"Glycosaminoglycans, Proteoglycans, and Glycoproteins"

I. Glycosaminoglycan (GAG) Overview

- · Definition and Structure
 - Glycosaminoglycans (GAGs) are large complexes of negatively charged heteropolysaccharide chains.
- · Association with Proteins
 - They are generally associated with a small amount of protein, forming structures known as proteoglycans.
 - Proteoglycans typically consist of up to 95% carbohydrate.
- Function in Ground Substance
 - GAGs have the special ability to bind large amounts of water, producing the gel-like matrix that forms the basis of the body's ground substance.

- · Contribution to Extracellular Matrix (ECM)
 - o Ground substance, along with:
 - Fibrous structural proteins such as:
 - · Collagen
 - · Elastin
 - · Fibrillin-1
 - Adhesive proteins such as:
 - · Fibronectin
 - Together make up the extracellular matrix (ECM).
- Roles of Hydrated GAGs
 - · Serve as a flexible support for the ECM.
 - · Interact with:
 - Structural proteins
 - Adhesive proteins
 - Act as a molecular sieve, influencing movement of materials through the ECM.
- · Role in Mucous Secretions
 - The viscous, lubricating properties of mucous secretions also result from the presence of GAGs.
 - This function led to the original naming of these compounds as mucopolysaccharides.

II. Structure of Glycosaminoglycans (GAGs)

A. Basic Composition

- GAGs are long, unbranched heteropolysaccharides.
- Composed of repeating disaccharide chains:
 - One sugar is an N-acetylated amino sugar, either:
 - N-acetylglucosamine (GlcNAc)
 - N-acetylgalactosamine (GalNAc)
 - · The other sugar is an acidic sugar.

• Exception:

 Keratan sulfate contains galactose instead of an acidic sugar.

B. Amino Sugar Component

- · Amino sugar is either:
 - · D-glucosamine
 - D-galactosamine

· Characteristics:

- The amino group is usually acetylated, eliminating its positive charge.
- The amino sugar may also be sulfated:
 - On carbon 4 or 6
 - Or on a nonacetylated nitrogen

C. Acidic Sugar Component

- · Acidic sugar is either:
 - · D-glucuronic acid
 - · Or its C-S epimer, L-iduronic acid
- These uronic sugars contain carboxyl groups:
 - Carboxyl groups are negatively charged at physiologic pH.
 - \circ Along with sulfate groups (-50₄²⁻), they give GAGs their strongly negative nature.

A. Structure-Function Relationship

- High concentration of negative charges:
 - Repeating disaccharide chains tend to be extended in solution.
 - · Chains repel each other.
 - · Surrounded by a shell of water molecules.

· Physical behavior:

- When brought together, GAG chains slide past each other, similar to two magnets with the same polarity.
- This results in the slippery consistency of:
 - Mucous secretions
 - Synovial fluid

Compression behavior:

- When a solution containing GAGs is compressed, water is squeezed out.
- o GAGs are forced to occupy a smaller volume.
- · Upon release of compression:
 - GAGs spring back to original hydrated volume.
 - Due to repulsion of their negative charges.

- This property contributes to the resilience of:
 - o Cartilage
 - · Synovial fluid
 - · Vitreous humor of the eye

B. Classification

- The six major types of GAGs are divided according to:
 - · Monomeric composition
 - · Type of glycosidic linkages
 - · Degree and location of sulfate units
- · All GAGs, except for hyaluronic acid:
 - · Are sulfated
 - Are found covalently attached to protein, forming proteoglycan monomers

C. Proteoglycans

1. Location

- Proteoglycans are found in:
 - o The extracellular matrix (ECM)
 - · The outer surface of cells

2. Monomer Structure

- · A proteoglycan monomer found in cartilage consists of:
 - A core protein to which up to 100 linear chains of GAGs are covalently attached
- · Each GAG chain:
 - · May be composed of up to 200 disaccharide units
 - · Extends out from the core protein
 - Remains separated from each other due to charge repulsion
- The overall structure resembles a bottle brush
- In cartilage proteoglycans, the main types of GAGs are:
 - · Chondroitin sulfate
 - Keratan sulfate
- · Proteoglycans are grouped into gene families:
 - These families encode core proteins with common structural features

Example: The aggrecan family, which includes:

- Aggrecan
- Versican
- · Neurocan
- · Brevican
- This family is abundant in cartilage

