"Glycogen Metabolism"

I. Overview

Importance of Blood Glucose

- A constant source of blood glucose is an absolute requirement for human life.
- Glucose is the greatly preferred energy source for the brain.
- Glucose is the required energy source for cells with few or no mitochondria, such as mature red blood cells.
- Glucose is essential as an energy source for exercising muscle.
 - It serves as the substrate for anaerobic alycolysis in muscle.

Sources of Blood Glucose

- Blood glucose can be obtained from three primary sources:
 - · The diet
 - · Glycogen degradation

· Gluconeogenesis

Dietary Glucose

- Dietary intake of glucose and glucose precursors is sporadic.
- Glucose precursors include:
 - Starch (a polysaccharide)
 - · Disaccharides
 - · Monosaccharides
- Depending on the diet, dietary intake is not always a reliable source of blood glucose.

Gluconeogenesis

- Gluconeogenesis can provide sustained synthesis of glucose.
- It is somewhat slow in responding to a falling blood glucose level.

Glycogen: Rapidly Mobilized Glucose Reserve

- The body has developed mechanisms for storing a supply of glucose in a rapidly mobilized form: glycogen.
- In the absence of a dietary source of glucose:
 - Glucose is rapidly released into the blood from liver glycogen.

· Similarly:

- Muscle glycogen is extensively degraded in exercising muscle.
- This degradation provides muscle tissue with an important energy source.

Glucose Synthesis When Glycogen Stores Are Depleted

- When glycogen stores are depleted, specific tissues synthesize glucose de novo.
- · Carbon sources for gluconeogenesis include:
 - · Glycerol
 - Lactate
 - Pyruvate

· Amino acids

II. Structure and Function

Major Glycogen Stores

- The main stores of glycogen are found in:
 - · Skeletal muscle
 - Liver
- Most other cells store small amounts of glycogen for their own use.

Functional Role of Glycogen

- · Muscle glycogen:
 - Serves as a fuel reserve for the synthesis of ATP during muscle contraction.
- · Liver glycogen:
 - Maintains the blood glucose concentration,
 particularly during the early stages of a fast.

 (Note: Liver glycogen can maintain blood glucose for <24 hours.)

A. Amounts in Liver and Muscle

- · Muscle:
 - · Approximately 400 g of glycogen.
 - Makes up 1% to 2% of the fresh weight of resting muscle.

· Liver:

- · Approximately 100 g of glycogen.
- Makes up to 10% of the fresh weight of a well-fed adult liver.
- What limits the production of glycogen at these levels is not clear.
- In glycogen storage diseases (GSDs):
 - The amount of glycogen in the liver and/or muscle can be significantly higher.

 (Note: In the body, muscle mass is greater than liver mass. Consequently, most of the body's glycogen is found in skeletal muscle.)

B. Structure

- Glycogen is a branched-chain polysaccharide made exclusively from $\alpha-D$ -glucose.
- · Primary glycosidic bond:
 - ∘ $\alpha(1 \rightarrow 4)$ linkage
- Branching occurs:
 - · After an average of 8 to 14 glucosyl residues
 - \circ Each branch contains an $\alpha(1\rightarrow 6)$ linkage
- A single glycogen molecule can contain up to 55,000 glucosyl residues.
- Glycogen polymers exist as:
 - Large, spherical cytoplasmic granules (particles)

- These granules also contain:
 - Most of the enzymes necessary for glycogen synthesis and degradation

C. Glycogen Store Fluctuation

- Liver glycogen:
 - · Increases during the well-fed state.
 - Is depleted during a fast.
- Muscle glycogen:
 - Is not affected by short periods of fasting (a few days).
 - Is only moderately decreased in prolonged fasting (weeks).
- Muscle glycogen is synthesized to replenish muscle stores after they have been depleted following strenuous exercise.
- (Note: Glycogen synthesis and degradation go on continuously. The difference between the rates of these two processes determines the levels of stored glycogen during specific physiologic states.)

