"Pentose Phosphate Pathway and Nicotinamide Adenine Dinucleotide Phosphate"

I. Overview

- The pentose phosphate pathway (also known as the hexose monophosphate shunt):
 - Provides ribose 5-phosphate for biosynthesis of nucleotides
 - Is the main source of nicotinamide adenine dinucleotide phosphate (NADPH) in the body

Functions of NADPH

- NADPH is the cellular source of reducing equivalents used for:
 - Biosynthesis of fatty acids
 - · Biosynthesis of cholesterol
 - Reduction of hydrogen peroxide (H2O2):
 - Formed in response to oxidative stress
 - Also formed as a byproduct of aerobic metabolism

Key Enzyme and Clinical Relevance

- Glucose 6-phosphate dehydrogenase (G6PD):
 - Catalyzes the first and rate-limiting step of the pathway
- GBPD deficiency:
 - · Inherited in an X-linked manner
 - Results in insufficient NADPH, especially in red blood cells
 - Leads to susceptibility to lysis during oxidant stress

Energy Involvement

· The pathway does not produce or consume ATP

Location and Phases of the Pathway

Reactions occur in the cytosol

- The pathway includes:
 - · An irreversible oxidative phase
 - Followed by reversible sugar-phosphate interconversions

Oxidative Phase Details

- In this phase:
 - Carbon I of a glucose 6-phosphate molecule is released as carbon dioxide (CO₂)
 - · Produces:
 - One pentose sugar-phosphate
 - Two reduced NADPHs

Reversible Phase and Metabolic Flexibility

- The rate and direction of the reversible reactions are determined by:
 - The supply of and demand for the intermediates of the pathway

Additional Functions of the Pathway

- Produces ribose 5-phosphate:
 - · Required for nucleotide biosynthesis
- Provides a mechanism for the conversion of pentose sugars to:
 - · Triose intermediates of glycolysis
 - · Hexose intermediates of glycolysis

II. Irreversible Oxidative Reactions

Overview of Oxidative Portion

- The oxidative portion of the pentose phosphate pathway includes three irreversible reactions
- For each molecule of glucose 6-phosphate oxidized, the products are:
 - · Ribulose S-phosphate
 - Carbon dioxide (CO₂)
 - · Two molecules of NADPH

Tissues Where the Oxidative Portion is Important

- · Liver, lactating mammary glands, and adipose tissue:
 - Site of NADPH-dependent biosynthesis of fatty acids
- Testes, ovaries, placenta, and adrenal cortex:
 - Site of NADPH-dependent biosynthesis of steroid hormones
- · Red blood cells:
 - · Site of NADPH-dependent reduction of glutathione

A. Glucose 6-Phosphate Dehydrogenation

- Enzyme: Glucose 6-phosphate dehydrogenase (G6PD)
- Reaction catalyzed:
 - Glucose 6-phosphate → 6-phosphogluconolactore
 - · NADP+ is reduced to NADPH

- This reaction is:
 - o Initial
 - · Committed
 - · Rate-limiting
 - · Regulated step of the pathway

Regulation of GBPD

- NADPH is a potent competitive inhibitor of G6PD
- · Under most metabolic conditions:
 - o The NADPH/NADP+ ratio is high
 - This substantially inhibits G6PD
- · With increased NADPH demand:
 - NADPH/NADP+ ratio decreases
 - Flux through the pathway increases due to enhanced G6PD activity

Hormonal Regulation

- Insulin:
 - Upregulates gene expression of G6PD
 - Therefore, flux through the pathway increases in the absorptive state

B. Ribulose S-Phosphate Formation

Second Step

- Enzyme: 6-Phosphogluconolactone hydrolase
- · Reaction:
 - o 6-Phosphogluconolactone is hydrolyzed

Third Step: Oxidative Decarboxylation

- Enzyme: 6-Phosphogluconate dehydrogenase
- Reaction:
 - · Oxidative decarboxylation of 6-phosphogluconate

· Products:

- Ribulose S-phosphate (a pentose sugarphosphate)
- \circ Carbon dioxide (CO₂) derived from carbon 1 of glucose
- · Second molecule of NADPH

III. Reversible Nonoxidative Reactions

General Characteristics

- Nonoxidative reactions of the pentose phosphate pathway:
 - Occur in all cell types synthesizing nucleotides and nucleic acids
 - Catalyze interconversion of sugars containing three to seven carbons

