"Gluconeogenesis"

I. OVERVIEW

Tissues Requiring Continuous Glucose Supply

- Some tissues require a continuous supply of glucose as a metabolic fuel:
 - O Brain
 - · Erythrocytes
 - · Kidney medulla
 - · Lens and cornea of the eye
 - · Testes
 - · Exercising skeletal muscle

Role of Liver Glycogen

- Liver glycogen is an essential postprandial source of glucose.
- In the absence of dietary intake of carbohydrate:
 - Liver glycogen can meet glucose needs for <24 hours.

Glucose Production During Prolonged Fast

- During a prolonged fast, hepatic glycogen stores are depleted.
- Glucose is then made from noncarbohydrate precursors.

Nature of Gluconeogenesis

 Formation of glucose does not occur by simple reversal of glycolysis.

• Reason:

 The overall equilibrium of glycolysis strongly favors pyruvate formation.

• Instead:

- Glucose is synthesized de novo by a special pathway: gluconeogenesis.
- This pathway requires:
 - Mitochondrial enzymes
 - Cytosolic enzymes

Clinical Note

 Deficiencies of gluconeogenic enzymes cause hypoglycemia.

Site of Gluconeogenesis

- After an overnight fast:
 - Approximately 40% of gluconeogenesis occurs in the liver.
 - The remaining ~10% occurs in the kidneys.
- During prolonged fasting (48 hours or longer):
 - · Kidneys become major glucose-producing organs.
 - They contribute approximately 40% of total glucose production.
- The small intestine can also make glucose.

II. SUBSTRATES

General Overview

- Gluconeogenic precursors are molecules that can be used to produce a net synthesis of glucose.
- Most important gluconeogenic precursors:
 - · Glycerol
 - · Lactate
 - α-keto acids obtained from the metabolism of glucogenic amino acids
- All amino acids are glucogenic except:
 - · Leucine
 - Lysine

A. Glycerol

- Source:
 - Glycerol is released during the hydrolysis of triacylglycerols (TAGs) in adipose tissue.
 - · It is delivered by the blood to the liver.

· Metabolism:

- Glycerol is phosphorylated by glycerol kinase to form glycerol 3-phosphate.
- Glycerol 3-phosphate is then oxidized by glycerol
 3-phosphate dehydrogenase to dihydroxyacetone
 phosphate.
- Dihydroxyacetone phosphate is an intermediate of glycolysis and gluconeogenesis.

B. Lactate

• Source:

- Lactate from anaerobic glycolysis is released into the blood by:
 - Exercising skeletal muscle
 - Erythrocytes (cells that lack mitochondria)

· Cori Cycle:

- · Lactate is taken up by the liver.
- · It is oxidized to pyruvate, which is then:
 - Converted to glucose
 - Released back into the circulation

C. Amino Acids

- Source:
 - Amino acids produced by hydrolysis of tissue proteins are the major sources of glucose during a fast.
- · Metabolism:
 - · Their metabolism generates α-keto acids, such as:
 - Pyruvate, which is converted to glucose
 - a-ketoglutarate, which can:
 - Enter the tricarboxylic acid (TCA) cycle
 - Form oxaloacetate (OAA), a direct precursor of phosphoenolpyruvate (PEP)

Note:

 Acetyl coenzyme A (CoA) and compounds that give rise only to acetyl CoA cannot give rise to a net synthesis of glucose

- Examples:
 - · Acetoacetate
 - Lysine
 - · Leucine
- Reason:
 - Due to the irreversible nature of the pyruvate dehydrogenase complex (PDHC), which:
 - Converts pyruvate to acetyl CoA
- These compounds instead give rise to ketone bodies and are termed ketogenic.

III. REACTIONS

Overview

- Seven glycolytic reactions are reversible and used in the synthesis of glucose from lactate or pyruvate.
- Three glycolytic reactions are irreversible and must be circumvented by four alternate reactions that energetically favor glucose synthesis.

