

"Cardiomyopathies"

Definition

Cardiomyopathies are cardiac diseases caused by intrinsic dysfunction of the myocardium (heart muscle), leading to impaired cardiac performance.

 Literal meaning: "Heart muscle diseases"

What is INCLUDED and EXCLUDED?

✓ Included

- Diseases primarily affecting the myocardium
- May be primary or secondary

✗ Excluded (important for exams!)

Myocardial dysfunction due to:

- Coronary artery disease
- Hypertension
- Valvular heart disease
- Congenital heart disease

Types of Cardiomyopathies

I. Based on Etiology

- ◆ Primary cardiomyopathies → Disease confined mainly to the myocardium
- ◆ Secondary cardiomyopathies → Cardiac involvement as part of a systemic disorder

Examples of conditions causing cardiomyopathy:

- Inflammatory: *Myocarditis*
- Immunologic: *Sarcoidosis*
- Metabolic: *Hemochromatosis*
- Neuromuscular: *Muscular dystrophies*
- Genetic: Disorders of myocardial fibers

Idiopathic cardiomyopathy

- Cause unknown
- Many previously "idiopathic" cases are now known to be due to genetic defects in:

- Cardiac energy metabolism
- Structural proteins
- Contractile proteins

Clinical-Pathologic Classification

For diagnosis and management, cardiomyopathies are classically divided into three major patterns:

Major Types

1. Dilated cardiomyopathy (DCM)
 - *Most common* (~90% cases)
 - Includes Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)
2. Hypertrophic cardiomyopathy (HCM)
3. Restrictive cardiomyopathy
 - *Least common*

Exam tip:

- Clinical features may overlap

- Each type can be idiopathic or secondary to a known cause

DILATED CARDIOMYOPATHY (DCM)

Definition

Dilated cardiomyopathy is characterized by:

- Progressive dilation of cardiac chambers
- Systolic dysfunction (\downarrow contractility)
- Usually accompanied by myocardial hypertrophy

 Key idea:

→ Regardless of cause, final clinicopathologic pattern is similar

Pathogenesis of Dilated Cardiomyopathy

At the time of diagnosis, DCM has usually progressed to end-stage heart disease, characterized by:

- Poor myocardial contractility
- Heart failure
- Lack of specific distinguishing pathological features

Initiating Factors

The myocardial damage may begin due to:

Inherited abnormalities OR environmental exposures →
Progressive myocyte injury → Impaired force generation
→ Ventricular dilation → Systolic heart failure

Genetic Causes of DCM

Contribution:

- 20-50% of DCM cases are hereditary

Inheritance Pattern

- Mostly Autosomal dominant
- Some X-linked forms

Key Molecular Mechanism

▼ Loss-of-function mutations affecting:

- Cytoskeletal proteins
- Proteins linking sarcomere \leftrightarrow cytoskeleton

Important Mutated Genes

- β -myosin heavy chain
- α -myosin heavy chain
- Cardiac troponin T
- Titin (MOST COMMON)

 Why titin matters?

- Titin is essential for sarcomeric force generation
- Its mutation \rightarrow weak contraction \rightarrow chamber dilation

Important Exam Concept

 Same genes, different disease!

Loss-of-function mutation → Dilated cardiomyopathy

Gain-of-function mutation (same sarcomeric genes) →
Hypertrophic cardiomyopathy

X-Linked Dilated Cardiomyopathy

Most commonly due to:

- Dystrophin gene mutation
- ◆ Dystrophin function:
 - Anchors intracellular cytoskeleton → To extracellular matrix (ECM)

Loss of dystrophin → Sarcolemmal instability →

Myocyte injury → Progressive dilation

Other Genetic Associations

- Desmin mutation → Principal intermediate filament in cardiac myocytes

- Lamin A and C mutations → Nuclear envelope proteins

👉 Clinical correlation (exam favorite):

Since myocytes and conduction fibers share a developmental origin:

- Inherited DCM may show → Congenital conduction abnormalities ⚡

Infectious Causes (Viral Myocarditis → DCM)

Earlier studies identified:

- Adenovirus
- Enterovirus

More recent studies show higher association with:

- Parvovirus B19
- Human herpesvirus-6 (HHV-6)

💡 Important exam concept:

Even in late-stage DCM, viral nucleic acid "footprints" (especially *Coxsackievirus B* and other enteroviruses) may still be detected in myocardium.

