"Dietary Lipid Metabolism"

I. Overview

- Lipids are a heterogeneous group of water-insoluble (hydrophobic) organic molecules.
- Due to their insolubility in aqueous solutions:
 - Body lipids are generally found compartmentalized, such as:
 - Membrane-associated lipids
 - Droplets of triacylglycerol (TAG) in adipocytes
 - Or transported in blood in association with protein:
 - In lipoprotein particles
 - On albumin
- Lipids are a major source of energy for the body.
- Lipids also provide the hydrophobic barrier that permits partitioning of the aqueous contents of:
 - Cells
 - Subcellular structures

- · Additional functions of lipids in the body include:
 - Some fat-soluble vitamins have regulatory or coenzyme functions
 - Prostaglandins and steroid hormones play major roles in control of the body's homeostasis
- Deficiencies or imbalances of lipid metabolism can lead to some of the major clinical problems encountered by physicians, such as:
 - · Atherosclerosis
 - · Diabetes
 - · Obesity

II. Digestion, Absorption, Secretion, And Utilization

- The average daily intake of lipids by U.S. adults is 78
 4, of which:
 - >40% is TAG (triglyceride or TG)
 - TAG consists of three fatty acids (FA) esterified to a glycerol backbone.

- The remainder of the dietary lipids consists primarily of:
 - Cholesterol
 - Cholesteryl esters
 - Phospholipids
 - Nonesterified (free) FA (FFA)
- The digestion of dietary lipids:
 - · Begins in the stomach
 - Is completed in the small intestine

A. Digestion in the Stomach

- · Lipid digestion in the stomach is limited.
- It is catalyzed by:
 - Lingual lipase (originates from glands at the back of the tongue)
 - Gastric lipase (secreted by the gastric mucosa)
- Both enzymes are relatively acid stable, with optimal pH values of 4 to 6.

- These acid lipases hydrolyze FA from TAG molecules, particularly:
 - Short- or medium-chain-length FA (≤12 carbons)
 - · Such as are found in milk fat
- · Consequently, these lipases:
 - Play a particularly important role in lipid digestion in infants, for whom milk fat is the primary source of calories
 - Become important digestive enzymes in individuals with pancreatic insufficiency, such as:
 - Those with cystic fibrosis (CF)
- Lingual and gastric lipases aid these patients in degrading TAG molecules (especially those with shortto medium-chain FA) despite:
 - · A near or complete absence of pancreatic lipase

B. Cystic Fibrosis

 CF is the most common lethal genetic disease in Caucasians of Northern European ancestry.

- It has a prevalence of 1:3,300 births in the United States.
- CF is an autosomal-recessive disorder caused by:
 - Mutations to the gene for the CF transmembrane conductance regulator (CFTR) protein
- CFTR functions as a chloride channel on epithelium in:
 - · Pancreas
 - · Lungs
 - · Testes
 - Sweat glands
- · Defective CFTR results in:
 - · Decreased secretion of chloride
 - · Increased uptake of sodium and water
- In the pancreas, the depletion of water on the cell surface results in:
 - o Thickened mucus that clogs the pancreatic ducts
 - Prevents pancreatic enzymes from reaching the intestine
 - · Leads to pancreatic insufficiency

- Treatment includes:
 - · Replacement of pancreatic enzymes
 - Supplementation with fat-soluble vitamins
- Note: CF also causes:
 - Chronic lung infections with progressive pulmonary disease
 - Male infertility

C. Emulsification in the Small Intestine

- The critical process of dietary lipid emulsification occurs in the duodenum.
- Emulsification increases the surface area of the hydrophobic lipid droplets so that:
 - Digestive enzymes, which work at the interface of the droplet and the surrounding aqueous solution, can act effectively.