 These irreversible reactions are unique to gluconeogenesis.

A. Pyruvate Carboxylation

1. General Mechanism

- The first roadblock in glucose synthesis from pyruvate is the irreversible conversion in glycolysis of PEP to pyruvate by pyruvate kinase (PK).
- In gluconeogenesis:
 - Pyruvate is carboxylated by pyruvate carboxylase
 (PC) to oxaloacetate (OAA).
 - OAA is converted to PEP by PEP-carboxykinase (PEPCK).

2. Biotin

- PC requires the coenzyme biotin, which is:
 - Covalently bound to the E-amino group of a lysine residue in the enzyme.

- ATP hydrolysis drives the formation of an enzymebiotin-carbon dioxide (CO_2) intermediate.
 - This intermediate carboxylates pyruvate to form OAA.
 - (Note: HCO₃- provides the CO₂.)
- The PC reaction occurs in the mitochondria of liver and kidney cells.
- The PC reaction has two purposes:
 - To allow production of PEP, an important substrate for gluconeogenesis.
 - To provide OAA that can replenish TCA cycle intermediates that may become depleted.
- Muscle cells also contain PC but:
 - Use the OAA product only for the replenishment (anaplerotic) purpose.
 - · Do not synthesize glucose.
- (Note: Pyruvate carrier protein moves pyruvate from the cytosol into mitochondria.)

3. Other Biotin-Dependent Carboxylases

- PC is one of several carboxylases that require biotin, including:
 - Acetyl CoA carboxylase
 - Propionyl CoA carboxylase
 - Methylcrotonyl CoA carboxylase

4. Allosteric Regulation

- PC is allosterically activated by acetyl CoA.
- Elevated levels of acetyl CoA in mitochondria signal a metabolic state in which increased synthesis of OAA is required.
 - This occurs during fasting, when OAA is used for gluconeogenesis in the liver and kidneys.
- At low levels of acetyl CoA:
 - PC is largely inactive.
 - Pyruvate is primarily oxidized by the PDHC to acetyl CoA, which is then:
 - Further oxidized by the TCA cycle.

B. Oxaloacetate Transport to the Cytosol

- For gluconeogenesis to continue, oxaloacetate (OAA)
 must be converted to phosphoenolpyruvate (PEP) by
 PEP-carboxykinase (PEPCK).
- PEP production in the cytosol requires transport of OAA out of mitochondria.
- However, the inner mitochondrial membrane lacks an OAA transporter.

• Therefore:

- OAA is reduced to malate by mitochondrial malate dehydrogenase (MD).
- Malate is transported into the cytosol.
- In the cytosol, malate is reoxidized to OAA by cytosolic MD, as NAD+ is reduced to NADH.
- The cytosolic NADH is used in the reduction of 1,3 bisphosphoglycerate to glyceraldehyde 3—phosphate by glyceraldehyde 3—phosphate dehydrogenase.
 - This reaction is common to both glycolysis and gluconeogenesis.

Note:

- When lactate is abundant, it is oxidized to pyruvate as NAD+ is reduced.
- The pyruvate is transported into mitochondria and carboxylated by PC to OAA.
- This OAA can be converted to PEP by the mitochondrial isozyme of PEPCK.
- The PEP is then transported to the cytosol.
- OAA can also be converted to aspartate, which is transported into the cytosol.

C. Cytosolic Oxaloacetate Decarboxylation

- In the cytosol, OAA is decarboxylated and phosphorylated to PEP by PEP-carboxykinase (PEPCK).
- The reaction is driven by hydrolysis of guanosine triphosphate (GTP).

- The combined actions of PC and PEPCK provide an energetically favorable pathway from pyruvate to PEP.
- PEP is then acted on by the reactions of glycolysis running in reverse until it becomes fructose 1,6 bisphosphate.
- The pairing of carboxylation with decarboxylation:
 - Drives reactions that would otherwise be energetically unfavorable.
 - This strategy is also used in fatty acid (FA) synthesis.

