"Fatty Acid, Triacylglycerol, and Ketone Body Metabolism"

I. Overview

- Fatty acids exist:
 - · Free in the body (i.e., nonesterified)
 - As fatty acyl esters in more complex molecules such as triacylglycerols (TAGs)
- Free fatty acids (FFA):
 - · Occur in low levels in all tissues
 - Can be found in substantial amounts in plasma, particularly during fasting
- · Plasma FFA:
 - Transported on serum albumin
 - · In route from their point of origin:
 - TAG of adipose tissue
 - Circulating lipoproteins
 - O Destination: site of consumption (most tissues)
- · FFA oxidation:
 - Can be oxidized by many tissues, particularly liver and muscle

- · Purpose:
 - Provide energy
 - In the liver: provide substrate for ketone body synthesis
- Fatty acids are:
 - · Structural components of membrane lipids:
 - Phospholipids
 - Glycolipids
 - Attached to certain proteins to enhance ability to associate with membranes
 - · Precursors of hormone-like prostaglandins
- Esterified fatty acids (as TAG in white adipose tissue [WAT]):
 - · Serve as the major energy reserve of the body
- Alterations in fatty acid metabolism:
 - Associated with obesity and diabetes

II. Fatty Acid Structure

- A fatty acid consists of:
 - · Hydrophobic hydrocarbon chain
 - Terminal carboxyl group with a pka of 4.8
- · At physiologic pH:
 - Terminal carboxyl group (-COOH) ionizes to become -COO-
- · Note:
 - When pH is above the pK, the deprotonated form predominates
- Amphipathic nature of fatty acids:
 - · Due to anionic group's affinity for water
 - Fatty acid has both:
 - Hydrophilic region (-COO-)
 - Hydrophobic region (hydrocarbon chain)

- For long-chain-length fatty acids (LCFA):
 - · Hydrophobic portion is predominant
 - · These molecules are highly water insoluble
 - Must be transported in circulation in association with protein
- 90% of fatty acids in plasma:
 - · Found in the form of fatty acid esters:
 - Primarily TAG
 - Cholesteryl esters
 - Phospholipids
 - o Contained in circulating lipoprotein particles
- Free fatty acids (FFA):
 - Transported in circulation in association with albumin
 - · Albumin: the most abundant protein in serum

A. Fatty Acid Saturation

- Fatty acid chains may:
 - Contain no double bonds → saturated
 - Contain one or more double bonds → mono- or polyunsaturated
- In humans:
 - The majority of fatty acids are saturated or monounsaturated
- When double bonds are present:
 - o They are nearly always in the cis configuration
 - Cis double bonds cause the fatty acid to bend or kink at that position
- If a fatty acid has two or more double bonds:
 - o They are always spaced at three-carbon intervals

· Note:

- Addition of double bonds decreases the melting temperature (Tm) of a fatty acid
- Increasing chain length increases the Tm
- Membrane lipids typically contain long-chain fatty acids (LCFA)
 - Presence of double bonds helps maintain the fluid nature of those lipids

• In humans:

- Fatty acids with even number of carbon atoms (16, 18, or 20) predominate
- Longer fatty acids (>22 carbons) are found in the brain
- Carbon atom numbering:
 - · Begins with the carbonyl carbon as carbon I

Notation system:

- Number before the colon = number of carbon atoms in the chain
- Numbers after the colon = positions of double bonds (relative to the carboxyl end)

- Example:
 - ∘ Arachidonic acid \rightarrow 20:4(5,8,11,14)
 - 20 carbons long
 - 4 double bonds between:
 - Carbon 5-6
 - Carbon 8-9
 - Carbon 11-12
 - Carbon 14-15
- Note on carbon naming:
 - \circ Carbon 2 = α -carbon
 - \circ Carbon 3 = β -carbon
 - Carbon 4 = y-carbon
 - \circ Terminal methyl group carbon = ω -carbon, regardless of chain length
- ullet Double bond position can also be referenced from the $\ensuremath{\omega}$ (methyl) end of the chain
- · Arachidonic acid:
 - Called an W-6 fatty acid
 - \circ Terminal double bond is six bonds from the ω end
 - Equivalent designation: n-6