3. GAGs-Protein Linkage

- GAGs are attached to the core protein via covalent linkage:
 - Most commonly through a trihexoside consisting of:
 - Galactose-Galactose-Xylose
 - · Linked to a serine residue in the protein
- · An O-glycosidic bond is formed:
 - Between the xylose and the hydroxyl group of the serine

Clinical Application: Proteoglycans, Cartilage, and Osteoarthritis

- · Osteoarthritis affects millions of individuals worldwide
- In osteoarthritis:
 - Joint cartilage is degraded
 - Proteoglycans, which normally help cushion the joint, are lost
- · Without cartilage resilience, the joint suffers:
 - o Pain
 - · Stiffness
 - Swelling
 - With progressive worsening of signs and symptoms
- · Glucosamine and chondroitin:
 - · Reported to:
 - Relieve pain
 - Stop progression of osteoarthritis
 - Available as over—the—counter dietary supplements in the United States

- · Based on several well-controlled clinical studies:
 - Glucosamine sulfate (not glucosamine hydrochloride) and chondroitin sulfate:
 - May have a small to moderate effect in relieving symptoms of osteoarthritis

3. Aggregate Formation

- Many proteoglycan monomers can associate with one molecule of hyaluronic acid to form proteoglycan aggregates.
- This association:
 - Is not covalent
 - Occurs primarily through ionic interactions between:
 - The core protein
 - The hyaluronic acid
- The association is stabilized by additional small proteins called link proteins

III. Synthesis of GAGs

- Heteropolysaccharide chains are elongated by:
 - The sequential addition of alternating acidic and amino sugars
 - These sugars are donated primarily by their uridine diphosphate (UDP) derivatives
- The reactions are catalyzed by:
 - · A family of specific glycosyltransferases
- Since GAGs are produced for export from the cell:
 - · Their synthesis occurs primarily in the Golgi

A. Amino Sugar Synthesis

- Amino sugars are essential components of:
 - Glycoconjugates such as:
 - Proteoglycans
 - Glycoproteins
 - Glycolipids

- The synthetic pathway of amino sugars (hexosamines)
 is:
 - · Very active in connective tissues
 - As much as 20% of glucose flows through this pathway
- 1. N-Acetylglucosamine (GlcNAc) and N-Acetylgalactosamine (GalNAc)
 - The monosaccharide fructose 6-phosphate is the precursor of:
 - · GlcNAc (N-acetylglucosamine)
 - GalNAc (N-acetylgalactosamine)
 - Reaction sequence:
 - A hydroxyl group on fructose is replaced by the amide nitrogen of a glutamine
 - The resulting glucosamine 6-phosphate is then:
 - Acetylated
 - Isomerized
 - Activated, producing the nucleotide sugar UDP-GlcNAc

- UDP-GalNAc is generated by:
 - · The epimerization of UDP-GlcNAc
- These nucleotide sugar forms of the amino sugars are used to:
 - Elongate the carbohydrate chains
- 2. N-Acetylneuraminic Acid (NANA)
 - · NANA is:
 - · A nine-carbon, acidic monosaccharide
 - · A member of the family of sialic acids
 - · Each sialic acid is acylated at a different site
 - NANA and other sialic acids are usually found as:
 - · Terminal carbohydrate residues of:
 - Oligosaccharide side chains of glycoproteins
 - Glycolipids
 - Less frequently, of GAGs

- Immediate sources of carbons and nitrogens for NANA synthesis:
 - N-Acetylmannosamine 6-phosphate (derived from fructose 6-phosphate)
 - Phosphoenolpyruvate (an intermediate in glycolysis)
- Before NANA can be added to a growing oligosaccharide:
 - It must be activated to CMP-NANA (cytidine monophosphate-NANA) by:
 - Reacting with cytidine triphosphate (CTP)
 - Catalyzed by CMP-NANA synthetase
- CMP-NANA is the only nucleotide sugar in human metabolism in which:
 - The carrier nucleotide is a monophosphate, not a diphosphate

B. Acidic Sugar Synthesis

- D-Glucuronic acid:
 - Has the structure of glucose with an oxidized carbon 6:
 - $(-CH₂OH \rightarrow -COOH)$
 - Along with its C-5 epimer L-iduronic acid, is an essential component of GAGs
- Glucuronic acid is also required for the detoxification of lipophilic compounds, such as:
 - · Bilirubin
 - · Steroids
 - Many drugs, including statins
- Detoxification occurs through conjugation with glucuronate:
 - Known as glucuronidation
 - Increases water solubility

