"Monosaccharide and Disaccharide Metabolism"

I. Overview

- Glucose is the most common monosaccharide consumed by humans.
- Fructose and Galactose:
 - · Also occur in significant amounts in the diet.
 - Primarily found in disaccharides.
 - Make important contributions to energy metabolism.
- · Galactose:
 - · An important component of glycosylated proteins.

II. Fructose Metabolism

- Dietary Contribution:
 - ~10% of calories in the typical Western diet are supplied by fructose (~55 g/day).

· Major Source:

- · Disaccharide sucrose.
 - Cleaved in the intestine.
 - Releases equimolar amounts of fructose and glucose.

· Other Sources:

- · Free monosaccharide form in:
 - Many fruits.
 - Honey.
 - High-fructose corn syrup (typically 55% fructose and 45% glucose).
 - Used to sweeten soft drinks and many foods.

• Cellular Transport:

- Fructose transport into cells is not insulin dependent.
 - Unlike glucose, whose uptake into certain tissues is insulin dependent.

· Hormonal Response:

 Fructose does not promote the secretion of insulin, in contrast to glucose.

A. Phosphorylation

- · Requirement for Metabolism:
 - For fructose to enter intermediary metabolism, it must first be phosphorylated.
- Enzymes Involved:
 - · Hexokinase
 - Phosphorylates glucose in most cells of the body.
 - Can use several additional hexoses as substrates.
 - Has low affinity (high Km) for fructose.
 - Due to saturating concentrations of glucose, little fructose is phosphorylated by hexokinase unless intracellular fructose concentration is unusually high.

· Fructokinase

- Provides the primary mechanism for fructose phosphorylation.
- Has a low Km for fructose.
- Has a high Vmax (maximal velocity).
- Found in the liver, kidneys, and small intestine.
- Converts fructose to fructose I-phosphate, using ATP as the phosphate donor.
- (Note: These three tissues also contain aldolase B)

B. Fructose I-phosphate Cleavage

- Pathway Difference:
 - Fructose I-phosphate is not phosphorylated to fructose I,6-bisphosphate like fructose 6phosphate.
 - Instead, it is cleaved by aldolase B (also called fructose I-phosphate aldolase).

- Cleavage Products:
 - · Yields two trioses:
 - Dihydroxyacetone phosphate (DHAP)
 - Glyceraldehyde
- · Aldolase Isoenzymes in Humans:
 - Three distinct isoenzymes, each from a different gene:
 - Aldolase A present in most tissues
 - Aldolase B present in liver, kidneys, and small intestine
 - Aldolase C present in the brain
 - · All three:
 - Cleave fructose 1,6-bisphosphate (from glycolysis) to:
 - · DHAP
 - Glyceraldehyde 3-phosphate
 - Only aldolase B:
 - Cleaves fructose I-phosphate

- Fate of Cleavage Products:
 - O DHAP:
 - Can enter glycolysis or gluconeogenesis
 - · Glyceraldehyde:
 - Can be metabolized by multiple pathway

C. Kinetics

- Fructose metabolism is more rapid than glucose metabolism:
 - Because triose production from fructose Iphosphate bypasses phosphofructokinase-I (PFK-I).
 - o PFK-1 is the major rate-limiting step in glycolysis.

D. Disorders

- Enzyme Deficiencies Affecting Fructose Metabolism:
 - · Can result in:
 - A benign condition due to fructokinase deficiency → Essential fructosuria.

- A severe disturbance in liver and kidney metabolism due to aldolase B deficiency → Hereditary fructose intolerance (HFI).
 - Occurs in approximately 1:20,000 live births

· HFI Onset:

- First symptoms appear when a baby is weaned from lactose-containing milk and starts ingesting food containing sucrose or fructose.
- · Pathophysiology of HFI:
 - · Fructose I-phosphate accumulates, leading to:
 - Drop in inorganic phosphate (Pi).
 - Decrease in ATP production.
 - · As ATP falls, AMP rises.
 - AMP is degraded → causes hyperuricemia and lactic acidemia.
 - Decreased hepatic ATP availability leads to:
 - Decreased gluconeogenesis → causes hypoglycemia with vomiting.
 - Decreased protein synthesis → results in:
 - Decrease in blood-clotting factors.
 - Decrease in other essential proteins.