Pathogenetic Sequence (High-Yield Flowchart)

Viral infection of myocardium → Acute infectious myocarditis → Myocyte injury & necrosis → Incomplete healing / immune-mediated damage → Progressive ventricular dilation → Dilated cardiomyopathy

💡 Clinical correlation:

- Serial endomyocardial biopsies have shown progression of myocarditis to DCM
- Absence of inflammation in end-stage heart does NOT exclude viral etiology
- Detection of viral RNA or high antiviral antibody titers
→ Suggests "missed" early myocarditis

Alcohol & Other Toxic Exposures 🍺

- Chronic alcohol abuse is strongly associated with DCM
- Alcohol & metabolites (acetaldehyde) have:
 - Direct toxic effects on myocytes

Additional contributing mechanism:

- Chronic alcoholism
 - Thiamine (Vitamin B1) deficiency
 - Element of beriberi heart disease

Other Cardiotoxic Agents

- Cobalt
- Doxorubicin (chemotherapeutic drug) ★ very important

📌 Exam pearl:

Doxorubicin causes dose-dependent, irreversible cardiomyopathy

Peripartum Cardiomyopathy

Occurs:

- Late in pregnancy
- Or weeks to months postpartum

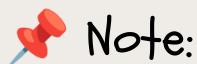
Proposed Contributing Factors

- Pregnancy-associated hypertension
- Volume overload
- Nutritional deficiency
- Metabolic derangements (e.g., gestational diabetes)
- Impaired angiogenic signaling

📌 Key feature:

- ~50% of patients recover spontaneously with return of normal cardiac function

Iron Overload (Hemochromatosis)



Sources:

- Hereditary hemochromatosis
- Repeated blood transfusions (chronic anemia)

Mechanism of Injury

Iron accumulation → Interference with metal-dependent enzymes → Iron-mediated reactive oxygen species (ROS) production → Myocyte injury & fibrosis → DCM (most common manifestation)

Note:
Although iron overload can cause restrictive cardiomyopathy, DCM is more common

Clinical Features of Dilated Cardiomyopathy

Fundamental Defect

→ Ineffective myocardial contraction (systolic dysfunction)

Key Functional Findings

- Ejection fraction < 25%
(Normal: 50–65%)

Common Complications

- Secondary mitral regurgitation
- Arrhythmias
- Mural thrombus formation
→ Systemic embolization

Typical Patient Profile

- Age: 20–50 years
- Presentation: Slowly progressive congestive heart failure

Symptoms

- Dyspnea
- Easy fatigability
- Poor exercise tolerance

Prognosis & Treatment

- Median survival (to death or transplant): 4-6 years
- Common causes of death:
 - Progressive heart failure
 - Arrhythmias

Definitive Treatment

- Cardiac transplantation

Supportive / bridging therapy:

- Long-term ventricular assist devices (VADs)
- In some patients:
 - Mechanical support
→ Durable regression of cardiac dysfunction

Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)

Overview

- Autosomal dominant disorder
- Affects right ventricle
- Causes:
 - Right-sided heart failure
 - Serious rhythm disturbances
 - Sudden cardiac death

Epidemiology

- Prevalence: 1 in 2000 – 1 in 5000
- Responsible for:
 - ~10% of sudden deaths in athletes

Pathogenesis

Mutations in:

- Desmosomal junction proteins at intercalated discs
 - e.g., Plakoglobin
- Proteins interacting with desmosomes
 - e.g., Desmin

Mechanism (Flowchart)

Desmosomal protein mutation → Weak intercellular adhesion → Myocyte detachment during stress/exercise → Myocyte death → Fatty ± fibrous replacement → Arrhythmias & RV failure ⚡

Morphology

- Severely thinned right ventricular wall
- Replacement of myocardium by:
 - Fat
 - Lesser amounts of fibrosis

心脏病图标 Exercise increases risk due to enhanced mechanical stress

Morphology of Dilated Cardiomyopathy

Gross Morphology

- Heart:

- Enlarged (2-3x normal weight)
- Flabby

- Dilation of all chambers

- Ventricular wall thickness:

- May be ↓, normal, or ↑ (due to dilation + hypertrophy)

📌 Common finding:

- Mural thrombi → source of thromboembolism

🚫 By definition absent:

- Valvular disease
- Coronary artery disease
- Other causes of secondary dilation

Microscopic (Histologic) Features

- Nonspecific changes
- Myocytes show:

- Hypertrophy
- Enlarged nuclei
- Attenuation & stretching
- Interstitial & endocardial fibrosis
- Scattered replacement fibrosis

心脏病 Replacement fibrosis may represent:

- Prior ischemic necrosis (hypoperfusion)
- "Footprints" of previous myocarditis

Special Feature: Iron Overload DCM

- Marked intramyocardial hemosiderin deposition
- Demonstrated by:
 - Prussian blue stain

HYPERTROPHIC CARDIOMYOPATHY (HCM)

Definition

Hypertrophic cardiomyopathy is characterized by:

- Marked myocardial hypertrophy
- Defective diastolic filling
- Ventricular outflow tract obstruction in ~1/3 of cases

 Key contrast with DCM (exam favorite):

- HCM: Thick, heavy, hypercontractile heart
- DCM: Dilated, flabby, poorly contractile heart

Functional Abnormality

- Systolic function: Usually normal or increased
- Primary problem: Diastolic dysfunction

Why diastolic dysfunction?

Hypertrophied myocardium → Impaired relaxation → ↓
Ventricular filling during diastole → ↓ Cardiac output

↙️ Important clinical differentiation:
HCM must be distinguished from:

- Restrictive cardiomyopathy (e.g., amyloidosis)
- Causes of secondary hypertrophy:
 - Aortic stenosis
 - Hypertension

Pathogenesis of HCM

Genetic Basis

- Autosomal dominant inheritance
- Variable expressivity

Over 400 mutations identified in 9 genes

Unifying Molecular Mechanism

All mutations are:

- Missense
- Gain-of-function
- Affect sarcomeric proteins

Pathogenetic Sequence (Flowchart)

Gain-of-function sarcomeric mutation → ↑ Myofilament contractility → ↑ Energy consumption → Myocyte hypercontractility → Net negative energy balance → Myocyte hypertrophy & disarray !

Most Commonly Mutated Genes

Protein	Frequency
β -myosin heavy chain	Most common
Myosin-binding protein C	Common
Troponin T	Common

心脏病图标 These 3 genes account for 70-80% of HCM cases

Important Comparison with DCM ⚡

Some genes (e.g., β -myosin) are mutated in both HCM and DCM:

- HCM: Gain-of-function mutation
- DCM: Loss-of-function mutation

→ Same gene, opposite functional outcome = different cardiomyopathy

Morphology of HCM 📸

Gross Morphology

- Massive myocardial hypertrophy
- No ventricular dilation

Patterns of Hypertrophy

- Asymmetric septal hypertrophy - 90% cases ⭐
- Concentric hypertrophy - 10%

📌 Characteristic ventricular cavity shape:

- On longitudinal section:
 - LV cavity becomes compressed
 - Appears "banana-shaped" 🍌 (classic exam description)

Left Ventricular Outflow Tract (LVOT) Obstruction

During systole:

- Anterior mitral leaflet moves toward septum
(Systolic Anterior Motion - SAM)

Mechanism (Flowchart)

Septal hypertrophy → Narrowed LV outflow tract →
Systolic anterior motion of mitral valve → Mitral leaflet
contacts septum → LVOT obstruction → Harsh
(crescendo-decrescendo) systolic murmur ⚡

📌 Results in:

- Plaque formation in LVOT
- Thickening of mitral leaflet

Microscopic (Histologic) Features

Classic triad of HCM:

1. Myocyte hypertrophy
2. Haphazard myocyte (fiber) disarray
3. Interstitial fibrosis

 Myofiber disarray is highly characteristic and frequently tested

Clinical Features of HCM

Age of Presentation

- Can occur at any age
- Most commonly manifests during:
 - Post-pubertal growth spurt

Pathophysiology-Based Symptoms

Impaired relaxation + LVOT obstruction

- ↓ Effective cardiac output
- ↑ Pulmonary venous pressure

Resulting Symptoms

- Exertional dyspnea
- Harsh systolic ejection murmur

Myocardial Ischemia Without CAD

Massive hypertrophy → ↑ Oxygen demand → ↓
Intramural coronary flow → Angina, even with normal
coronaries

Major Complications

- Atrial fibrillation → Mural thrombus → Embolism

- Ventricular fibrillation → Sudden cardiac death
- Infective endocarditis (mitral valve)
- Congestive heart failure

Sudden Cardiac Death ⚡

- HCM is a leading cause of sudden death in young athletes
- Accounts for:
 - ~1/3 of sudden cardiac deaths in athletes <35 years

Exam pearl:

Young athlete + collapse during exertion → Think HCM first

Management (Conceptual – Exam Relevant) 💊

- Medical therapy:
 - Improves ventricular relaxation

- Interventional options for LVOT obstruction:
 - Surgical septal myectomy
 - Alcohol septal ablation
(controlled therapeutic infarction)

RESTRICTIVE CARDIOMYOPATHY

Definition

Restrictive cardiomyopathy is characterized by:

- Decreased ventricular compliance
- Impaired ventricular filling during diastole

 Simply put:

→ The ventricular wall becomes stiff, not weak.