- In plants and mammals (other than guinea pigs and primates, including humans):
 - Glucuronic acid is a precursor of ascorbic acid
 (vitamin C)
- · The uronic acid pathway also:
 - Provides a mechanism by which dietary D-xylulose can enter central metabolic pathways

1. Glucuronic Acid

- · Glucuronic acid can be obtained:
 - o In small amounts from the diet
 - From the lysosomal degradation of GAGs
- It can also be synthesized by the uronic acid pathway:
 - Glucose I-phosphate reacts with uridine triphosphate (UTP)
 - · Converted to UDP-glucose

- Oxidation of UDP-glucose produces UDP-glucuronic acid
 - This is the form that supplies glucuronic acid for:
 - GAG synthesis
 - · Glucuronidation
- End product of glucuronic acid metabolism in humans:
 - D-xylulose S-phosphate
 - Can enter the pentose phosphate pathway
 - Produces glycolytic intermediates:
 - Glyceraldehyde 3-phosphate
 - Fructose 6-phosphate

2. L-Iduronic Acid

- Synthesis of L-iduronic acid occurs:
 - After D-glucuronic acid has been incorporated into the carbohydrate chain
- Uronosyl S-epimerase causes:
 - Epimerization of the D-sugar to the L-sugar

C. Core Protein Synthesis

- The core protein is:
 - Made by ribosomes on the rough endoplasmic reticulum (RER)
 - · Enters the RER lumen
 - · Moves to the Golgi, where it is glycosylated by:
 - Membrane-bound glycosyltransferases

D. Carbohydrate Chain Synthesis

- Carbohydrate chain formation is initiated by:
 - Synthesis of a short linker on the core protein
 - This is where carbohydrate chain synthesis will occur
- · Most common linker:
 - · A trihexoside, formed by:
 - Transfer of a xylose from UDP-xylose to the hydroxyl group of a serine (or threonine)
 - Catalyzed by xylosyltransferase

- Next steps:
 - Two galactose molecules are added
 - Completing the trihexoside
 - · Followed by:
 - Sequential addition of alternating acidic and amino sugars
 - Epimerization of some D-glucuronyl to Liduronyl residues

E. Sulfate Group Addition

- · Sulfation of a GAG occurs:
 - After the monosaccharide to be sulfated has been incorporated into the growing carbohydrate chain
- · Source of the sulfate:
 - 3'-Phosphoadenosyl-5'-phosphosulfate (PAPS):
 - A molecule of adenosine monophosphate with a sulfate group attached to the 5'-phosphate
- Sulfation reaction is catalyzed by:
 - · Sulfotransferases

· Note:

 PAPS is also the sulfur donor in glycosphingolipid synthesis

IV. Degradation

- GAGs are degraded in lysosomes, which contain:
 - Hydrolytic enzymes most active at a pH of ~5
 - As a group, these enzymes are called acid hydrolases
- · Low pH optimum within lysosomes:
 - · Serves as a protective mechanism
 - Prevents enzymes from destroying the cell if leakage into the cytosol occurs, where the pH is neutral
- · Half-lives of GAGs:
 - · Vary from minutes to months
 - Influenced by:
 - Type of GAG
 - Location in the body

A. GAGs and Phagocytosis

- Because GAGs are extracellular or cell-surface compounds, they must first be:
 - Engulfed by invagination of the cell membrane (phagocytosis)
 - This forms a vesicle containing the GAGs to be degraded
- The vesicle fuses with a lysosome:
 - o Forms a single digestive vesicle
 - · Within this, GAGs are efficiently degraded

B. Lysosomal Degradation

- Lysosomal degradation of GAGs:
 - Requires a large number of acid hydrolases for complete digestion

Steps of degradation:

1st Step:

- Polysaccharide chains are cleaved by endoglycosidases
 - Produces oligosaccharides

2nd Step:

- Further degradation occurs sequentially from the nonreducing end of each chain
 - The last group added during synthesis is the first group removed
 - Removal is by action of sulfatases or exoglycosidases
- Examples of enzymes and the bonds they hydrolyze:
- · Note:
 - Endoglycosidases and exoglycosidases are also involved in lysosomal degradation of glycoproteins and glycolipids
 - Deficiencies in these enzymes lead to:
 - Accumulation of partially degraded carbohydrates
 - Resulting in tissue damage

Clinical Insight: Multiple Sulfatase Deficiency (Austin Disease)