- Other examples:
 - Linoleic acid \rightarrow 18:2(9,12)
 - Essential W-6 fatty acid
 - ∘ α -Linolenic acid \rightarrow 18:3(4,12,15)
 - Essential W-3 fatty acid

C. Essential Fatty Acids

- · Linoleic acid:
 - · Precursor of W-6 arachidonic acid
 - Arachidonic acid is the substrate for prostaglandin synthesis
- a-Linolenic acid:
 - Precursor of W-3 fatty acids
 - · Important for growth and development
- Both linoleic acid and α -linolenic acid are dietary essentials in humans because:
 - Humans lack the enzymes that can form carboncarbon double bonds after the 9th carbon from the methyl (w) end of a fatty acid

- CPlants provide humans with these essential fatty acids
- · Note:
 - Arachidonic acid becomes essential if linoleic acid is deficient in the diet
- Essential fatty acid deficiency (rare):
 - · Can result in dry, scaly dermatitis
 - Due to an inability to synthesize molecules that provide the water barrier in skin

III. Fatty Acid De Novo Synthesis

- Excess dietary carbohydrates and proteins (beyond the body's needs):
 - Can be converted to fatty acids
- In adults, de novo fatty acid synthesis occurs primarily in:
 - Liver
 - Lactating mammary glands
 - Adipose tissue (to a lesser extent)

- This process is:
 - · Cytosolic
 - · Endergonic
 - · Reductive
- The process incorporates:
 - Carbons from acetyl coenzyme A (CoA) into the growing fatty acid chain
 - O ATP
 - Reduced nicotinamide adenine dinucleotide phosphate (NADPH)
- · Note:
 - Dietary TAG also supply fatty acids

A. Cytosolic Acetyl CoA Production

- First step in fatty acid synthesis:
 - Transfer of acetate units from mitochondrial acetyl CoA to the cytosol

- · Mitochondrial acetyl CoA is produced by:
 - Oxidation of pyruvate
 - · Catabolism of certain amino acids

· Problem:

 The CoA portion of acetyl CoA cannot cross the inner mitochondrial membrane

· Solution:

 Only the acetyl portion enters the cytosol, as part of citrate

• Citrate formation:

- Formed by condensation of acetyl CoA with oxaloacetate (OAA)
- Enzyme: Citrate synthase

· Note:

- Citrate transport to cytosol occurs when mitochondrial citrate concentration is high
- This happens when isocitrate dehydrogenase of the TCA cycle is inhibited by large amounts of ATP

- · Result: Accumulation of citrate and isocitrate
- Therefore:
 - · Cytosolic citrate is a high-energy signal
 - Since fatty acid synthesis needs a large amount of ATP, increased ATP and citrate enhance this pathway
- In the cytosol:
 - · Citrate is cleaved to:
 - Oxaloacetate (OAA)
 - Acetyl CoA
 - Enzyme: ATP citrate lyase

B. Acetyl CoA Carboxylation to Malonyl CoA

- Energy source for carbon-to-carbon condensations in fatty acid synthesis:
 - Supplied by the carboxylation and then decarboxylation of acyl groups in the cytosol

- Carboxylation of acetyl CoA to malonyl CoA:
 - Catalyzed by acetyl CoA carboxylase (ACC)
- · ACC reaction details:
 - \circ Transfers CO₂ from bicarbonate (HCO₃-) in an ATP-requiring reaction
 - Coenzyme: Biotin (vitamin B7)
 - Biotin is covalently bound to a lysyl residue of the carboxylase
- · Mechanism:
 - ACC carboxylates the bound biotin
 - Biotin then transfers the activated carboxyl group to acetyl CoA
- 1. Acetyl CoA Carboxylase Short-Term Regulation
 - This carboxylation step is:
 - o The rate-limiting step
 - A regulated step in fatty acid synthesis