D. Fructose 1,6-Bisphosphate Dephosphorylation

- Fructose 1,6-bisphosphatase hydrolyzes fructose 1,6-bisphosphate.
- This enzyme is found in the liver and kidneys.
- The reaction:
 - Bypasses the irreversible phosphofructokinase-I
 (PFK-I) reaction of glycolysis.
 - Provides an energetically favorable pathway for the formation of fructose 6-phosphate.

- This is an important regulatory site of gluconeogenesis.
- 1. Regulation by Intracellular Energy Levels
 - Fructose 1,6-bisphosphatase is inhibited by a rise in the ratio of adenosine monophosphate (AMP) to ATP.
 - This ratio signals a low-energy state in the cell.
 - · Conversely:
 - Low AMP and high ATP levels stimulate gluconeogenesis.
 - o Gluconeogenesis is an energy-requiring pathway.
- 2. Regulation by Fructose 2,6-Bisphosphate
 - Fructose 1,6-bisphosphatase is inhibited by fructose 2,6-bisphosphate.
 - o This molecule is an allosteric effector.
 - Its concentration is influenced by the insulin/glucagon ratio.

- · When glucagon is high:
 - The effector is not made by hepatic PFK-2.
 - Thus, the phosphatase is active.

Note:

- The signals that inhibit gluconeogenesis (low energy, high fructose 2,6-bisphosphate) or activate gluconeogenesis (high energy, low fructose 2,6bisphosphate) have the opposite effect on glycolysis.
- This provides reciprocal control of the pathways that synthesize and oxidize glucose.

E. Glucose 6-Phosphate Dephosphorylation

- Glucose 6-phosphate is hydrolyzed by glucose 6-phosphatase.
- This bypasses the irreversible hexokinase/glucokinase reaction.
- Provides an energetically favorable pathway for the formation of free glucose.

Liver: Primary Organ

• The liver is the primary organ that produces free glucose from glucose 6-phosphate.

Protein Complex Required (Only in Gluconeogenic Tissue)

 Requires a complex of two proteins found only in gluconeogenic tissue:

a. Glucose 6-phosphate translocase:

 Transports glucose 6-phosphate across the endoplasmic reticular (ER) membrane.

a. Glucose 6-phosphatase:

- Removes the phosphate, producing free glucose.
- These ER membrane proteins are also required for the final step of glycogen degradation.

Glycogen Storage Diseases

- Glycogen storage disease type Ia:
 - · Caused by deficiency in glucose 6-phosphatase.

- Both are characterized by severe fasting hypoglycemia:
 - Free glucose cannot be produced from gluconeogenesis or glycogenolysis.

Transport of Free Glucose

 Specific transporters move the free glucose into the cytosol and then into the blood.

F. Summary of the Reactions of Glycolysis and Gluconeogenesis

- Total of II reactions required to convert pyruvate to free glucose.
 - 7 reactions are catalyzed by reversible glycolytic enzymes.
 - 3 irreversible reactions:
 - Catalyzed by:
 - Hexokinase/glucokinase
 - Phosphofructokinase-1 (PFK-1)
 - Pyruvate kinase (PK)

- These are circumvented by:
 - Glucose 6-phosphatase
 - Fructose 1,6-bisphosphatase
 - Pyruvate carboxylase (PC)
 - Phosphoenolpyruvate carboxykinase (PEPCK)
- In gluconeogenesis, the equilibria of the reversible glycolytic reactions are pushed toward glucose synthesis due to:
 - · Essentially irreversible formation of:
 - PEP
 - Fructose 6-phosphate
 - Glucose
 - By the gluconeogenic enzymes

Note:

- The stoichiometry of gluconeogenesis from two pyruvate molecules:
 - Couples the cleavage of six high-energy phosphate bonds.
 - o Involves the oxidation of two NADH.
 - · Produces one glucose molecule.