- · Renal reabsorption of Pi is also decreased.
 - (Note: The drop in Pi also inhibits glycogenolysis.)
- Diagnosis of HFI:
 - · Based on:
 - Detection of fructose in the urine.
 - Enzyme assay using liver cells.
 - DNA-based testing.
- · Management of HFI:
 - Sucrose and fructose must be removed from the diet.
 - To prevent liver failure and possible death.
 - Individuals with HFI tend to display a life-long aversion to sweets.
- E. Mannose Conversion to Fructose 6-phosphate
 - Mannose:
 - The C-2 epimer of glucose.
 - · An important component of glycoproteins.

· Metabolism:

- Hexokinase phosphorylates mannose to form mannose 6-phosphate.
- Mannose 6-phosphate is then reversibly isomerized to fructose 6-phosphate by phosphomannose isomerase.
- · Sources of Intracellular Mannose:
 - · Mostly:
 - Synthesized from fructose.
 - Derived from pre-existing mannose produced by glycoprotein degradation, then salvaged by hexokinase.
 - (Note: Dietary carbohydrates contain little mannose.)

Summary of Fructose Metabolism

F. Glucose Conversion to Fructose via Sorbital

General Concept

- Most sugars are rapidly phosphorylated after entering cells.
 - o This traps them inside the cell.

- Organic phosphates cannot freely cross membranes without specific transporters.
- · Alternate Mechanism:
 - A monosaccharide can be converted to a polyol (sugar alcohol) by reduction of an aldehyde group.
 - This forms an additional hydroxyl group.

1. Sorbital Synthesis

- · Aldose reductase:
 - · Reduces glucose to produce sorbitol (or glucitol).
 - Has a high Km for glucose.
 - Found in many tissues:
 - Retina
 - Lens
 - Kidneys
 - Peripheral nerves
 - Ovaries
 - Seminal vesicles

- · Sorbitol dehydrogenase:
 - Oxidizes sorbital to fructose.
 - · Found in:
 - Liver
 - Ovaries
 - Seminal vesicles
- · Physiological Roles:
 - · In seminal vesicles:
 - Glucose → sorbitol → fructose.
 - Benefits sperm cells, which use fructose as a major carbohydrate energy source.
 - o In liver:
 - Converts available sorbital to fructose.
 - Fructose then enters glycolysis.
- 2. Hyperglycemia and Sorbitol Metabolism
 - · Tissue Entry of Glucose Without Insulin:
 - o In retina, lens, kidneys, peripheral nerves:
 - Glucose can enter without insulin.

- In hyperglycemia (e.g., poorly controlled diabetes mellitus):
 - Large amounts of glucose enter these cells.
- Effect of High Intracellular Glucose + NADPH:
 - Aldose reductase activity increases.
 - Produces a significant increase in sorbitol.
 - · Sorbital:
 - Cannot pass efficiently through cell membranes.
 - Remains trapped inside the cell.
 - Accumulates further if sorbitol dehydrogenase is low or absent.
- Cellular Consequences:
 - · Sorbitol accumulation causes:
 - Strong osmotic effects
 - Cell swelling due to water influx and retention

- Pathologic Consequences (linked to osmotic stress):
 - Cataract formation
 - · Peripheral neuropathy
 - · Microvascular problems leading to:
 - Nephropathy
 - Retinopathy
- NADPH Depletion:
 - · Aldose reductase reaction uses NADPH.
 - · Decreases generation of reduced glutathione.
 - An important antioxidant.
 - · This may contribute to diabetic complications.

thehandynotes.online

III. Galactose Metabolism

Dietary Sources

- Major dietary source of galactose:
 - \circ Lactose (galactosyl β -1,4-glucose) obtained from milk and milk products.
 - (Note: Digestion of lactose occurs by βgalactosidase, also called lactase)

A. Phosphorylation

- · Requirement for metabolism:
 - Like fructose, galactose must be phosphorylated before further metabolism.
- · Enzyme involved:
 - Most tissues contain galactokinase.
 - Produces galactose I-phosphate.
- Phosphate donor:
 - As with other kinases, ATP is the phosphate donor.

- · Other sources of galactose:
 - Lysosomal degradation of glycoproteins and glycolipids.
- Transport into cells:
 - Like fructose and mannose, galactose transport into cells is not insulin dependent.

B. Uridine Diphosphate-Galactose Formation

- Conversion of galactose I-phosphate:
 - Galactose I-phosphate cannot enter glycolysis unless it is first converted to UDP-galactose.
- · Mechanism:
 - · An exchange reaction occurs:
 - UDP-glucose reacts with galactose Iphosphate.
 - Produces:
 - UDP-galactose
 - · Glucose I-phosphate

- Catalyzing enzyme:
 - Reaction is catalyzed by galactose I-phosphate uridylyltransferase (GALT).
- Note: Glucose I-phosphate can be isomerized to glucose 6-phosphate, which can then:
 - Enter glycolysis or
 - · Be dephosphorylated.