Functional Importance

- These reversible reactions allow ribulose 5-phosphate (produced by the oxidative portion) to be:
 - Converted to ribose S-phosphate, needed for nucleotide synthesis

- · Or converted to alycolytic intermediates:
 - Fructose 6-phosphate
 - Glyceraldehyde 3-phosphate

Metabolic Need for NADPH vs. Ribose 5-Phosphate

- In many cells performing reductive biosynthetic reactions:
 - There is greater need for NADPH than for ribose
 S-phosphate
 - o In this case:
 - Transketolase:
 - Transfers two-carbon units
 - Requires thiamine pyrophosphate (TPP)
 - Transaldolase:
 - · Transfers three-carbon units
 - These enzymes convert ribulose 5-phosphate (from oxidative phase) to:
 - Glyceraldehyde 3-phosphate
 - Fructose 6-phosphate

Opposite Scenario: Greater Need for Ribose

- When demand for ribose (for nucleotides and nucleic acids) is greater than need for NADPH:
 - Nonoxidative reactions can operate in reverse
 - · Provide ribose S-phosphate from:
 - Glyceraldehyde 3-phosphate
 - Fructose 6-phosphate
 - · This occurs without the oxidative steps

Additional Role of Thiamine Pyrophosphate (TPP)

- In addition to transketolase, TPP is also required by the following multienzyme complexes:
 - Pyruvate dehydrogenase
 - α-Ketoglutarate dehydrogenase of the tricarboxylic acid cycle
 - Branched-chain α-keto acid dehydrogenase of branched-chain amino acid catabolism

IV. Uses Of NADPH

Structural Difference Between NADPH and NADH

- NADPH differs from NADH by:
 - The presence of a phosphate group on one of the ribose units
- This small structural change allows NADPH to:
 - · Interact with NADPH-specific enzymes
 - · Perform unique cellular functions

NADP+/NADPH Ratio and Functional Implication

- In the cytosol of hepatocytes:
 - o The NADP+ / NADPH ratio is approximately 0.1
 - This favors the use of NADPH in reductive biosynthetic reactions
- In contrast:
 - The NAD+ / NADH ratio is about 1,000
 - This favors an oxidative role for NAD+

Summary of NADPH Roles

- NADPH plays key roles in:
 - · Reductive biosynthesis
 - · Detoxification reactions

1st Use: Reductive Biosynthesis

- · Like NADH, NADPH is a high-energy molecule
- However:
 - NADPH's electrons are used for reductive biosynthesis
 - Not for transfer to the electron transport chain (as with NADH)
- In the pentose phosphate pathway:
 - Part of the energy from glucose 6-phosphate is conserved in NADPH
 - · NADPH has a negative reduction potential

- NADPH is used in biosynthetic reactions requiring an electron donor, such as:
 - o Fatty acid synthesis
 - Cholesterol synthesis
 - · Steroid hormone synthesis

2nd Use: Reduction of H2O2

Nature and Source of H2O2

- H_2O_2 is part of the reactive oxygen species (ROS) family
- Formed from partial reduction of molecular oxygen (O_2)
- ROS are continuously generated as:
 - · Byproducts of aerobic metabolism
 - Through reactions with drugs and environmental toxins
 - · When antioxidant levels are diminished
 - · These conditions result in oxidative stress

Cellular Damage by ROS

- ROS are highly reactive oxygen intermediates
- Can cause serious chemical damage to:
 - O DNA
 - · Proteins
 - Unsaturated lipids
- · May lead to cell death

ROS in Disease and Immunity

- ROS are implicated in several pathologic processes, including:
 - · Reperfusion injury
 - Cancer
 - · Inflammatory diseases
 - Aging
- Cells possess protective mechanisms to minimize toxicity of ROS

- ROS are also generated in:
 - · Killing of microbes by white blood cells

Defense Against Reactive Oxygen Species (ROS)

- 1. Enzymes That Catalyze Antioxidant Reactions
 - Reduced glutathione (G-SH):
 - · A tripeptide-thiol: Y-glutamylcysteinylglycine
 - · Present in most cells
 - Can chemically detoxify H₂O₂
 - This reaction is:
 - Catalyzed by glutathione peroxidase
 - Converts G-SH to oxidized glutathione (G-S-S-G)
 - G-5-5-G no longer has protective properties
 - The cell regenerates G-SH:
 - · Reaction catalyzed by glutathione reductase
 - Uses NADPH as the source of reducing equivalents
 - \circ Thus, NADPH indirectly provides electrons for the reduction of H_2O_2