- Multiple sulfatase deficiency is a rare lysosomal storage disease
- In this disorder:
 - · All sulfatases are nonfunctional
 - Caused by a defect in the formation of formylglycine
 - Formylglycine is an amino acid derivative required at the active site for enzymatic activity

V. Mucopolysaccharidoses

- Mucopolysaccharidoses (MPS):
 - · Hereditary diseases
 - · Occurrence: ~1:25,000 live births
 - Caused by deficiency of any one of the lysosomal hydrolases
 - These enzymes normally degrade:
 - Heparan sulfate
 - · Dermatan sulfate
 - Keratan sulfate

• Disorder characteristics:

- · Progressive disorders
- Characterized by lysosomal accumulation of GAGs in various tissues
- · Symptoms include:
 - Skeletal deformities
 - Extracellular matrix (ECM) deformities
 - Intellectual disability

• Inheritance:

- · All are autosomal-recessive disorders
- Exception: Hunter syndrome has X-linked inheritance

· Clinical course:

- Children homozygous for the disease appear normal at birth
- · Gradual deterioration over time
- · In severe deficiencies, death occurs in childhood
- · Currently no cure

- Diagnosis:
 - Incomplete lysosomal degradation leads to oligosaccharides in urine
 - O Diagnosis based on:
 - Identifying the structure at the nonreducing end of the oligosaccharide
 - This residue would be the substrate for the missing enzyme
 - Confirmation by measuring the patient's cellular level of lysosomal hydrolases
- Treatment approaches:
 - Bone marrow and cord blood transplants:
 - Transplanted macrophages produce the enzymes that degrade GAGs
 - Used for Hurler and Hunter syndromes
 - Limited success
 - · Enzyme replacement therapy:
 - Available for Hurler and Hunter syndromes
 - Does not prevent neurologic damage

VI. Glycoprotein Overview

· Definition:

- Glycoproteins are proteins to which oligosaccharides (glycans) are covalently attached
- Glycosylation = Most common posttranslational modification of proteins
- Glycation = Nonenzymatic addition of carbohydrate to proteins

• Carbohydrate content:

- Glycoproteins have highly variable amounts of carbohydrate
- Typically much less carbohydrate than proteoglycans
 - Example:
 - Immunoglobulin G (IgG): contains < 4% carbohydrate by mass
 - Aggrecan (a proteoglycan): contains >80% carbohydrate by mass

- · Glycan structure in glycoproteins:
 - Glycans are usually:
 - Short: 2 to 10 sugar residues
 - Often branched, not linear
 - May or may not be negatively charged
- Functions of membrane-bound glycoproteins:
 - · Participate in broad range of cellular phenomena:
 - Cell-surface recognition by other cells, hormones, and viruses
 - Cell-surface antigenicity (e.g., blood group antigens)
 - Components of the extracellular matrix (ECM)
 - Components of mucins of the gastrointestinal and urogenital tracts
 - Act as protective biologic lubricants
- Plasma glycoproteins:
 - Almost all globular proteins in human plasma are glycoproteins
 - Albumin is an exception (not a glycoprotein)

VII. Oligosaccharide Structure

- Glycan components of glycoproteins:
 - · Generally branched heteropolymers
 - · Composed primarily of D-hexoses
 - · May also include:
 - Neuraminic acid (a nonose)
 - L-fucose (a 6-deoxyhexose)

A. Carbohydrate-Protein Linkage

- The glycan may be attached to the protein through an N- or an O-glycosidic link.
 - N-glycosidic link: sugar chain is attached to the amide group of an asparagine side chain
 - O-glycosidic link: sugar chain is attached to the hydroxyl group of either a serine or threonine side chain
 - In collagen, there is an O-glycosidic linkage between galactose or glucose and the hydroxyl group of hydroxylysine

B. N- and O-Linked Oligosaccharides

- A glycoprotein may contain:
 - Only one type of glycosidic linkage (N or O linked),
 or
 - · Both types within the same molecule

1. O-linked:

- O-linked glycans may have:
 - · One or more of a wide variety of sugars
 - · Sugars arranged in linear or branched patterns
- · Common locations:
 - · Found in extracellular glycoproteins
 - · Found as membrane glycoprotein components

• Example:

- O-linked oligosaccharides on the surface of red blood cells help provide the ABO blood group determinants
 - GalNAc as terminal sugar \rightarrow blood group A
 - Galactose as terminal sugar → blood group B
 - Neither GalNAc nor galactose present → blood group 0

