet Transmission usually during delivery ullet severe neonatal illness, possible death.

Varicella (Chickenpox)

- Intrauterine infection \rightarrow skin scarring, limb hypoplasia, eye and CNS defects.
- Risk depends on timing:
 - \circ Infection before 13 weeks \rightarrow 0.4% risk of malformation.

- \circ Infection 13-20 weeks \rightarrow risk rises to 2%.
- Later pregnancy infections less likely to cause anomalies but can cause neonatal varicella.

Exam Pointers

- Always link timing of teratogen exposure to the specific anomaly (especially in MCQs/SAQs).
- CMV = most common viral cause of congenital defects.
- Varicella timing risk % is a favorite MCQ.
- Know that dose, duration, and timing together determine teratogenic impact.

Other Viral Infections & Hyperthermia

Non-teratogenic Viral Infections

- Measles, mumps, hepatitis (A, C, E), poliomyelitis, echovirus, coxsackie virus, influenza:
 - O No direct malformations, but can cause:
 - Spontaneous abortion
 - Fetal death
 - Neonatal infection

- ullet Coxsackie B virus $\to \uparrow$ spontaneous abortion.
- Measles & mumps $\rightarrow \uparrow$ early & late fetal death, neonatal measles/mumps.
- Hepatitis B \rightarrow high transplacental transmission \rightarrow fetal/neonatal hepatitis.
- ullet Hepatitis A, C, E o rarely transmitted to fetus.
- Echoviruses → no adverse fetal effects.
- ullet Vaccinations for these viruses \to no evidence of fetal harm.

Hyperthermia

- Cause: Fever (pyrogenic infections) or external heat (hot tubs, saunas).
- Teratogenic effect: Disrupts neurulation \rightarrow Neural tube defects (NTDs) like:
 - Anencephaly
 - Spina bifida
- High yield: NTD risk especially high in early embryogenesis.

Toxoplasmosis (Protozoan: Toxoplasma gondii)

- Sources:
 - o Poorly cooked meat
 - Cat feces
 - Contaminated soil
- Classic fetal feature: Cerebral calcifications.
- Other possible features at birth:
 - Microcephaly / Macrocephaly
 - · Hydrocephalus
- Later complications (even if normal at birth):
 - Visual impairment
 - · Hearing loss
 - Seizures
 - o Intellectual disability
- Similar to CMV in late-onset effects.

Radiation as a Teratogen

• Mechanism: Kills rapidly dividing cells \rightarrow can cause virtually any defect depending on dose and stage.

- Sources:
 - Medical imaging (high dose)
 - Nuclear explosions
 - Reactor accidents (e.g., Chernobyl)
- Hiroshima & Nagasaki survivors (pregnant women):
 - \circ 28% \rightarrow spontaneous abortion
 - \circ 25% \rightarrow child died in 1st year
 - 25% → severe CNS defects
- ullet Chernobyl o large regional increase in birth defects.
- Also mutagenic → genetic alterations in germ cells
 → future malformations.

Pharmaceutical Drugs & Chemical Agents

Challenges in Assessing Risk:

- 1. Most studies are retrospective (maternal recall bias).
- 2. Pregnant women use many drugs:
 - · Avg. 4 medications per pregnancy.
 - Only ~20% use no drugs during pregnancy.

Safety unknown for ~90% of drugs.

Proven Drug Teratogen: Thalidomide

- Use: Antinauseant & sedative (1960s).
- Discovery: West Germany (1961) \rightarrow sudden rise in amelia & meromelia (total/partial limb absence).
- Mechanism: Affects early limb development (limb buds).
- Exam tip: The teratogenic link was only noticed because limb absence was rare. If it caused common defects (e.g., cleft lip, CHD), the link might have been missed.