- Additional antioxidant enzymes:
 - · Superoxide dismutase
 - · Catalase
 - These catalyze the conversion of other ROS to harmless products
- · Collectively, these enzymes:
 - · Serve as a defense system
 - Protect against the toxic effects of ROS

2. Antioxidant Chemicals

- Several intracellular reducing agents can detoxify ROS in the lab, including:
 - · Ascorbate (vitamin C)
 - · Vitamin E
 - β-carotene
- Consumption of foods rich in these antioxidants:
 - · Correlated with reduced risk for certain cancers
 - Linked to decreased frequency of some chronic health problems

- It is tempting to speculate:
 - That these benefits are partly due to their ability to quench ROS toxicity
- However, clinical trials using antioxidants as dietary supplements have:
 - · Failed to show clear beneficial effects
- In the case of β-carotene supplementation:
 - Increased rate of lung cancer in smokers was observed
- · Conclusion:
 - The health-promoting effects of fruits and vegetables likely reflect a complex interaction among many naturally occurring compounds
 - These effects have not been duplicated by isolated antioxidant compounds

3rd Use: Cytochrome P450 Monooxygenase System

A. General Features

- Monooxygenases (mixed-function oxidases):
 - \circ Incorporate one atom from O_2 into a substrate (creating a hydroxyl group)
 - \circ The other atom is reduced to water (H₂O)
- In the cytochrome P450 (CYP) monooxygenase system:
 - NADPH provides the reducing equivalents required for the reactions
- The system functions in two separate cellular locations
- Overall reaction catalyzed by a CYP enzyme:
 - \circ R-H + O₂ + NADPH + H+ \rightarrow R-OH + H₂O + NADP+
 - · Where R may be a steroid, drug, or other chemical

• CYP enzymes:

- A superfamily of related heme-containing monooxygenases
- · Participate in a broad variety of reactions
- The term "P450" reflects the absorbance at 450
 nm by the protein

B. Mitochondrial System

- Location: Associated with the inner mitochondrial membrane
- Function: Biosynthesis of steroid hormones
- · Tissues involved:
 - · Placenta
 - Ovaries
 - · Testes
 - · Adrenal cortex

• In steroidogenic tissues:

- Hydroxylates intermediates in the conversion of cholesterol to steroid hormones
- Makes hydrophobic compounds more water soluble

• In the liver:

- · Used in bile acid synthesis
- \circ Used in hydroxylation of cholecalciferol to 25-hydroxycholecalciferol (vitamin D₃)

• In the kidney:

 \circ Hydroxylates vitamin D_3 to its biologically active 1,25-dihydroxylated form

C. Microsomal System

- Location: Associated with the membrane of the smooth endoplasmic reticulum, particularly in the liver
- Function: Detoxification of foreign compounds (xenobiotics)

- Examples of xenobiotics:
 - · Drugs
 - · Petroleum products
 - · Pesticides
- CYP enzymes involved:
 - o e.g., CYP3A4
 - Used to hydroxylate toxins (phase I reactions)
- Purpose of these modifications:
 - a. May activate or inactivate a drug
 - b. Make a toxic compound more soluble, facilitating excretion in urine or feces
- · Often, the new hydroxyl group serves as:
 - A site for conjugation with a polar molecule (e.g., glucuronic acid)
 - Conjugation increases compound solubility (phase II)

- · Genetic polymorphisms:
 - Variations in CYP enzyme genes can lead to differences in drug metabolism

4th Use: White Blood Cell Phagocytosis And Microbial Killing

A. General Overview

- · Phagocytosis:
 - · Ingestion by receptor-mediated endocytosis of:
 - Microorganisms
 - Foreign particles
 - Cellular debris
 - Carried out by leukocytes such as:
 - Neutrophils
 - Macrophages (monocytes)
- · Biological significance:
 - Important defense mechanism, particularly in bacterial infections

- Mechanisms of bacterial killing:
 - o Oxygen-independent
 - · Oxygen-dependent
- B. Oxygen-Independent Mechanisms
 - Use:
 - o pH changes in phagolysosomes
 - Lysosomal enzymes
 - · Function:
 - To destroy pathogens without reactive oxygen species
- C. Oxygen-Dependent Mechanisms
 - Include enzymes:
 - NADPH oxidase
 - Myeloperoxidase (MPO)
 - MPO system:
 - · Most potent bactericidal mechanism