- Emulsification is accomplished by two complementary mechanisms:
 - Use of the detergent properties of the conjugated bile salts
 - Mechanical mixing due to peristalsis

· Bile salts:

- · Are made in the liver
- · Stored in the gallbladder
- · Are amphipathic derivatives of cholesterol
- · Conjugated bile salts consist of:
 - · A hydroxylated sterol ring structure
 - A side chain to which a molecule of glycine or taurine is covalently attached by an amide linkage
- These emulsifying agents:
 - Interact with the dietary lipid droplets and the aqueous duodenal contents
 - Stabilize the droplets as they become smaller from peristalsis
 - · Prevent the droplets from coalescing

D. Degradation by Pancreatic Enzymes

 The dietary TAG, cholesteryl esters, and phospholipids are enzymatically degraded (digested) in the small intestine by pancreatic enzymes, whose secretion is hormonally controlled.

1. Triacylglycerol Degradation

- TAG molecules are too large to be taken up efficiently by the mucosal cells (enterocytes) of the intestinal villi.
- Therefore, they are hydrolyzed by an esterase, pancreatic lipase, which:
 - o Preferentially removes the FA at carbons I and 3
- The primary products of hydrolysis are a mixture of:
 - 2-monoacylglycerol (2-MAG)
 - o FFA

- (Note: Pancreatic lipase is found in high concentrations in pancreatic secretions [2% to 3% of the total protein present], and it is highly efficient catalytically, thus ensuring that only severe pancreatic deficiency, such as that seen in CF, results in significant malabsorption of fat.)
- A second protein, colipase, also secreted by the pancreas:
 - · Binds the lipase at a ratio of 1:1
 - · Anchors it at the lipid-aqueous interface
 - Restores activity to lipase in the presence of inhibitory substances like bile salts that bind the micelles
- (Note: Colipase is secreted as the zymogen, procolipase, which is activated in the intestine by trypsin.)
- Orlistat, an antiobesity drug, inhibits gastric and pancreatic lipases, thereby:
 - Decreasing fat absorption
 - · Resulting in weight loss

2. Cholesteryl Ester Degradation

- Most dietary cholesterol is present in the free (nonesterified) form.
- 10% to 15% is present in the esterified form.
- Cholesteryl esters are hydrolyzed by:
 - Pancreatic cholesteryl ester hydrolase (cholesterol esterase)
- The reaction produces:
 - · Cholesterol
 - o FFA
- Activity of this enzyme is greatly increased in the presence of bile salts.
- 3. Phospholipid Degradation
 - Pancreatic juice is rich in the proenzyme of phospholipase A2, which:
 - · Like procolipase, is activated by trypsin

- Like cholesteryl ester hydrolase, requires bile salts for optimum activity
- Phospholipase A2:
 - · Removes one FA from carbon 2 of a phospholipid
 - · Leaves a lysophospholipid
- Example:
 - Phosphatidylcholine (the predominant phospholipid of digestion) becomes:
 - Lysophosphatidylcholine
- The remaining FA at carbon I can be removed by lysophospholipase, leaving a:
 - Glycerylphosphoryl base (e.g., glycerylphosphorylcholine)
- The glycerylphosphoryl base may be:
 - · Excreted in the feces
 - · Further degraded
 - · Absorbed

4. Control

- Pancreatic secretion of the hydrolytic enzymes that degrade dietary lipids in the small intestine is hormonally controlled.
- Enteroendocrine cells found throughout the small intestine secrete several hormones, such as:
 - Cholecystokinin (CCK)
 - · Secretin
- Enteroendocrine I cells, located in the mucosa of the lower duodenum and jejunum, produce:
 - o The peptide hormone CCK, in response to:
 - Presence of lipids
 - Partially digested proteins entering these regions of the upper small intestine
- · CCK acts on:
 - · The gallbladder:
 - Causing it to contract and release bile
 - Bile is a mixture of bile salts, phospholipids, and free cholesterol

- · The exocrine cells of the pancreas:
 - Causing them to release digestive enzymes
- CCK also decreases gastric motility, resulting in:
 - A slower release of gastric contents into the small intestine
- Enteroendocrine 5 cells produce another peptide hormone, secretin, in response to:
 - The low pH of the chyme entering the intestine from the stomach
- Secretin causes the pancreas to release:
 - · A solution rich in bicarbonate, which:
 - Helps neutralize the pH of the intestinal contents
 - Brings them to the appropriate pH for digestive activity by pancreatic enzymes