High-Yield Quick Facts Table

Agent Key Effects Timing
Sensitivity

Hyperthermia Neural tube defects Early neurulation

Toxoplasmosis Cerebral calcifications, Any trimester hydrocephalus, visual/hearing loss

Radiation CNS defects, growth

retardation, abortion

All stages, most severe

early

Thalidomide Amelia, meromelia Limb bud

stage (4-5

weeks)

Hepatitis B Fetal hepatitis Any trimester

CMV Sensorineural deficits Any trimester

Drug Teratogens - Detailed High-Yield Notes

1. Thalidomide

- Original use: Antinauseant & sedative (1960s) →
 caused amelia/meromelia (limb defects).
- Modern use: Immunomodulator for AIDS, leprosy, lupus, GVHD.
- Now known effects (if taken in pregnancy):
 - · Limb defects
 - · Heart malformations
 - · Orofacial clefts
 - o Intellectual disability, autism

- Urogenital and gastrointestinal defects
- Key point: Still causes defects if given during critical limb development (4-5 weeks gestation).

2. Anticonvulsants

- Phenytoin (Diphenylhydantoin) → Fetal hydantoin syndrome.
 - o Growth deficiency, developmental delay
 - Facial clefts
 - Distinct facial appearance
- Trimethadione → Trimethadione syndrome.
 - · Facial clefts common
 - Broad dysmorphogenesis pattern
- · Valproic acid:
 - ↑ Risk: ASD, cleft palate, hypospadias, polydactyly, craniosynostosis
 - → Highest risk → Neural tube defect (esp. spina bifida)
- ullet Carbamazepine $o \uparrow$ risk for neural tube defects
- 3. Antipsychotics & Antianxiety

- Phenothiazines → Evidence conflicting for teratogenicity
- Lithium \rightarrow Associated with congenital heart defects, especially Ebstein anomaly (but risk is small)

4. Antidepressants

- SSRIs (fluoxetine, paroxetine, others):
 - · Heart defects
 - ↑ spontaneous abortion risk
 - \circ Possible mechanism: Disruption of serotonin (SHT) \rightarrow affects laterality & heart development

S. Immunosuppressants

- Mycophenolate mofetil (MMF):
 - Spontaneous abortion
 - Birth defects: Cleft lip/palate, microtia, microcephaly, heart defects

6. Anticoagulants

- Warfarin → First trimester exposure:
 - Skeletal defects: Nasal hypoplasia, abnormal epiphyses, limb hypoplasia

- ullet Heparin o Not teratogenic
- 7. Antihypertensives
 - ACE inhibitors (2nd/3rd trimester exposure):
 - Growth retardation
 - Renal dysfunction
 - o Fetal death
 - · Oligohydramnios
 - First trimester → effects less clear

8. Other Medications of Concern

Drug Key Effects

Propylthiouracil, Potassium Goiter, intellectual iodide disability

Streptomycin Hearing loss

Sulfonamides Kernicterus

Imipramine Limb deformities

Tetracyclines Bone/tooth anomalies

Amphetamines

Orofacial clefts, CV

defects

Quinine

Hearing loss

9. Social / Recreational Drugs

- LSD → Reported limb & CNS defects, but large reviews suggest no proven teratogenicity in moderate doses
- ullet Marijuana, PCP, cocaine ullet No conclusive teratogenic evidence
- Alcohol → Most important preventable teratogen:
 - Fetal Alcohol Spectrum Disorder (FASD) = broad term
 - Fetal Alcohol Syndrome (FAS) = severe end:
 - Growth deficiency
 - Intellectual disability
 - Facial anomalies (short palpebral fissures, smooth philtrum, thin upper lip)
 - Brain anomalies (microcephaly, holoprosencephaly)
 - Heart defects
 - Alcohol-Related Neurodevelopmental Disorder
 (ARND) = CNS involvement without full FAS

features

- o Incidence: FAS + ARND ≈ 1 in 100 live births
- No safe dose; binge drinking (>5 drinks/session)
 during critical stages ↑ risk, including orofacial
 clefts.

Key Exam Tip - Teratogenicity Patterns

- Timing is critical: Most major structural defects occur if exposure is during organogenesis (3-8 weeks).
- CNS is vulnerable throughout gestation.
- Some teratogens have very specific hallmark defects (e.g., Lithium \rightarrow Ebstein anomaly, Valproic acid \rightarrow NTD).