III. Synthesis (Glycogenesis)

- Glycogen is synthesized from molecules of $\alpha-D-$ glucose.
- The process occurs in the cytosol.
- It requires energy supplied by:
 - · ATP (for the phosphorylation of glucose)
 - Uridine triphosphate (UTP)

A. Uridine Diphosphate Glucose Synthesis

- α-D-glucose attached to uridine diphosphate (UDP) is the source of all the glucosyl residues that are added to the growing glycogen molecule.
- UDP-glucose is synthesized from:
 - · Glucose I-phosphate
 - O UTP
 - · Enzyme: UDP-glucose pyrophosphorylase

- Pyrophosphate (PPi) is the second product of the reaction.
 - It is hydrolyzed to two inorganic phosphates (Pi) by pyrophosphatase.
 - The hydrolysis is exergonic, which ensures that the UDP-glucose pyrophosphorylase reaction proceeds in the direction of UDP-glucose production.
- (Note: Glucose I-phosphate is generated from glucose 6-phosphate by phosphoglucomutase. Glucose 1,6bisphosphate is an obligatory intermediate in this reversible reaction.

.B. Primer Requirement and Synthesis

- Glycogen synthase:
 - \circ Catalyzes the formation of $\alpha(I \rightarrow 4)$ linkages in glycogen.
 - Cannot initiate chain synthesis using free glucose as an acceptor from UDP-glucose.
 - o Only elongates existing chains of glucose.
 - · Therefore, requires a primer.

- · A fragment of glycogen can serve as a primer.
- In the absence of a fragment, the homodimeric protein glycogenin serves as the acceptor of glucose from UDP-glucose.
- The side-chain hydroxyl group of tyrosine-194 in glycogenin is the site where the initial glucosyl unit is attached.
- The reaction is catalyzed by glycogenin itself via autoglucosylation, making glycogenin an enzyme.
- Glycogenin then catalyzes the transfer of at least four molecules of glucose from UDP-glucose.
 - ∘ This produces a short, $\alpha(1 \rightarrow 4)$ -linked glucosyl chain.
- This short chain serves as a primer for elongation by glycogen synthase, which is recruited by glycogenin.
- (Note: Glycogenin stays associated with and forms the core of a glycogen granule.)

C. Elongation by Glycogen Synthase

- Elongation of a glycogen chain involves:
 - The transfer of glucose from UDP-glucose to the nonreducing end of the growing chain.
 - · Formation of a new glycosidic bond between:
 - The anomeric hydroxyl group of carbon 1 of the activated glucose
 - And carbon 4 of the accepting glucosyl residue
- (Note: The nonreducing end of a carbohydrate chain is
 one in which the anomeric carbon of the terminal
 sugar is linked by a glycosidic bond to another
 molecule, making the terminal sugar nonreducing.)
- The enzyme responsible for making $\alpha(1 \rightarrow 4)$ linkages in glycogen is glycogen synthase.
- (Note: The UDP released when the new $\alpha[I \rightarrow 4]$ glycosidic bond is made can be phosphorylated to UTP by nucleoside diphosphate kinase [UDP + ATP \rightleftharpoons UTP + ADP].)

D. Branch Formation

- If no other synthetic enzyme acted on the glycogen chain:
 - The resulting structure would be a linear (unbranched) chain of glucosyl residues.
 - \circ These would be attached by $\alpha(1 \rightarrow 4)$ linkages.
 - Such a compound is found in plant tissues and is called amylose.

• In contrast, glycogen:

- Has branches located, on average, eight glucosyl residues apart.
- o Forms a highly branched, tree-like structure.

· This structure is:

- · Far more soluble than unbranched amylose.
- Has more nonreducing ends, allowing:
 - Faster addition of new glucosyl residues.
 - Faster removal of glucosyl residues.
- This greatly accelerates glycogen synthesis rate and dramatically increases glycogen size.

1. Branch Synthesis

- Branches are made by the action of:
 - ∘ Branching enzyme: amylo- $\alpha(1\rightarrow 4)\rightarrow \alpha(1\rightarrow 6)$ -transglycosylase
- This enzyme:
 - Removes a set of 6 to 8 glucosyl residues from the nonreducing end of the glycogen chain.
 - ∘ Breaks an $\alpha(1 \rightarrow 4)$ bond.
 - \circ Attaches the removed segment to a nonterminal glucosyl residue by an $\alpha(I \rightarrow 6)$ linkage.
 - o Thus functions as a 4:6 transferase.
- The resulting ends can now be further elongated by glycogen synthase:
 - · New nonreducing end
 - Old nonreducing end (from which residues were removed)

2. Additional Branch Synthesis

- After elongation of the two ends:
 - Their terminal 6 to 8 glucosyl residues can be removed.
 - o These can be used to make additional branches.