E. Absorption by Enterocytes

- FFA, free cholesterol, and 2-MAG are the primary products of lipid digestion in the jejunum.
- · These, plus:
 - · Bile salts
 - o Fat-soluble vitamins (A, D, E, and K)
 - → Form mixed micelles
- · Mixed micelles are:
 - Disc-shaped clusters of a mixture of amphipathic lipids
 - · Coalesce with:
 - Hydrophobic groups on the inside
 - Hydrophilic groups on the outside
- Therefore, mixed micelles are soluble in the aqueous environment of the intestinal lumen
- These particles approach the primary site of lipid absorption, the:
 - · Brush border membrane of the enterocytes

- This microvilli-rich apical membrane is:
 - Separated from the liquid contents of the intestinal lumen by an:
 - Unstirred water layer
 - · This layer mixes poorly with the bulk fluid
- The hydrophilic surface of the micelles:
 - Facilitates the transport of the hydrophobic lipids through the unstirred water layer
 - To the brush border membrane, where they are absorbed
- · Bile salts are:
 - · Absorbed in the terminal ileum
 - · With <5% being lost in the feces
- Note: Cholesterol and plant sterols are taken up by the enterocytes through the Niemann-Pick CI-like I (NPCILI) protein in the brush border cells.
- Ezetimibe, a cholesterol-lowering drug, inhibits NPCILI, reducing cholesterol absorption in the small intestine.

- Because short— and medium—chain FA are water soluble, they:
 - Do not require the assistance of mixed micelles for absorption by the intestinal mucosa

F. Triacylglycerol and Cholesteryl Ester Resynthesis

- The mixture of lipids absorbed by the enterocytes migrates to the smooth endoplasmic reticulum (SER), where:
 - · Biosynthesis of complex lipids takes place
- The long-chain FA are first converted into their activated form by:
 - Fatty acyl coenzyme A (CoA) synthetase (thiokinase)

- Using the fatty acyl CoA derivatives, the:
 - 2-MAG absorbed by the enterocytes are converted to TAG through:
 - Sequential reacylations by two acyltransferases:
 - 1. Acyl CoA:MAG acyltransferase
 - 2. Acyl CoA: diacylglycerol acyltransferase
- Lysophospholipids are reacylated to form phospholipids by:
 - · A family of acyltransferases
- Cholesterol is acylated primarily by:
 - · Acyl CoA:cholesterol acyltransferase
- (Note: Virtually all long-chain FA entering the enterocytes are used in this fashion to form TAG, phospholipids, and cholesteryl esters.)

- · Short- and medium-chain FA:
 - · Are not converted to their CoA derivatives
 - · Are not reesterified to 2-MAG
 - o Instead, they are:
 - Released into the portal circulation
 - Carried by serum albumin to the liver

G. Secretion from Enterocytes

- The newly resynthesized TAG and cholesteryl esters are:
 - · Very hydrophobic
 - · Aggregate in an aqueous environment
- Therefore, they must be packaged as particles of lipid droplets, which are:
 - · Surrounded by a thin layer composed of:
 - Phospholipids
 - Nonesterified cholesterol
 - A molecule of the protein apolipoprotein (apo)
 B-48

- This layer stabilizes the particle and:
 - Increases its solubility
 - · Prevents multiple particles from coalescing
- (Note: Microsomal TG transfer protein is essential for the assembly of all TAG-rich apo B-containing particles in the ER.)
- The lipoprotein particles are:
 - Released by exocytosis from enterocytes into the lacteals
 - (lymphatic vessels in the villi of the small intestine)
- The presence of these particles in the lymph after a lipid-rich meal:
 - · Gives it a milky appearance
- This lymph is called chyle
- (as opposed to chyme, the semifluid mass of partially digested food that passes from the stomach to the duodenum)

- · The particles are named chylomicrons
- · Chylomicrons:
 - o Follow the lymphatic system to the thoracic duct
 - · Are then conveyed to the left subclavian vein
 - · Enter the blood
- (Note: Once released into blood, the nascent [immature] chylomicrons pick up apolipoproteins E and C-II from high-density lipoproteins and mature.