- Inactive ACC = protomer (complex of ≥ 2 polypeptides)
- Allosteric regulation:
 - Activated by citrate → causes protomers to polymerize
 - Inhibited by palmitoyl CoA (end product) → causes depolymerization
- · Reversible phosphorylation:
 - Adenosine monophosphate-activated protein kinase (AMPK):
 - Phosphorylates and inactivates ACC
 - AMPK is:
 - Allosterically activated by AMP
 - Covalently activated by phosphorylation via several kinases
 - At least one of these AMPK kinases is activated by cAMP-dependent protein kinase A (PKA)

- Hormonal regulation:
 - In the presence of counterregulatory hormones (e.g., epinephrine and glucagon):
 - ACC is phosphorylated and inactive
 - · In the presence of insulin:
 - ACC is dephosphorylated and active
- Note: This regulation is analogous to glycogen synthase regulation
- 2. Acetyl CoA Carboxylase Long-Term Regulation
 - Prolonged consumption of excess-calorie diet (especially high-carbohydrate, low-fat):
 - · Causes increase in ACC synthesis
 - · Leads to increased fatty acid synthesis
 - · Low-calorie or high-fat, low-carbohydrate diet:
 - Has the opposite effect (decreases ACC synthesis)

- Regulatory pathways:
 - · ACC synthesis is upregulated by:
 - Glucose → via carbohydrate response element-binding protein (ChREBP)
 - Insulin → via sterol regulatory element binding protein—lc (SREBP—lc)
- Fatty acid synthase (FAS):
 - · Is similarly regulated

Metformin and ACC Regulation

- Metformin (used for type 2 diabetes):
 - Lowers plasma TAG by:
 - Activating AMPK, which:
 - Inhibits ACC activity (via phosphorylation)
 - Decreases ACC and FAS expression (by reducing SREBP-Ic)
 - · Lowers blood glucose by:
 - Increasing AMPK-mediated glucose uptake by muscle

C. Eukaryotic Fatty Acid Synthase (FAS)

- The remaining series of reactions in fatty acid synthesis in eukaryotes:
 - Catalyzed by fatty acid synthase (FAS)
- FAS characteristics:
 - · Multifunctional, homodimeric enzyme
 - · Each FAS monomer:
 - Is a multicatalytic polypeptide
 - Contains six different enzymic domains
 - Contains an acyl carrier protein (ACP) domain with 4'-phosphopantetheine
- · Function of FAS:
 - Adds two carbons from malonyl CoA to the carboxyl end of a series of acyl acceptors

4'-Phosphopantetheine (ACP Component)

- 4'-Phosphopantetheine:
 - · A derivative of pantothenic acid (vitamin BS)
 - · Carries acyl units on its terminal thiol (-SH) group
 - Presents the acyl units to the catalytic domains of FAS during fatty acid synthesis
 - · Also a component of CoA

Sequential Steps of Fatty Acid Chain Elongation

Step 1:

An acetyl group is transferred from acetyl CoA to the
 SH group of the ACP domain

Step 2:

 This two-carbon fragment is then transferred to a temporary holding site

Step 3:

 The now-vacant ACP accepts a three-carbon malonyl group from malonyl CoA

Step 4:

- The acetyl group (on the cysteine residue) condenses with the malonyl group (on ACP)
- CO_2 is released this CO_2 was originally added by acetyl CoA carboxylase (ACC)
- The result is a four-carbon unit attached to the ACP domain

Note: The next three reactions (steps 5-7) convert the 3ketoacyl group into a saturated acyl group