IV. Degradation (Glycogenolysis)

- The degradative pathway that mobilizes stored glycogen in liver and skeletal muscle:
 - o Is not a reversal of the synthetic reactions.
 - · Requires a separate set of cytosolic enzymes.
- When glycogen is degraded:
 - The primary product is glucose 1-phosphate, obtained by breaking $\alpha(1 \rightarrow 4)$ glycosidic bonds.
 - ∘ Free glucose is also released from each $\alpha(1 \rightarrow 6)$ -linked glucosyl residue (branch point).

A. Chain Shortening

- Glycogen phosphorylase:
 - \circ Sequentially cleaves $\alpha(I \rightarrow 4)$ glycosidic bonds between glucosyl residues.
 - · Acts at the nonreducing ends of glycogen chains.
 - Uses simple phosphorolysis (not hydrolysis),
 producing glucose I-phosphate.
 - Continues until four glucosyl units remain on each chain at a branch point.
- The resulting structure is called a limit dextrin.
 - · Phosphorylase cannot degrade it any further.
- (Note: Phosphorylase requires pyridoxal phosphate, a derivative of vitamin Bb, as a coenzyme.)

B. Branch Removal

 Branches are removed by the two enzymic activities of a single bifunctional protein, the debranching enzyme.

1. $oligo-\alpha(1\rightarrow 4)\rightarrow\alpha(1\rightarrow 4)$ -glucantransferase activity:

- Removes the outer three of the four glucosyl residues remaining at a branch.
- Transfers them to the nonreducing end of another chain, thereby lengthening it.
- Breaks an $\alpha(1\rightarrow 4)$ bond and makes an $\alpha(1\rightarrow 4)$ bond.
- Functions as a 4:4 transferase.

2. $amylo-\alpha(1\rightarrow 6)$ -glucosidase activity:

- \circ Removes the remaining glucose residue attached via an $\alpha(I \rightarrow 6)$ linkage.
- Does so hydrolytically, releasing free (nonphosphorylated) glucose.

· After branch removal:

- The glucosyl chain is again available for degradation by glycogen phosphorylase.
- Degradation continues until four glucosyl units in the next branch are reached.

C. Glucose I-Phosphate Isomerization to Glucose 6-Phosphate

- Glucose I-phosphate, produced by glycogen phosphorylase, is:
 - Isomerized in the cytosol to glucose 6-phosphate by phosphoglucomutase.

• In the liver:

- Glucose 6-phosphate is transported into the endoplasmic reticulum (ER) by glucose 6phosphate translocase.
- o In the ER:
 - It is dephosphorylated to glucose by glucose
 6-phosphatase.
 - Same enzyme used in the last step of gluconeogenesis
- The resulting glucose is transported from the ER to the cytosol.
- Hepatocytes release glycogen-derived glucose into the blood to help maintain blood glucose levels until gluconeogenesis becomes active.

- (Note: Muscle lacks glucose 6-phosphatase.
 Consequently:
 - Glucose 6-phosphate cannot be dephosphorylated or released into the blood.
 - Instead, it enters glycolysis, providing energy needed for muscle contraction.)

D. Lysosomal Degradation

- A small amount (1% to 3%) of glycogen is degraded by the lysosomal enzyme acid $\alpha(1\rightarrow 4)$ -glucosidase (acid maltase).
- The purpose of this autophagic pathway is unknown.
- Deficiency of acid maltase causes:
 - Accumulation of glycogen in lysosomal vacuoles.
 - · Leads to GSD type II: Pompe disease.
- (Note: Pompe disease, caused by acid maltase deficiency, is the only GSD that is a lysosomal storage disease.)

- Lysosomal storage diseases:
 - Are genetic disorders characterized by accumulation of abnormal amounts of carbohydrates or lipids.
 - · Caused primarily by:
 - Decreased lysosomal degradation due to:
 - · Absence, or
 - Decreased activity or amount of a specific lysosomal acid hydrolase responsible for degradation.