Teratogens - Part 2

- 1. Cigarette Smoking
 - Effects:
 - ↑ Risk of orofacial clefts (cleft lip, cleft palate)
 - Intrauterine growth retardation (IUGR)
 - Premature delivery
 - Mechanism: Likely due to fetal hypoxia (carbon

monoxide + nicotine \rightarrow vasoconstriction).

- 2. Isotretinoin (Accutane) & Vitamin A Derivatives
 - Use: Severe cystic acne, chronic dermatoses.
 - Highly teratogenic → Isotretinoin embryopathy:
 - · Craniofacial malformations
 - · CNS defects
 - · Cardiovascular defects
 - Thymic abnormalities
 - Even topical retinoids (e.g., etretinate) may be teratogenic.
 - · Vitamin A itself:
 - \circ High doses (>10,000-25,000 IU) \rightarrow possible teratogenicity (controversial threshold).
 - Multivitamins usually safe (2,000-8,000 IV).
 - Key fact: Related to embryopathy risk if taken during early pregnancy.

3. Androgenic Agents

• Old practice: Synthetic progestins used to prevent abortion (e.g., ethisterone, norethisterone).

- Effect in female fetuses:
 - Masculinization of genitalia: Enlarged clitoris, partial fusion of labioscrotal folds.

4. Endocrine Disrupters

- Definition: Exogenous agents altering normal hormonal regulation during development.
- Most common target: Estrogen receptors.
- Classic example: Diethylstilbestrol (DES):
 - Female fetuses:
 - Risk of vaginal and cervical clear cell carcinoma in adulthood.
 - Reproductive tract malformations: uterus, uterine tubes, upper vagina.
 - Infertility, reproductive dysfunction.
 - Male fetuses:
 - Testicular malformations, abnormal sperm analysis.
 - No increased carcinoma risk.
- Environmental estrogens (pesticides, industrial chemicals):

- Possible ↑ in:
 - Testicular cancer
 - Hypospadias
 - Reproductive tract anomalies
- CNS sex differentiation abnormalities (e.g., masculinization of female brain, feminization of male brain in animal studies).

5. Oral Contraceptives

- Low teratogenic potential.
- Discontinue if pregnancy suspected (precautionary due to hormone-related risks).

6. Corticosteroids

- Animal data: Cortisone at critical stages \rightarrow high % cleft palate.
- Human data: Modestly ↑ risk of orofacial clefts with corticosteroid use in pregnancy.

Exam Buzzwords & Triggers

Teratogen Classic Defect / Mnemonic Cue

Association

Cigarette Orofacial clefts, "Smoke cuts the

smoking

IUGR, prematurity face & growth"

Isotretinoin

Isotretinoin embryopathy (craniofacial, CNS, heart, thymus) Acne drug = All defects

Androgenic agents

Female genital masculinization

"Progestin makes girl into boy"

DES

Vaginal clear cell carcinoma + uterine anomalies "DES = Daughter's Endangered Ssystem" (uterus +

cervix)

Cortisone

Orofacial clefts

"C for Cleft"

Maternal Disease as Teratogenic Factor

I. Diabetes Mellitus

Pregestational Diabetes (Type I & Type 2 diagnosed before pregnancy)

- · Risks:
 - ↑ Stillbirths, neonatal deaths
 - Macrosomia (abnormally large infants)

- \circ Congenital malformations (risk \uparrow 3-4×; up to 80% in long-standing disease)
 - Neural tube defects
 - Congenital heart defects
 - Caudal dysgenesis / Sirenomelia

· Mechanism:

- \circ Altered maternal glucose levels \rightarrow teratogenic; insulin itself not teratogenic
- Key correlation: Risk ↑ with severity & duration of disease.
- Prevention: Strict glucose control before conception
 & during pregnancy | malformation rate to baseline.

Gestational Diabetes

- Risk for structural birth defects less clear:
 - Onset usually after organogenesis (3-8 weeks),
 so structural anomalies less likely.
 - Possible increased risk if undiagnosed pregestational diabetes present.

2. Phenylketonuria (PKU)

• Cause: Deficient phenylalanine hydroxylase $\rightarrow \uparrow$ serum phenylalanine.