IV. REGULATION

- Moment-to-moment regulation of gluconeogenesis is primarily determined by:
 - · The circulating level of glucagon.
 - The availability of gluconeogenic substrates.
- Slow adaptive changes in enzyme amount occur due to:
 - Alteration in the rate of enzyme synthesis, degradation, or both.

A. Glucagon

- Glucagon is a peptide hormone secreted from pancreatic islet α -cells.
- It stimulates gluconeogenesis via three mechanisms:

1. Changes in Allosteric Effectors

- Glucagon lowers hepatic fructose 2,6-bisphosphate, resulting in:
 - Activation of fructose 1,6-bisphosphatase.
 - · Inhibition of PFK-1.
 - This favors gluconeogenesis over glycolysis.

2. Covalent Modification of Enzyme Activity

- Glucagon binds to its G protein-coupled receptor.
- · This leads to:
 - Elevation in cyclic AMP (cAMP) levels.
 - Activation of cAMP-dependent protein kinase A.
- Result: Stimulates the conversion of hepatic pyruvate kinase (PK) to its inactive (phosphorylated) form.
 - This decreases conversion of PEP to pyruvate, diverting PEP to gluconeogenesis.

3. Induction of Enzyme Synthesis

- Glucagon increases transcription of the gene for PEPCK:
 - Mediated via the transcription factor cAMP response element-binding (CREB) protein.
 - This increases availability of PEPCK enzyme as substrate levels rise during fasting.
- · Cortisol (a glucocorticoid):
 - · Also increases expression of the PEPCK gene.
- Insulin:
 - · Decreases expression of the PEPCK gene.

B. Substrate Availability

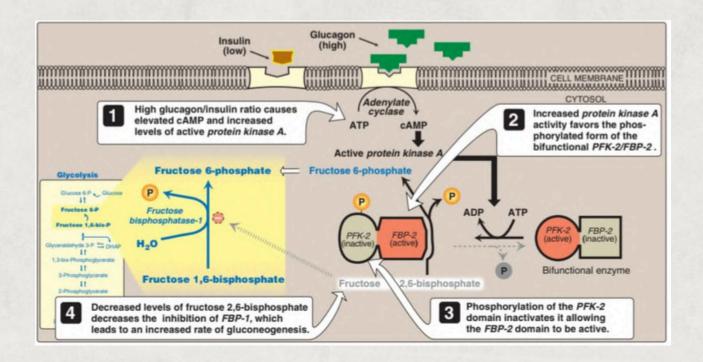
 Availability of gluconeogenic precursors, especially glucogenic amino acids, significantly influences the rate of glucose synthesis.

- · Decreased insulin levels favor:
 - · Mobilization of amino acids from muscle protein.
 - These provide carbon skeletons for gluconeogenesis.
- ATP and NADH coenzymes required for gluconeogenesis are primarily provided by fatty acid (FA) oxidation.

C. Allosteric Activation by Acetyl CoA

- Allosteric activation of hepatic pyruvate carboxylase (PC) by acetyl CoA occurs during fasting.
- Due to increased TAG hydrolysis in adipose tissue, the liver is flooded with fatty acids.
- The rate of acetyl CoA formation via β -oxidation exceeds the liver's capacity to oxidize it to CO_2 and water.
 - As a result, acetyl CoA accumulates and activates
 PC.

Note:


- Acetyl CoA inhibits the pyruvate dehydrogenase complex (PDHC) by activating PDH kinase.
- ightarrow This diverts pyruvate toward gluconeogenesis and away from the TCA cycle
- D. Allosteric Inhibition by AMP
 - Fructose 1,6-bisphosphatase is inhibited by AMP, a compound that activates PFK-1.
 - This leads to reciprocal regulation of:
 - o Glycolysis (stimulated by AMP),
 - Gluconeogenesis (inhibited by AMP).
 - Similar reciprocal regulation was previously seen with fructose 2,6-bisphosphate.

Thus, elevated AMP:

- Stimulates energy-producing pathways.
- Inhibits energy-requiring pathways.

Important Flowcharts