Involve two NADPH-requiring reductions and one dehydration step

Step S

· The keto group is reduced to an alcohol

Step 6

· A molecule of water is removed

- This creates a trans double bond between:
 - Carbon 2 (α-carbon)
 - Carbon 3 (β-carbon)

Step 7

- · The double bond is reduced
- Produces a four-carbon group (butyryl):
 - · Three terminal carbons are fully saturated
 - · Group remains attached to the ACP domain

Cycle Repeats (Marked by Asterisk *)

- Repetition begins with:
 - Transfer of butyryl unit from ACP to cysteine residue [2*]
 - Attachment of a malonyl group to ACP [3*]
 - \circ Condensation of the two groups \to CO₂ is released [4*]

- · The newly formed carbon chain then undergoes:
 - \circ Reduction of β -carbonyl [S*]
 - Dehydration [6*]
 - · Reduction [7*]
- This sequence generates hexanoyl-ACP

Elongation Process

- The cycle continues, repeating steps [2*] through [7*]
- Continues until the fatty acid chain reaches 16 carbons in length

Final Step of FAS

- The final catalytic activity of FAS:
 - · Cleaves the thioester bond
 - Releases a fully saturated molecule of palmitate (16:0)

Synthesis of Palmitate (16:0) by Multifunctional Fatty Acid Synthase

Important Note:

- All carbons in palmitic acid come from malonyl CoA
 - Except the two carbons donated by the original acetyl CoA (the first acyl acceptor)
 - These two are located at the methyl (w) end of the fatty acid
- This highlights the rate-limiting nature of the ACC reaction
- Shorter-length fatty acids:
 - · Are produced only in the lactating mammary gland

D. Reductant Sources

- · Synthesis of one palmitate requires:
 - 14 NADPH (reductant/reducing agent)
- · Major source of NADPH:
 - · Pentose phosphate pathway
 - Two NADPH are produced per molecule of glucose 6-phosphate entering the pathway

- Additional cytosolic NADPH production:
 - · From the conversion of malate to pyruvate
 - Malate is oxidized and decarboxylated by:
 - · Cytosolic malic enzyme
 - (NADP+-dependent malate dehydrogenase)
 - Produces:
 - · Cytosolic NADPH
 - CO₂
- · Note:
 - Malate can arise from reduction of oxaloacetate (OAA) by:
 - Cytosolic NADH-dependent malate dehydrogenase
- · Source of cytosolic NADH:
 - · Glycolysis
- · Source of OAA:
 - From citrate cleavage by ATP citrate lyase

Interrelationship between Glucose Metabolism and Palmitate Synthesis

E. Further Elongation

- Palmitate (16:0):
 - A 16-carbon, fully saturated long-chain fatty acid
 (LCFA)
 - It is the primary end product of FAS activity
- Further elongation of palmitate:
 - Occurs by addition of two-carbon units to the carboxylate end
 - Takes place primarily in the smooth endoplasmic reticulum (SER)
- Elongation process:
 - · Requires a system of separate enzymes
 - Not a multifunctional enzyme like FAS
 - Malonyl CoA serves as the two-carbon donor
 - · NADPH supplies the electrons

- Brain-specific elongation:
 - The brain has additional elongation capabilities
 - · Can produce very long-chain fatty acids (VLCFA):
 - VLCFA = fatty acids over 22 carbons
 - Required for synthesis of brain lipids

F. Chain Desaturation

- Enzymes involved:
 - Fatty acyl CoA desaturases, located in the smooth endoplasmic reticulum (SER)
- · Function:
 - Desaturate long-chain fatty acids (LCFA) by adding cis double bonds
- Desaturation reaction requirements:
 - Oxygen (O₂)
 - · NADH
 - Cytochrome b₅
 - FAD-linked reductase (flavin adenine dinucleotidelinked)