Glycogen Storage Diseases

Type	Deficient Enzyme	Main Signs/Symptoms
I – Von Gierke disease	Glucose-6-phosphatase	Lactic acidosis, hypoglycemia, hyperuricemia, Impaired growth, bone thinning
II – Pompe disease ^a	Acid α-glucosidase (acid maltase)	Excess glycogen in lysosomes. Normal blood sugar. Enlarged liver and heart; muscle weakness and heart problems in severe forms
III – Cori disease ^a	Glycogen debranching enzyme (4:4 transferase)	Enlarged liver, growth delay, fasting hypoglycemia, abnormal glycogen structure, elevated fat in blood, possible muscle weakness
IV – Andersen disease	Glycogen branching enzyme (4:6 transferase)	Growth delay, enlarged liver, myopathy; death by age 5 usually
V – McArdle disease ^a	Muscle glycogen phosphorylase (myophosphorylase)	Muscle weakness and cramping after exercise; usually a relatively benign, chronic condition
VI – Hers disease	Liver glycogen phosphorylase	Liver enlargement; hypoglycemia; developmental delay
VII – Tarui disease	Muscle phosphofructokinase	Exercise-induced muscle cramps, developmental delay, hemolytic anemia in some

V. Regulation of Glycogenesis And Glycogenolysis

- Glycogen metabolism is tightly regulated to maintain blood glucose homeostasis.
- In the liver:
 - o Glycogenesis is accelerated in the well-fed state.
 - Glycogenolysis is accelerated during fasting.
- In skeletal muscle:
 - · Glycogenolysis occurs during active exercise.
 - o Glycogenesis begins when the muscle is at rest.
- Regulation occurs at two levels:
 - a. Hormonal (covalent) regulation: via phosphorylation/dephosphorylation of enzymes to meet whole-body needs.
 - b. Allosteric regulation: by effector molecules to meet specific tissue needs.

A. Covalent Activation of Glycogenolysis

 Hormones involved: Glucagon (liver) and Epinephrine (liver + muscle) Hormone binding occurs at G protein-coupled receptors (GPCRs) on the plasma membrane, triggering a cascade.

1. Protein Kinase A (PKA) Activation

- Hormone (glucagon/epinephrine) binds to GPCR \rightarrow activates G protein \rightarrow activates adenylyl cyclase.
- Adenylyl cyclase converts ATP to cyclic AMP (cAMP).
- cAMP activates PKA by:
 - · Binding to PKA's regulatory subunits.
 - Releasing the catalytic subunits (active).
- Active PKA phosphorylates several enzymes involved in glycogen metabolism.
- (Note: When cAMP is degraded, inactive tetrameric PKA reforms.)

- 2. Phosphorylase Kinase Activation
 - Exists in:
 - · Inactive "b" form
 - · Active "a" form
 - PKA phosphorylates phosphorylase kinase $b \rightarrow a$ (active form).
- 3. Glycogen Phosphorylase Activation
 - Exists in:
 - Inactive dephosphorylated "b" form
 - · Active phosphorylated "a" form
 - Phosphorylase kinase a phosphorylates glycogen phosphorylase $b \rightarrow a$, initiating glycogenolysis.
- 4. Signal Amplification
 - Each hormone → multiple PKA molecules
 - Each PKA → multiple phosphorylase kinases

- Each phosphorylase kinase → many glycogen phosphorylase a
- · Result: Amplified glycogen breakdown
- 5. Maintenance of Phosphorylated State
 - Protein phosphatase-1 (PPI):
 - · Normally removes phosphate groups.
 - Is inhibited by inhibitor proteins, which are activated by cAMP.
 - Result: Prolonged activation of glycogenolysis enzymes.

• Insulin:

- Activates phosphodiesterase, which degrades cAMP.
- o Opposes effects of glucagon and epinephrine.

B. Covalent Inhibition of Glycogenesis

- Glycogen synthase exists in two forms:
 - · Active "a" form = dephosphorylated
 - Inactive "b" form = phosphorylated

- Phosphorylation = Inactivation
 - · Occurs at multiple sites on glycogen synthase.
 - The more phosphorylated, the less active the enzyme becomes.
 - · Catalyzed by several protein kinases, including:
 - PKA (protein kinase A)
 - Phosphorylase kinase
- Dephosphorylation by PPI (Protein Phosphatase-1):
 - \circ Converts inactive glycogen synthase b \rightarrow active "a" form
 - · Promotes alycogenesis

C. Allosteric Regulation of Glycogenesis and Glycogenolysis

- Allosteric regulation allows enzymes to rapidly respond to metabolite levels and energy status of the cell.
- Can override hormonal (covalent) regulation.