2. N-linked:

- N-linked glycans fall into two broad classes:
 - Complex oligosaccharides
 - High-mannose oligosaccharides
- · Both classes contain the same pentasaccharide core
- · Differences:
 - Complex oligosaccharides:
 - Contain a diverse group of additional sugars
 - Examples: GlcNAc, GalNAc, L-fucose, NANA
 - High-mannose oligosaccharides:
 - Contain primarily mannose

VIII. Glycoprotein Synthesis

- Proteins destined to function in the cytoplasm are synthesized on free cytosolic ribosomes.
- · Proteins, including glycoproteins, destined for:
 - · Cellular membranes
 - Lysosomes
 - o Or to be exported from the cell
 - Are synthesized on ribosomes attached to the endoplasmic reticulum (ER)
- These proteins contain specific signal sequences that act as molecular addresses, targeting them to proper destinations.
- An N-terminal hydrophobic sequence:
 - o Initially directs these proteins to the ER
 - Allows the growing polypeptide to be extruded into the lumen
- The proteins are then:
 - Transported via secretory vesicles to the Golgi,
 which acts as a sorting center

• In the Golgi:

- · Glycoproteins destined to be:
 - Secreted from the cell, or
 - Targeted for lysosomes
 - Are packaged into vesicles that:
 - Fuse with the plasma or lysosomal membrane
 - Release their contents
- Glycoproteins destined to become components of the cell membrane:
 - Are integrated into the Golgi membrane
 - Golgi membrane buds off, forming vesicles
 - Vesicles add their membrane-bound
 glycoproteins to the cell membrane
 - Glycoproteins are oriented with the carbohydrate portion facing the outside of the cell

A. Carbohydrate Components

- Precursors of the carbohydrate components of glycoproteins are nucleotide sugars, including:
 - UDP-glucose
 - UDP-galactose

- · UDP-GICNAC
- · UDP-GalNAc
- · GDP-mannose
- GDP-L-fucose (synthesized from GDP-mannose)
- · CMP-NANA
- When acidic NANA is present, the oligosaccharide has a negative charge at physiologic pH
- Oligosaccharides are covalently attached to the side chains of specific amino acids in the protein
- The three-dimensional structure of the protein determines whether or not a specific amino acid is glycosylated

B. O-Linked Glycoprotein Synthesis

 Synthesis of O-linked glycoproteins is very similar to that of the GAGs.

• Steps:

- First, the protein to which sugars are to be attached is:
 - Synthesized on the RER
 - Extruded into its lumen
- Glycosylation begins with the transfer of GalNAc (from UDP-GalNAc) to the hydroxyl group of a specific serine or threonine residue.
- The glycosyltransferases responsible for the stepwise synthesis (from individual sugars) of the oligosaccharides:
 - Are bound to the membranes of the Golgi
 - Act in a specific order
 - Do not use a template, unlike DNA, RNA, and protein synthesis
 - Instead, they recognize the actual structure of the growing oligosaccharide as the appropriate substrate

C. N-Linked Glycoprotein Synthesis

 Synthesis of N-linked glycoproteins occurs in the lumen of the RER

- Requires the participation of:
 - The phosphorylated form of dolichol (dolichol pyrophosphate), a lipid of the RER membrane
- · The initial product is:
 - · Processed in the RER
 - · And in the Golgi
- 1. Dolichol-Linked Oligosaccharide Synthesis
 - As with O-linked glycoproteins:
 - o The protein is synthesized on the RER
 - · It enters the RER lumen
 - Difference:
 - The protein does not become glycosylated with individual sugars
 - Instead, a lipid-linked oligosaccharide is first constructed

- This lipid-linked oligosaccharide consists of:
 - · Dolichol:
 - An RER membrane lipid
 - Made from an intermediate of cholesterol synthesis
 - Attached through a pyrophosphate linkage to an oligosaccharide containing:
 - GICNAC
 - Mannose
 - Glucose
- Sugars are added sequentially to dolichol by membrane-bound glycosyltransferases:
 - · First GlcNAc
 - Followed by mannose
 - · Then glucose
- The entire 14-sugar oligosaccharide is then:
 - Transferred from dolichol to the amide nitrogen of an asparagine residue in the protein
 - This is catalyzed by protein-oligosaccharide transferase present in RER
 - (Note: The antibiotic Tunicamycin inhibits N-linked glycosylation.)