- · Reaction mechanism:
 - · Both the fatty acid and NADH are oxidized
 - · O2 is reduced to H2O
- Typical desaturation site:
 - Between carbons 9 and 10
 - · Produces:
 - Oleic acid, 18:1(9)
 - Palmitoleic acid, 16:1(9) (in smaller amounts)
- Polyunsaturated fatty acid (PUFA) synthesis:
 - Achieved through additional desaturation combined with elongation
- Human desaturase enzymes present:
 - Carbon 9, 6, 5, and 4 desaturases
- · Limitation:
 - \circ Humans lack the ability to insert double bonds between carbon 10 and the ω end of the chain

- Nutritional consequence:
 - · Explains the essentiality of:
 - w-6 linoleic acid
 - w-3 linolenic acid

G. Storage as TAG Components

- Mono-, di-, and triacylglycerols:
 - Comprise one, two, or three fatty acids esterified to a molecule of glycerol
- Esterification:
 - Fatty acids are esterified through their carboxyl groups
 - · Results in:
 - Loss of negative charge
 - Formation of neutral fat
- · Note:
 - An acylglycerol that is:
 - Solid at room temperature = fat
 - Liquid at room temperature = oil

1. Arrangement of Fatty Acids in TAG

- Triacylglycerol (TAG) = Three fatty acids esterified to a glycerol molecule
- Fatty acids are usually not of the same type:
 - \circ Carbon I \rightarrow typically saturated
 - \circ Carbon 2 \rightarrow typically unsaturated
 - Carbon 3 → can be either saturated or unsaturated

· Note:

Presence of unsaturated fatty acid(s) lowers the
 Tm (melting temperature) of the lipid

2. Triacylglycerol Storage and Function

- · Solubility:
 - TAGs are only slightly soluble in water
 - · Cannot form stable micelles on their own

- Storage in white adipocytes:
 - TAGs coalesce to form large oily, nearly anhydrous droplets
 - · Stored in cytosolic lipid droplets
 - These droplets are the major energy reserve of the body
- · Note:
 - TAGs in brown adipocytes are used for heat production through nonshivering thermogenesis
- 3. Glycerol 3-Phosphate Synthesis
 - Glycerol 3-phosphate:
 - Is the initial acceptor of fatty acids during TAG synthesis
 - Two major pathways for glycerol 3-phosphate production:
- A. From Glucose (in Liver and Adipose Tissue)
 - Glucose → DHAP via glycolytic pathway

DHAP is reduced by glycerol 3-phosphate
 dehydrogenase → Glycerol 3-phosphate

B. From Free Glycerol (in Liver only)

- Free glycerol is converted to glycerol 3-phosphate
 - Enzyme: Glycerol kinase
- · Note:
 - · This pathway is absent in adipose tissue

Additional Notes

- Glyceroneogenesis:
 - A third process for glycerol 3-phosphate synthesis
- Insulin Dependence in Adipocytes:
 - GLUT-4 (glucose transporter in adipocytes) is insulin dependent

- · When plasma glucose is low, adipocytes:
 - Have limited ability to synthesize glycerol phosphate
 - Therefore, cannot produce TAG de novo

4. Fatty Acid Activation

- A free fatty acid (FFA) must be converted to its activated form before participating in metabolic processes such as TAG synthesis
- · Activated form:
 - Fatty acid bound to Coenzyme A (CoA) via a thioester bond
- Catalyzing enzyme:
 - A family of fatty acyl CoA synthetases (also called thickinases)
- 5. Triacylglycerol (TAG) Synthesis
 - Pathway begins from glycerol 3-phosphate

- Involves four reactions:
 - · Addition of 1st fatty acid from fatty acyl CoA
 - · Addition of 2nd fatty acid from fatty acyl CoA
 - · Removal of phosphate group
 - · Addition of third fatty acid

Synthesis of TAG

H. Triacylglycerol Fate in Liver and Adipose Tissue

In White Adipose Tissue (WAT)