D. Mechanism of Action

1. Recognition & Binding:

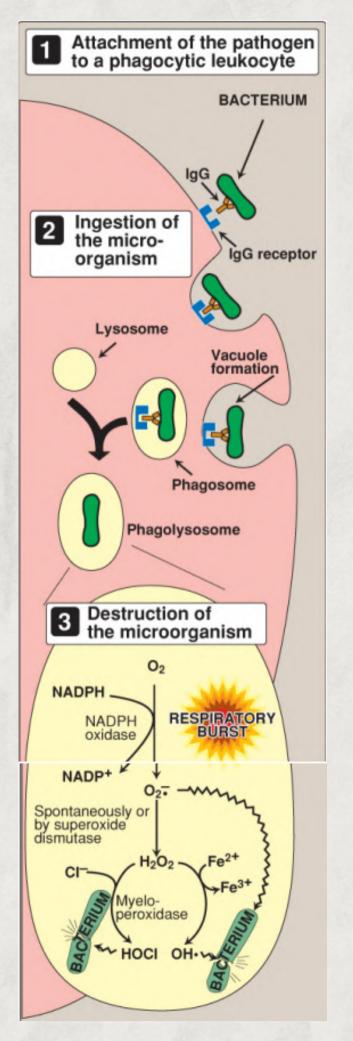
- Invading bacterium is:
 - Recognized by the immune system
 - Attacked by antibodies
 - Bound to receptors on phagocytic cells

2. Internalization:

· Microorganism is internalized

3. NADPH Oxidase Activation:

- · Located in leukocyte cell membrane
- Activated post-internalization
- \circ Reduces O_2 to superoxide (O_2^-) (a free radical ROS)
- · Uses NADPH as the electron donor
- · Process known as the respiratory burst
- NADPH oxidase complex:
 - Membrane-associated
 - Contains flavocytochrome
 - Includes additional peptides that translocate from the cytoplasm upon activation


- Electron transfer:
 - From NADPH \rightarrow FAD \rightarrow Heme \rightarrow $O_2 \rightarrow$ generates O_2^-
- o Genetic deficiency:
 - Rare NADPH oxidase deficiency causes:
 - Chronic granulomatous disease (CGD)
 - Features:
 - · Severe, persistent infections
 - Formation of granulomas (nodular inflammation) to sequester undestroyed bacteria
- 4. Conversion to Hydrogen Peroxide (H2O2):
 - o O2- converted to H2O2:
 - Either spontaneously
 - Or via superoxide dismutase

5. Myeloperoxidase (MPO) Reaction:

- · MPO:
 - A heme-containing lysosomal enzyme
 - Present in the phagolysosome
- \circ Reacts $H_2O_2 + Cl^- \rightarrow Hypochlorous acid (HOCl)$
 - HOCl = major component of household bleach
 - Strongly bactericidal

6. Other Fates of H2O2:

- o May be:
 - Partially reduced to hydroxyl radical (OH·) (an ROS)
 - Fully reduced to H2O by:
 - Catalase
 - Glutathione peroxidase
- o MPO deficiency:
 - Does not confer increased susceptibility to infection
 - Because:
 - H_2O_2 from NADPH oxidase is sufficiently bactericidal

thehandynotes.online

5th Use: Nitric Oxide Synthesis

A. General Overview

- · Nitric oxide (NO):
 - Recognized as a mediator in many biologic systems
 - Known as the endothelium-derived relaxing factor
 - Causes vasodilation by relaxing vascular smooth muscle
 - · Acts as a neurotransmitter
 - Prevents platelet aggregation
 - · Plays a role in macrophage bactericidal activity
- Stability:
 - Has a very short half-life in tissues (3 to 10 seconds)
 - Reacts with O2 to form:
 - Nitrates
 - Nitrites
 - Including peroxynitrite (0=NOO-) \rightarrow a reactive nitrogen species (RNS)

- · Chemical nature:
 - NO is a free radical gas
 - o Often confused with nitrous oxide (N20):
 - "Laughing gas"
 - Used as anesthetic
 - Chemically stable

B. Nitric Oxide Synthase (NOS)

- Substrates:
 - Arginine
 - \circ O_2
 - · NADPH
- · Products:
 - ONO
 - · Citrulline
- Cofactors/coenzymes:
 - · Flavin mononucleotide (FMN)
 - Flavin adenine dinucleotide (FAD)
 - · Heme
 - · Tetrahydrobiopterin