Basic Functional Defect

Normal systolic contraction

- Impaired relaxation → ↓ Diastolic filling → ↓ Cardiac output → Signs of heart failure

 Key distinction:

- Systolic function is often normal or near-normal

- Primary problem: Diastolic dysfunction

Etiology

Restrictive cardiomyopathy may be:

1. Idiopathic

- No identifiable cause

2. Secondary to myocardial diseases

- Radiation-induced fibrosis
- Amyloidosis
- Sarcoidosis
- Inborn errors of metabolism
 - Mucopolysaccharidoses
 - Sphingolipidoses

Important Types of Restrictive Cardiomyopathy

I. Cardiac Amyloidosis

Pathogenesis

Deposition of extracellular proteins → Formation of insoluble β -pleated sheets → Myocardial stiffening → Restrictive physiology

Clinical Settings

- Part of systemic amyloidosis
 - e.g., Multiple myeloma
- Isolated cardiac amyloidosis

Transthyretin (ATTR) Amyloidosis

- Due to deposition of:
 - Normal or mutant transthyretin
- Transthyretin:
 - Synthesized in liver
 - Transports thyroxine & retinol

Epidemiology:

- ~4% of African Americans carry a transthyretin mutation
- Increases risk of cardiac amyloidosis >4-fold

AL Amyloidosis - Extra Damage

Immunoglobulin light chains:

- Deposit as amyloid
- Are directly cardiotoxic

→ Contribute further to myocardial dysfunction

2. Endomyocardial Fibrosis

Epidemiology

- Predominantly affects:
 - Children & young adults
 - Africa & tropical regions
- Most common restrictive cardiomyopathy worldwide

Pathologic Features

- Diffuse fibrosis of:
 - Ventricular endocardium
 - Subendocardium
- Frequent involvement of:
 - Tricuspid valve
 - Mitral valve

Functional Consequences (Flowchart)

Endocardial fibrosis → ↓ Ventricular volume → ↓ Compliance → Restrictive physiology → Diastolic heart failure

Etiologic Associations

- Nutritional deficiencies
- Chronic inflammation
- Helminthic infections

3. Loeffler Endomyocarditis

Key Features

- Endocardial fibrosis
- Large mural thrombi
- No geographic or racial predilection

Characteristic Association

- Peripheral hypereosinophilia
- Eosinophilic tissue infiltration

Pathogenesis

Hypereosinophilia → Eosinophil infiltration of myocardium → Release of granule contents (especially major basic protein) → Endocardial & myocardial necrosis → Fibrosis + mural thrombus formation →

Thrombus organization → Restrictive cardiomyopathy

Heart Major basic protein = key toxic mediator

Morphology of Restrictive Cardiomyopathy

Gross Morphology

- Ventricles:
 - Normal size or mildly enlarged
 - No dilation
 - Firm myocardium
- Atria:
 - Bilaterally dilated
 - Due to:
 - Impaired ventricular filling
 - Chronic pressure overload

Microscopic Features

- Variable interstitial fibrosis
- Gross appearance may be similar across causes

💡 Diagnostic tip:

- Endomyocardial biopsy often reveals:
 - Amyloid deposition
 - Endomyocardial fibrosis
 - Other specific etiologies

COMPARISON TABLE: CARDIOMYOPATHIES

Feature	Dilated (DCM)	Hypertrophic (HCM)	Restrictive
LV Ejection Fraction	<40%	50-80%	25-50%
Primary Defect	Systolic dysfunction	Diastolic dysfunction	Diastolic dysfunction
Ventricular Size	Dilated	Small / normal	Normal
Ventricular Wall	Thin or hypertrophied	Markedly thickened	Rigid / stiff
Atria	Normal or mildly dilated	Mild dilation	Marked dilation ★

Common Causes	Genetic, alcohol, myocarditis, doxorubicin	Genetic (sarcomeric)	Amyloidosis, radiation
Mimickers	IHD, valve disease, HTN	HTN, aortic stenosis	Constrictive pericarditis

📌 Normal EF: ~50–65%

Exam Pearls – One Look Revision 🧠

- DCM = weak pump
- HCM = tight ventricle + obstruction
- Restrictive = stiff ventricle
- Biventricular dilation → think restrictive
- Young athlete sudden death → think HCM
- Endomyocardial biopsy helpful in restrictive CM

-> The End <-