- TAG storage:
 - Stored as nearly anhydrous fat droplets in the cytosol
- Fat droplet structure:
 - · Coated with perilipins:
 - A family of proteins that sequester and protect TAG from lipolysis
 - Activated only when the body requires fatty acids for fuel
- Clinical relevance:
 - · Perilipins may play a role in:
 - Type 2 diabetes
 - Atherosclerosis
 - Cardiovascular disease

In Liver

- Healthy liver:
 - · Stores little TAG
- · Most TAG in liver is:
 - Exported, packaged with other lipids and apolipoproteins
 - · Forms very-low-density lipoproteins (VLDL)
- VLDL characteristics:
 - · Nascent VLDL are secreted directly into the blood
 - Mature in blood and deliver endogenously derived lipids to peripheral tissues
- · Note:
 - · Chylomicrons carry dietary (exogenous) lipids

Pathways for Production of Glycerol 3-phosphate in Liver and Adipose Tissue

IV. Fat Mobilization And Fatty Acid Oxidation

- Stored fatty acids in white adipose tissue (WAT):
 - Stored as neutral triacylglycerol (TAG)
 - · Serve as the body's major fuel storage reserve
- Why TAGs are efficient energy stores:
 - · Highly reduced
 - · Largely anhydrous

- Energy yield from complete oxidation:
 - \circ Fatty acids \rightarrow CO₂ + H₂O = 9 kcal/g fat
 - · Compared to:
 - 4 kcal/g for protein or carbohydrate

A. Fatty Acid Release from Fat

- · Lipolysis:
 - Required to release free fatty acids (FFA) and glycerol from TAG
 - · Carried out by perilipins and lipases
- · Steps of lipolysis:

a. Initiated by adipose triglyceride lipase (ATGL):

- Produces diacylalycerol (DAG)
- DAG is the preferred substrate for:
- a. Hormone-sensitive lipase (HSL):
 - Produces monoacylglycerol (MAG)
- a.MAG lipase acts on MAG to complete hydrolysis

- 1. Regulation of Perilipins and HSL
 - PKA-mediated phosphorylation:
 - · Both perilipins and HSL are phosphorylated by PKA
 - · PKA is activated by cAMP, which is produced when:
 - Catecholamines (e.g., epinephrine) bind to βadrenergic receptors
 - Activate adenylyl cyclase
 - Effects of phosphorylation:
 - Phosphorylated perilipin allows translocation and binding of phosphorylated (active) HSL to lipid droplet
 - Process similar to glycogen phosphorylase activation
 - cAMP cascade effects:
 - Inhibits ACC (acetyl CoA carboxylase)
 - Turns off fatty acid synthesis
 - Turns on TAG degradation

- Insulin effects:
 - High plasma insulin:
 - Causes dephosphorylation and inactivation of HSL
 - Suppresses ATGL expression

2. Fate of Glycerol

- · Adipocytes lack glycerol kinase:
 - · Cannot metabolize glycerol
- Glycerol is transported to the liver:
 - · Liver contains glycerol kinase
 - Converts glycerol → glycerol 3-phosphate
- Fate of glycerol 3-phosphate in liver:
 - · Used to form TAG
 - Or converted to DHAP by glycerol 3-phosphate dehydrogenase (reverse reaction)
 - O DHAP can enter:
 - Glycolysis
 - Gluconeogenesis

3. Fate of Fatty Acids

- Free fatty acids (FFA):
 - \circ Exit adipocyte \rightarrow enter blood \rightarrow bind serum albumin
- FFA transported to:
 - · Tissues like muscle
 - o Inside cells:
 - Activated to CoA derivatives
 - Oxidized for energy in mitochondria
- Tissues that do not utilize plasma FFA:
 - · Red blood cells (RBCs):
 - No mitochondria
 - O Brain:
 - Uses little/no fatty acids
 - Reason not well understood
- Reesterification of fatty acids:
 - >50% of fatty acids released from adipose TAG
 are reesterified to glycerol 3-phosphate