- Effects on fetus:
 - o Intellectual disability
 - Microcephaly
 - · Cardiac defects
- Prevention: Low-phenylalanine diet before conception
 & throughout pregnancy normalizes risk.
- 3. Nutritional Deficiencies
 - Iodine deficiency:
 - \circ Endemic cretinism \rightarrow stunted mental & physical growth.
 - Methyl-deficient diets:
 - \circ Alter expression of imprinted genes \to birth defects, \uparrow cancer risk postnatally.
 - · Poor maternal nutrition:
 - Low birth weight
 - · Structural birth defects
 - Severe starvation during pregnancy:

 \circ 2-3× \uparrow risk of schizophrenia in offspring.

4. Obesity

- Definition: BMI >30 before pregnancy.
- Risks († 2× for NTDs):
 - · Neural tube defects
 - Congenital heart defects
 - o Omphalocele
 - Multiple congenital anomalies
- Possible mechanism: Maternal metabolic disturbances (glucose, insulin, other factors).

S. Hypoxia

- Animal studies: Causes malformations.
- Humans:
 - \circ High altitude \rightarrow low birth weight & smaller infants (no \uparrow malformation rate).
 - \circ Cyanotic heart disease \rightarrow small infants but usually no gross malformations.

6. Heavy Metals

Example: Minamata disease (Japan)

- Cause: Organic mercury contamination from industrial waste in Minamata Bay.
- O Source: Fish consumption.
- Effects: Multiple neurological symptoms in newborns (resembles cerebral palsy).
- Key feature: Mothers often asymptomatic despite fetal effects.

Buzzword Table for Rapid Revision

Hypoxia

Maternal Condition	Key Defect(s)	Memory Aid
Pregestational DM	NTDs, CHDs, caudal dysgenesis, macrosomia	"Diabetic baby = Big body, bad back, bad heart"
PKU	ID, microcephaly, CHDs	"PKU → Phenyl Kills Understanding"
Iodine deficiency	Endemic cretinism	"Iodine $ ightarrow$ IQ"
Obesity	NTDs, CHDs, omphalocele	"Overweight → Over defects"

Small infant (no "Thin air → Thin

major baby" malformation)

Mercury

Neuro defects (CP-like) "Minamata Mercury

Mind damage"

Environmental & Paternal Factors in Teratogenesis

Heavy Metals

Mercury

 Fetal sensitivity > maternal — mothers may remain asymptomatic.

· Sources & outbreaks:

- \circ Japan (Minamata disease) \rightarrow fish contaminated with organic mercury from industrial waste.
- \circ USA \rightarrow seed corn treated with mercury fungicide \rightarrow hog meat \rightarrow pregnant women.
- \circ Iraq \rightarrow grain treated with mercury fungicide.

• Effects:

- Severe neurological symptoms in newborns (resembles cerebral palsy).
- Multiple developmental abnormalities.

Lead

- · Associated with:
 - ↑ Abortions
 - Growth retardation
 - Neurological disorders.

Male-Mediated Teratogenesis

- Mechanism: Mutations or damage to male germ cells from exposures.
- Teratogens affecting males:
 - o Ethylnitrosourea
 - Radiation
 - Mercury, lead, solvents
 - · Alcohol
 - Cigarette smoke
- Effects on offspring:
 - Spontaneous abortion
 - · Low birth weight
 - · Birth defects
- Paternal age effects:
 - \circ Advanced age $\rightarrow \uparrow$ risk for structural birth

- defects, Down syndrome, new autosomal dominant mutations.
- <20 years: some studies show ↑ risk (inconclusive evidence).
- · Other pathways:
 - o Paternal toxins in seminal fluid
 - Household contamination from work clothes.

Prenatal Diagnosis

Ultrasonography

- \bullet Principle: High-frequency sound waves reflect from tissues \rightarrow image.
- Approach:
 - Transabdominal
 - Transvaginal (higher resolution).
- Capabilities:
 - Detect fetal blood flow, heart valve motion, tracheal/bronchial fluid flow.
- Usage: $\sim 80\%$ of U.S. pregnancies receive ≥ 1 scan.