- Enzyme: NO synthase (NOS):
 - Located in cytosol
 - 0 3 isozymes:
 - i.eNOS (endothelial) Ca2+-calmodulin dependent, constitutive
 - ii.nNOS (neuronal) Ca²+-calmodulin dependent, constitutive
 - iii.iNOS (inducible) Ca2+-independent, inducible
- · iNOS:
 - Expressed in:
 - Macrophages
 - Neutrophils
 - And many other cells
 - o Induced by:
 - Proinflammatory cytokines:
 - · TNF-a
 - IFN-y
 - Bacterial endotoxins:
 - Lipopolysaccharide (LPS)
 - Can produce large amounts of NO over hours to days

C. Nitric Oxide and Vascular Endothelium

- Synthesis site:
 - o eNOS in endothelial cells
- · Mechanism:
 - · NO diffuses to vascular smooth muscle
 - · Activates cytosolic guanylyl cyclase to form cGMP
- · Analogy:
 - · Similar to cAMP formation by adenylyl cyclase
- · Effect of cGMP:
 - · Activates protein kinase G
 - \circ Phosphorylates Ca²⁺ channels $\rightarrow \downarrow$ Ca²⁺ entry into smooth muscle
 - \downarrow Ca²⁺-CaM activation of myosin light chain kinase \rightarrow \downarrow smooth muscle contraction \rightarrow Smooth muscle relaxation (vasodilation)

- · Pharmacologic relevance:
 - Vasodilator nitrates (e.g., nitroglycerin) are metabolized to NO
 - Causes vascular smooth muscle relaxation
 - Lowers blood pressure
 - · NO is considered an endogenous nitrovasodilator
- Under hypoxic conditions:
 - · Nitrite (NO2-) is reduced to NO
 - · NO binds to deoxyhemoglobin
 - NO is then released into blood, causing:
 - Vasodilation
 - ↑ Blood flow
- D. Nitric Oxide and Macrophage Bactericidal Activity
 - iNOS activity in macrophages:
 - · Normally low
 - Strongly stimulated by:
 - Bacterial LPS
 - Cytokines: IFN-y and TNF-a

· Mechanism:

- Activated macrophages form radicals
- · Radicals combine with NO
- · Form intermediates
- · Intermediates decompose into:
 - Highly bactericidal OH· radical

E. Additional Functions of NO

- Inhibits platelet adhesion and aggregation:
 - Via cGMP activation pathway
- Functions as a neurotransmitter:
 - In both central and peripheral nervous systems

V. GBPD Deficiency

A. Overview

- Glucose-6-phosphate dehydrogenase (GBPD) deficiency:
 - · A hereditary condition that affects mostly males
 - Characterized by hemolytic anemia upon exposure to oxidant stress

- Anemia results from inability of erythrocytes
 (RBCs) to detoxify oxidizing agents
- Pathophysiology:
 - · Less NADPH is available
 - ↓ ability to maintain reduced glutathione (G-SH)
 - J detoxification of H₂O₂ generated under oxidant stress

B. GBPD Role in Erythrocytes

- Adequate GBPD activity:
 - · Required for NADPH formation
 - Essential for maintaining the G-SH pool
- · Severity in red blood cells:
 - Although deficiency affects all cells, it is most severe in erythrocytes

- · Because:
 - Pentose phosphate pathway is the only source of NADPH in RBCs
 - RBCs lack nucleus and ribosomes
 - → Cannot synthesize new enzyme
 - → Vulnerable to unstable G6PD variants
- · Other tissues:
 - · Can produce NADPH via:
 - NADP+-dependent malate dehydrogenase (malic enzyme)

C. Clinical Application 13.1: Characteristics of G6PD Deficiency

- Inheritance:
 - · X-linked trait
 - Mostly affects males
- Prevalence:
 - Most common disease-producing enzyme abnormality in humans
 - · Affects over 400 million people worldwide

- · Geographic distribution:
 - · Highest in individuals of ancestry from:
 - Middle East
 - Tropical Africa
 - Asia
 - Parts of the Mediterranean
- · Genetic variability:
 - · GBPD deficiency is a family of deficiencies
 - · Caused by multiple mutations in the GBPD gene
 - Only some variants cause clinical symptoms

D. Clinical Manifestations

- Hemolytic anemia:
 - Occurs periodically in response to oxidant stress
- · Neonatal jaundice:
 - Common manifestation
 - · Appears I to 4 days after birth
 - May be severe
 - Caused by increased production of unconjugated bilirubin

· Chronic hemolysis:

- May lead to a somewhat shortened lifespan in severe forms
- Due to complications from persistent red cell destruction