C. UDP-Galactose Conversion to UDP-Glucose

- For UDP-galactose to enter the mainstream of glucose metabolism:
 - It must be isomerized to its C-4 epimer, UDPglucose.
- Enzyme:
 - UDP-hexose 4-epimerase

- Fate of the "new" UDP-glucose (produced from original UDP-galactose):
 - Can participate in biosynthetic reactions (e.g., glycogenesis)
 - · Can participate in the GALT reaction

D. UDP-Galactose in Biosynthetic Reactions

- UDP-galactose serves as the donor of galactose units in several synthetic pathways, including:
 - · Lactose synthesis
 - · Glycoprotein synthesis
 - Glycolipid synthesis
 - · Glycosaminoglycan synthesis

· Note:

- If dietary galactose is absent (e.g., cannot be released from lactose due to lack of βgalactosidase in lactose-intolerant individuals):
 - All tissue requirements for UDP-galactose can still be met by:
 - UDP-hexose 4-epimerase acting on UDPglucose

- UDP-glucose is efficiently produced from:
 - Glucose I-phosphate
 - Uridine triphosphate (UTP)

E. Disorders

- GALT deficiency:
 - Severely deficient in individuals with classic galactosemia
 - · Leads to accumulation of:
 - Galactose I-phosphate
 - Galactose
- Physiologic consequences:
 - Similar to those seen in hereditary fructose intolerance (HFI)
 - But affect a broader spectrum of tissues
- · Shunting of accumulated galactose:
 - Directed into side pathways, such as galactitol production

- · Enzyme for galactital production:
 - · Aldose reductase
 - The same enzyme that reduces glucose to sorbitol
- · Screening:
 - GALT deficiency is part of the newborn screening panel
- Treatment of galactosemia:
 - · Removal of galactose and lactose from the diet
- Other enzyme deficiencies:
 - Galactokinase deficiency
 - UDP-hexose 4-epimerase deficiency
 - Result in less severe disorders
 - Cataracts are common in these conditions

Summary of Galactose Metabolism

IV. Lactose Synthesis

- · Lactose:
 - · A disaccharide composed of:
 - A molecule of β-galactose
 - Attached by a $\beta(1\rightarrow 4)$ linkage to glucose
 - \circ Therefore, lactose is galactosyl $\beta(1\rightarrow 4)$ -glucose

- Source:
 - · Lactose, the sugar in milk, is made by:
 - Lactating (milk-producing) mammary glands
 - · Dietary sources of lactose:
 - Milk and other dairy products

A. Lactose Synthase

- Enzyme catalyzing lactose synthesis:
 - Lactose synthase (VDP-galactose:glucose galactosyltransferase)
- · Location:
 - o Functions in the Golgi
- · Mechanism:
 - Transfers galactose from UDP-galactose to glucose
 - · Releases UDP
- Structure:
 - Composed of A and B proteins

B. Protein A (B-D-galactosyltransferase)

- · Found in:
 - · A number of body tissues
- Function in non-lactating tissues:
 - Transfers galactose from UDP-galactose to:
 - N-acetyl-D-glucosamine
 - · Produces:
 - Same $\beta(1\rightarrow 4)$ linkage found in lactose
 - N-acetyllactosamine
 - A component of structurally important Nlinked glycoproteins

C. Protein B (a-lactalbumin)

- Found only in:
 - Lactating mammary glands
- Nature:
 - o α-lactalbumin

- · Regulation:
 - Its synthesis is stimulated by the peptide hormone prolactin
- · Function:
 - \circ Forms a complex with protein A ($\beta-D-g$)
 - · Alters the enzyme's specificity:
 - Decreases the Km for glucose
 - Shifts the enzyme to produce lactose instead of N-acetyllactosamine

Clinical Application: Lactose Intolerance

- · Also called:
 - · Lactose malabsorption
- · Prevalence:
 - Affects up to 60% of adults with ancestries other than Northern European
- Cause:
 - \circ Deficiency of β -galactosidase (also called lactase) in the small intestine
- Pathophysiology:
 - Insufficient lactase → Inability to fully digest dairy products
- Symptoms after consuming dairy:
 - · Cramping
 - · Diarrhea
 - Bloating

- Management:
 - · Use of lactase supplements
 - · Avoidance of dairy products