- Information provided:
 - Fetal age & growth
 - Presence/absence of anomalies
 - · Amniotic fluid volume
 - · Placental position & umbilical blood flow
 - O Detection of multiple gestations
- Impact: Ultrasound-guided management in low-birth-weight cases \ mortality by 60%.
- Age & growth estimation:
 - o 5-10 weeks: Crown-rump length
 - 10 weeks: Biparietal diameter (BPD), femur length, abdominal circumference.
- Detectable anomalies:
 - NTDs (anencephaly, spina bifida)
 - Abdominal wall defects (omphalocele, gastroschisis)
 - · Heart defects
 - Facial defects (cleft lip/palate).
- Special screening: Nuchal translucency (II-I4 weeks) $\rightarrow \uparrow$ risk for Down syndrome & other chromosomal abnormalities.

- Combined with maternal serum screening + maternal age → risk estimate.
- → High-risk → offer amniocentesis for confirmation.

Prevention of Birth Defects

- Iodine supplementation \rightarrow prevents cretinism (intellectual disability, bone deformities).
- Strict metabolic control in diabetes & PKV before conception → reduces birth defect risk.
- Folic acid supplementation:
 - ↓ NTD incidence (spina bifida, anencephaly).
 - ↓ hyperthermia-induced defects.
- ullet Alcohol avoidance in all pregnancy stages ullet prevents fetal alcohol spectrum disorders.
- Pre-conception interventions essential.
- Drug teratogenicity caution:
 - Always consider pregnancy risk when prescribing to women of childbearing age.
 - Isotretinoin (Accutane):
 - lacktriangle Potent teratogen ightarrow "isotretinoin

thehandynotes.online Page 33

- embryopathy".
- Used for cystic acne high risk in sexually active young women.
- Must be used with extreme caution.

Buzzword & Exam Tip Table

Agent / Factor	Key Defect / Outcome	High-Yield Clue
Mercury	CP-like neuro defects	Minamata, asymptomatic mother
Lead	Abortions, growth retard, neuro issues	Environmental exposure
Paternal radiation / toxins	Miscarriage, LBW, anomalies	Male germ cell mutations
Advanced paternal age	AD mutations, Down syndrome	>40 yrs risk
Nuchal translucency ↑	Down syndrome risk	11-14 weeks
Folate deficiency	NTDs	Preconception

Isotretinoin Severe craniofacial, Acne drug cardiac, CNS caution defects

Maternal Serum Screening & Prenatal Diagnostic Procedures

- 1. Maternal Serum Screening (MSS)
 - Purpose: Detect biochemical markers in maternal blood indicating fetal abnormalities.
 - Key marker: α -fetoprotein (AFP)
 - O Produced by: Fetal liver.
 - Physiology: Peaks ~14 weeks → enters maternal circulation via placenta → rises during 2nd trimester → declines after 30 weeks.
 - AFP levels:
 - ↑ Increased in:
 - Neural tube defects (anencephaly, spina bifida)
 - Abdominal wall defects (omphalocele, gastroschisis)
 - Bladder exstrophy
 - Amniotic band syndrome
 - Sacrococcygeal teratoma

- Intestinal atresia
- | Decreased in:
 - Down syndrome (Trisomy 21)
 - Trisomy 18
 - Sex chromosome abnormalities
 - Triploidy
- Improved detection with quadruple test in 2nd trimester:
 - o AFP
 - Human chorionic gonadotropin (hCG)
 - Unconjugated estriol (uE3)
 - O Inhibin A

2. Amniocentesis

- Procedure:
 - \circ Needle insertion \rightarrow amniotic cavity (ultrasound-guided).
 - o Fluid withdrawn: 20-30 mL
 - Usually after 14 weeks (enough fluid to avoid fetal risk).
- · Risks:
 - o Fetal loss: ~1 in 300-500 (lower in skilled hands).

· Tests on fluid:

- Biochemical: AFP, acetylcholinesterase (for neural tube defects).
- Genetic: Fetal cells cultured → metaphase chromosomes → karyotyping (translocations, breaks, trisomies, monosomies).
- Advanced: PCR, genotyping assays for molecular detection.
- Drawback: Results take 1-2 weeks (cells need culture to divide).