H. Lipid Malabsorption

- · Lipid malabsorption results in:
 - Increased lipid (including fat-soluble vitamins and essential FA, see Chapter 16) in the feces
 - · A condition known as steatorrhea
- Steatorrhea can be caused by disturbances in lipid digestion and/or absorption

- Such disturbances can result from several conditions, including:
 - \circ Cystic fibrosis (CF) \rightarrow Causing poor digestion
 - Short bowel syndrome → Causing decreased absorption
 - Bariatric surgery → Insufficient secretion of pancreatic enzymes
- The ability of short- and medium-chain FA to be:
 - Taken up by enterocytes without the aid of mixed micelles
 - → Has made them important in medical nutrition therapy for individuals with malabsorption disorders

I. Use by the Tissues

- Most of the TAG contained in chylomicrons is broken down in the capillary beds of:
 - Skeletal muscle
 - · Cardiac muscle
 - · Adipose tissue

- TAG is degraded to:
 - o FFA
 - · Glycerol
- This reaction is catalyzed by:
 - · Lipoprotein lipase (LPL)
- LPL is synthesized and secreted primarily by:
 - · Adipocytes
 - · Muscle cells
- Secreted LPL is anchored to the luminal surface of endothelial cells in the capillaries of:
 - · Muscle
 - · Adipose tissues
- LPL is activated when bound to its cofactor:
 - ApoCII, which resides on the circulating lipoprotein particles

- Note: Familial chylomicronemia [type I Hyperlipoproteinemia] is a rare, autosomal-recessive disorder caused by a deficiency of:
 - o LPL or
 - o Its coenzyme apo C-II [see Chapter 18].
 - The result is fasting chylomicronemia and severe hypertriacylglycerolemia, which can cause pancreatitis.

1. Fate of Free Fatty Acids (FFA)

- The FFA derived from the hydrolysis of TAG may:
 - Directly enter adjacent muscle cells and adipocytes,
 or
 - Be transported in the blood in association with serum albumin, until they are taken up by cells
- Note: Human serum albumin is a large protein secreted by the liver.
- It transports a number of primarily hydrophobic compounds in the circulation, including:
 - o FFA
 - · Some drugs

- · Most cells can:
 - Oxidize FA to produce energy
- Adipocytes can also:
 - Reesterify FFA to produce TAG molecules, which are:
 - Stored until the FA are needed by the body

2. Fate of Glycerol

- Glycerol released from TAG is:
 - · Taken up from the blood
 - Phosphorylated by hepatic glycerol kinase to produce:
 - Glycerol 3-phosphate
- Glycerol 3-phosphate can:
 - Enter glycolysis
 - Enter gluconeogenesis by oxidation to dihydroxyacetone phosphate
 - · Be used in TAG synthesis

3. Fate of Chylomicron Remnants

- After most of the TAG has been removed, the chylomicron remnants (which contain):
 - · Cholesteryl esters
 - · Phospholipids
 - · Apolipoproteins
 - · Fat-soluble vitamins
 - · A small amount of TAG
- \rightarrow Bind to receptors on the liver
 - · Apo E is the ligand for this receptor-mediated binding
 - · The chylomicron remnants are endocytosed by the liver
 - Intracellular remnants are:
 - · Hydrolyzed to their component parts
 - Cholesterol and the nitrogenous bases of phospholipids (e.g., choline) can be:
 - · Recycled by the body

- Note: If removal of remnants by the liver is decreased because of impaired binding to their receptor, they accumulate in the plasma.
- This is seen in the rare:
 - · Type III hyperlipoproteinemia
 - (also called familial dysbetalipoproteinemia or broad beta disease).

Overview Lipid Digestion

Assembly and Secretion of Chylomicrons by Intestinal Mucosal Cells