- Enzymes exist in equilibrium between:
 - R (relaxed) state = more active
 - T (tense) state = less active
 - Effectors shift R/T balance, altering activity without changing phosphorylation.
- 1. Regulation in the Well-Fed State
 - Glycogen synthase b:
 - Allosterically activated by glucose 6-phosphate in liver and muscle (1 in fed state)
 - Glycogen phosphorylase a:
 - Allosterically inhibited by:
 - Glucose 6-phosphate
 - ATP (high-energy signal)
 - In liver only: Free glucose also inhibits

2. Glycogenolysis Activation by AMP

- In muscle, glycogen phosphorylase b (myophosphorylase) is:
 - · Activated by AMP without phosphorylation
 - AMP binds allosterically and shifts enzyme to active R state
- AMP levels 1 during:
 - · Anoxia
 - · ATP depletion
 - · Extreme exercise conditions
- AMP also activates PFK-I in glycolysis \rightarrow glucose from glycogen is oxidized for energy
- 3. Glycogenolysis Activation by Calcium (Ca2+)
 - Ca2+ release occurs in:
 - Muscle → in response to neural stimulation
 - \circ Liver \rightarrow in response to epinephrine binding α_1 -adrenergic receptors

- · Ca2+ binds to calmodulin (CaM):
 - · CaM is a ubiquitous Ca2+-binding protein
 - Binds 4 Ca²+ ions → changes conformation
 - Ca²⁺-CaM complex activates enzymes by binding as an essential subunit

Role in Phosphorylase Kinase Activation

- \bullet Phosphorylase kinase is a tetramer, and its δ -subunit is calmodulin
- Binding of Ca²⁺ to CaM activates phosphorylase kinase
 b
 - This occurs without needing phosphorylation by PKA
 - Allows cAMP-independent activation of glycogenolysis

Note: Epinephrine acting on β -adrenergic receptors \rightarrow activates cAMP pathway (not Ca²+)

- a. Muscle Phosphorylase Kinase Activation
 - ullet Trigger: Muscle contraction \to \uparrow ATP demand

· Process:

- Nerve impulses → depolarization
- Ca²⁺ released from sarcoplasmic reticulum into sarcoplasm
- ∘ Ca²⁺ binds CaM (δ -subunit) → activates phosphorylase kinase b
- Phosphorylase kinase b → activates glycogen phosphorylase → glycogen → glucose 6– phosphate → glycolysis

b. Liver Phosphorylase Kinase Activation

ullet Trigger: Epinephrine ullet physiological stress ullet ullet blood glucose demand

· Process:

- \circ Epinephrine binds α_1 -adrenergic GPCRs in hepatocytes
- Activates phospholipid-dependent cascade
- · Ca2+ released from ER into cytoplasm
- Ca²+-CaM complex → activates hepatic phosphorylase kinase b
- · Initiates glycogenolysis

Additional Role: Released Ca²+ also helps activate protein kinase C, which can:

· Phosphorylate & inactivate glycogen synthase a

VI. Glycogen Storage Diseases (GSDs)

Definition:

 A group of genetic disorders caused by deficiencies in enzymes involved in glycogen degradation or (less commonly) glycogen synthesis.

Common Clinical Features

- Hypoglycemia (blood glucose)
- Hepatomegaly (enlarged liver)
- · Delayed growth
- Muscle weakness or exercise-induced cramps

Underlying Mechanisms

· Two main outcomes:

a. Abnormal glycogen structure formation b. Excess accumulation of normal glycogen due to impaired degradation

Tissue Specificity

- ullet Liver-specific enzyme defect o leads to hypoglycemia
- Muscle-specific enzyme defect → leads to muscle weakness
- Generalized defects → affect multiple tissues (e.g., heart, kidneys)

Disease Severity Spectrum

- Mild forms: Not life—threatening
- · Severe forms: Can be fatal in early childhood

Epidemiology

- 15 recognized types of GSD
- Some types are extremely rare