3. Chorionic Villus Sampling (CVS)

• Procedure:

- \circ Needle (transabdominal/transvaginal) \rightarrow placental villi aspirated (5-30 mg tissue).
- Cells from mesenchymal core cultured for genetic analysis.
- Culture time: 2-3 days → faster than amniocentesis.

• Risks:

- Pregnancy loss (similar to amniocentesis in experienced hands).
- Possible ↑ risk of limb reduction defects (digits).

 Limitation: High rate of chromosomal errors in placenta → mesenchymal core cells used for accuracy.

4. ACOG Recommendations (since 2007)

- Invasive testing (amniocentesis or CVS) for aneuploidy offered to all pregnant women.
- High-risk factors:
 - 1. Advanced maternal age (≥35 years).
 - 2. Family history of genetic problem (e.g., Down syndrome, neural tube defect).
 - 3. Maternal disease (e.g., diabetes).
 - 4. Abnormal ultrasound or serum screening results.

Exam Tip:

- AFP $\uparrow \rightarrow$ think open defects (NTD, abdominal wall).
- AFP \downarrow + abnormal hCG/uE3 \rightarrow think *chromosomal* abnormalities.

- Amniocentesis vs CVS:
 - Amniocentesis → after 14 wks, slower results, less limb defect risk.
 - \circ CVS \rightarrow after 10-12 wks, faster results, small risk of limb defects.

Fetal Therapy

1. Fetal Transfusion

 Indication: Fetal anemia (commonly due to maternal antibodies — e.g., Rh incompatibility — or other causes).

· Procedure:

- Ultrasound-guided needle insertion into umbilical cord vein.
- Direct transfusion of compatible blood into fetus.

2. Fetal Medical Treatment

• Indirect treatment:

- \circ Drugs given to the mother \to cross placenta \to reach fetus.
- Examples: Antibiotics for infections,

antiarrhythmics for fetal cardiac arrhythmia, thyroid hormones for hypothyroidism.

- Direct treatment:
 - o Intramuscular injection into fetal gluteal muscle.
 - O Umbilical vein administration.

3. Fetal Surgery

- Indication: Only when no reasonable alternatives & performed in specialized centers.
- Types:
 - Shunt placement: Removes fluid from organs/cavities.
 - Example: Obstructive urinary disease → shunt from fetal bladder to amniotic sac (prevents renal damage if diagnosed early).
 - Ex utero surgery (open fetal surgery):
 - Uterus opened → direct fetal repair.
 - Used for:
 - □ Congenital diaphragmatic hernia repair.
 - Removal of cystic adenomatous lung lesions.
 - □ Repair of spina bifida.
 - Also: Interventions for certain congenital heart defects.

- Status: Most procedures are experimental; under randomized clinical trials to assess benefit.
- Risks: Maternal, fetal, and future pregnancy complications.

4. Stem Cell Transplantation

- Rationale: Fetus lacks immunocompetence before 18 weeks \rightarrow no rejection risk if transplanted early.
- · Current research:
 - Hematopoietic stem cells for immunodeficiency and hematologic disorders.

S. Fetal Gene Therapy

- · Aim: Correct inherited metabolic diseases in utero.
- Examples under investigation: Tay-Sachs disease, cystic fibrosis.
- Approach: Viral vectors or other delivery systems introduced before immune competence develops.

Exam Tip Table: Fetal Therapy Modalities

Therapy	Route	Indication	Special Notes
Fetal transfusion		Fetal anemia	Ultrasound guided
Medical treatment (indirect)	Mother → placenta	Infections, arrhythmias, hypothyroidism	Placental transfer required
Medical treatment (direct)	IM injection into fetus / umbilical vein	When rapid effect needed	More invasive
Shunt placement	In utero	Obstructive urinary disease, hydrothorax	J
Ex utero surgery	Open uterus	Diaphragmatic hernia, lung lesions, spina bifida	Experimental, high risk
Stem cell transplanta		Immunodeficienc y, hematologic	. •

tion	fetus (<18 wks)	disorders	immune maturity
Gene therapy	delivery	Inherited metabolic disorders	Still research phase