E. Evolutionary Perspective

- Selective advantage:
 - G6PD deficiency provides increased resistance to malaria
 - · Specifically to Plasmodium falciparum
- · Mechanism:
 - · Infection induces oxidant stress
 - · Leads to RBC lysis
 - → Kills parasite
 - → Protects host from developing malaria

Additional Details on GBPD Deficiency

- A. Impaired Detoxification and Heinz Body Formation
 - Effect of GBPD deficiency:
 - Impairs detoxification of free radicals and peroxides formed within the cell
 - Role of reduced glutathione (G-SH):
 - Helps maintain reduced states of sulfhydryl (-SH)
 groups in proteins, including hemoglobin
 - Oxidative damage to proteins:
 - Oxidation of sulfhydryl groups leads to denatured proteins
 - · These form insoluble masses called Heinz bodies
 - Heinz bodies attach to red blood cell membranes

· Membrane rigidity:

- Further oxidation of membrane proteins → RBC membrane becomes rigid (less deformable)
- These rigid cells are removed by macrophages in the spleen and liver

B. Precipitating Factors in G6PD Deficiency

· Genetics:

- Males with a GBPD mutation on their single X chromosome are hemizygous
- These individuals usually remain asymptomatic unless exposed to oxidant stress
- Oxidant stress triggers:
 - Lead to red blood cell lysis and hemolytic anemia in G6PD-deficient individuals

1. Oxidant Drugs

- Categories often begin with letter A:
 - · Antibiotics (especially sulfa drugs)
 - · Antimalarials
 - · Analgesics
 - Antipyretics
- Only specific drugs in each category are problematic
- Drug safety lists are available to prescribers:
 - Include drugs that are safe and those to be avoided in GBPD-deficient individuals

2. Favism

- Fava beans (broad beans) can cause hemolysis in some
 GBPD-deficient individuals
- Particularly affects those with the Mediterranean variant of G6PD deficiency
- Favism = hemolytic reaction after fava bean ingestion
 - o Not seen in all GBPD-deficient individuals
 - But all with favism have G6PD deficiency

3. Infection

- Common precipitating factor
- Inflammatory response generates free radicals in macrophages
 - · These radicals diffuse into RBCs
 - $\circ \rightarrow$ Cause oxidative damage and hemolysis

C. GBPD Gene Variants

- Molecular genetics:
 - Cloning and sequencing of G6PD gene (see Chapter
 34) identified >400 variants
 - o Only some variants result in enzyme deficiency
- Nature of mutations:
 - o Most are missense point mutations

- · Effect of mutations:
 - Some ↓ catalytic activity
 - Some ↓ stability
 - o Others alter binding affinity for:
 - NADP+
 - Glucose 6-phosphate
- Enzyme structure:
 - · Active GBPD exists as a homodimer or tetramer
 - Mutations at subunit interfaces may affect enzyme stability
- D. Severity of Hemolytic Anemia and GBPD Variants
 - · Correlation with enzyme activity:
 - The severity of hemolytic anemia in G6PD deficiency correlates with the residual enzyme activity in red blood cells (RBCs)
- 1. G6PD A- Variant (Class III)
 - · Prototype of moderate form of the disease

- · Red blood cells contain:
 - Unstable but kinetically normal GBPD
 - Most enzyme activity is present in reticulocytes and younger RBCs
- · Older RBCs:
 - Have lowest G6PD activity
 - Are preferentially removed during hemolytic episodes
- Self-limiting episodes:
 - · Because hemolysis spares younger cells
- 2. G6PD Mediterranean Variant (Class II)
 - · Prototype of more severe deficiency
 - · Greater reduction in enzyme activity than Class III
- 3. Class I Mutations
 - Rare and most severe

- · Associated with:
 - · Chronic nonspherocytic hemolytic anemia
 - · Occurs even without oxidative stress
- 4. Mutation Characteristics
 - Both GBPD A- and GBPD Mediterranean:
 - Result from a single amino acid substitution in the normal enzyme
 - No large deletions or frameshift mutations identified
 - Suggests that a complete absence of G6PD activity is likely lethal

Classification of Glucose 6-Phosphate Dehydrogenase (G6PD) Deficiency Variants

Class	Clinical symptoms	Residual enzyme activity
1	Very severe (chronic, nonspher- ocytic hemolytic anemia)	<10%
*11	Severe (acute hemolytic anemia)	<10%
*!!!	Moderate	10%-60%
IV	None	>60%