- 1. Congenital Disorders of Glycosylation (CDG)
 - CDG are syndromes caused primarily by defects in Nlinked glycosylation of proteins.
 - · Two types:
 - o Type I: Defects in oligosaccharide assembly
 - o Type II: Defects in oligosaccharide processing

2. N-Linked Oligosaccharide Processing

- After addition of the N-linked oligosaccharide to the protein:
 - It is processed by removal of specific mannosyl and glucosyl residues
 - This occurs as the glycoprotein moves through the RER

- · Final processing in the Golgi:
 - Oligosaccharide chains are completed by the addition of various sugars, such as:
 - GlcNAc
 - GalNAc
 - Additional mannoses
 - Fucose or NANA as terminal groups
 - This produces a complex glycoprotein
- · Alternative outcome:
 - · Some oligosaccharides are not further processed
 - · Resulting in branched, mannose-containing chains
 - These form a high-mannose glycoprotein
- Ultimate fate of N-linked glycoproteins is the same as O-linked glycoproteins:
 - Can be released by the cell
 - Can become part of a cell membrane
- · Additional role:
 - N-linked glycoproteins can be targeted to lysosomes

3. Lysosomal Enzymes

- N-linked glycoproteins being processed in the Golgi can be phosphorylated on:
 - · Carbon 6 of one or more mannosyl residues
- · Phosphate donor:
 - · UDP-GICNAC
- Catalyzing enzyme:
 - · Phosphotransferase
- Mannose 6-phosphate (M6P) pathway:
 - Receptors in the Golgi membrane bind the M6P residues
 - These tagged proteins are:
 - Packaged into vesicles
 - Sent to the lysosomes

Clinical Application: I-Cell Disease

Definition and Naming

- I-Cell disease is a rare lysosomal storage disease
- Named for the large inclusion bodies seen in the cells of affected patients

Molecular Defect

- Deficient enzyme: GlcNAc phosphotransferase
- Resulting effect: Mannose 6-phosphate (M6P) is not generated on proteins destined for lysosomes

Misrouting of Acid Hydrolases

- · Lack of MBP on amino acid residues causes:
 - Precursor acid hydrolases to be misdirected
 - They are sent to the plasma membrane and secreted constitutively
 - o Instead of being trafficked to lysosomes

Pathophysiology

- Consequences:
 - · Acid hydrolases are absent in lysosomes
 - Macromolecule substrates accumulate in lysosomes
 - This accumulation generates the inclusion bodies characteristic of the disorder
- · Biochemical findings:
 - High concentrations of lysosomal enzymes are found in:
 - Plasma
 - Urine
 - Indicates defective lysosomal targeting

Clinical Features

- Skeletal abnormalities
- · Restricted joint movement
- Coarse (dysmorphic) facial features
- · Severe psychomotor impairment

Classification

- Shares features with:
 - · Mucopolysaccharidoses
 - · Sphingolipidoses
- Therefore, also termed a mucolipidosis (ML II)

Prognosis

- · No current cure
- Death typically occurs in early childhood due to cardiopulmonary complications

Milder Form

- · Pseudo-Hurler polydystrophy (ML III):
 - · A less severe form of I-cell disease
 - Caused by residual activity of the phosphotransferase
 - Clinically resembles a mild form of Hurler syndrome

IX. Lysosomal Glycoprotein Degradation

Degradation Mechanism

- Degradation of glycoproteins is similar to that of GAGs
- · Lysosomal acid hydrolases involved are:
 - Specific for the removal of one component of the glycoprotein
 - · Primarily expenzymes
 - Function: Remove their respective groups in reverse order of incorporation (i.e., last on, first off)

Enzyme Dependency

- If any degradative enzyme is missing:
 - Degradation by other excenzymes cannot proceed
 - Leads to accumulation of partially degraded structures in lysosomes

Glycoprotein Storage Diseases (Oligosaccharidoses)

- · Group of very rare, autosomal-recessive diseases
- Caused by deficiency of any one of the degradative enzymes
- Result in lysosomal accumulation of partially degraded glycoprotein fragments

Example: a-Mannosidosis Type 3

- Caused by deficiency of α-mannosidase
- · Severe, progressive, and fatal
- Clinical presentation:
 - · Similar to Hurler syndrome
 - · Also includes immune deficiency
- Urine contains mannose-rich oligosaccharide fragments
- Diagnosis is made by enzyme activity assay