- · Problem: WAT does not express glycerol kinase
- Solution: Glycerol 3-phosphate is produced by glyceroneogenesis aka incomplete gluconeogenesis:
 - · Incomplete gluconeogenesis:
 - Pyruvate → oxaloacetate (OAA) via pyruvate carboxylase
 - OAA → phosphoenolpyruvate (PEP) via PEP carboxykinase
 - PEP → DHAP (via shared glycolytic/gluconeogenic steps)
 - DHAP → glycerol 3-phosphate
- Clinical relevance:
 - · Reesterification reduces plasma FFA levels
 - Elevated FFA levels are associated with:
 - Insulin resistance
 - Type 2 diabetes
 - Obesity

Hormonal Regulation of Diacylglycerol Degradation in the Adipocyte

B. Fatty Acid B-Oxidation

· Definition:

- · The major pathway for catabolism of fatty acids
- · Occurs in the mitochondria
- Process: Two-carbon fragments are successively removed from the carboxyl end of fatty acyl CoA

· Products:

- · Acetyl CoA
- · NADH
- o FADH₂

1. Long-Chain Fatty Acid Transport into Cytosol and Mitochondria

A. Cellular Uptake of Fatty Acids

• Mechanisms:

- · Passive diffusion
- Lipid transport proteins:
 - Fatty acid translocase (FAT)
 - Fatty acid-binding protein (FABP)
 - Fatty acid transport protein (FATP)

- Long-chain fatty acids (LCFA):
 - · Taken up specifically by FATP

B. Activation of Fatty Acids

- · Once LCFA enter the cell:
 - Converted in the cytosol to fatty acyl CoA
- Enzyme: Long-chain fatty acyl CoA synthetase (thiokinase)
 - · Located on the outer mitochondrial membrane

C. Mitochondrial Transport Requirement

- β-Oxidation occurs in the mitochondrial matrix
- Inner mitochondrial membrane is impermeable to CoA
- Therefore, the acyl group must be transported via a specialized carrier

D. Carnitine Shuttle (Rate-limiting Transport Process)

- Carrier: Carnitine
- · Name of process: Carnitine shuttle
- a. Translocation Steps (Three Key Steps)
- 1. Transfer of acyl group to carnitine:
 - o Enzyme: Carnitine palmitoyltransferase I (CPT-I)
 - Also known as carnitine acyltransferase I (CAT-I)
 - Located on the outer mitochondrial membrane
 - · Reaction:
 - Acyl group from CoA → Carnitine
 - Forms acylcarnitine
 - Regenerates free CoA
- 2. Transport across inner mitochondrial membrane:
 - Transporter: Carnitine-acylcarnitine translocase
 - Exchanges acylcarnitine into matrix and free carnitine out

3. Transfer of acyl group back to CoA:

- o Enzyme: Carnitine palmitoyltransferase II (CPT-II)
 - Also known as carnitine acyltransferase II (CAT-II)
 - Located on the inner mitochondrial membrane
- · Reaction:
 - Acyl group from carnitine → CoA in matrix
 - Regenerates free carnitine

Carnitine Shuttle

b. Carnitine Shuttle Inhibitor

- Inhibitor: Malonyl CoA
 - o Inhibits CPT-I (Carnitine Palmitoyltransferase I)
 - Prevents entry of long-chain acyl groups into the mitochondrial matrix

- Functional Significance:
 - When fatty acid synthesis is occurring in the cytosol (indicated by presence of malonyl CoA):
 - The newly made palmitate cannot be transferred into mitochondria
 - Prevents degradation of newly synthesized fatty acids
- Tissue-Specific Notes:
 - · Muscle tissue:
 - Does not synthesize fatty acids
 - But contains mitochondrial isozyme of ACC (ACC2)
 - Allows regulation of B-oxidation
 - O Liver:
 - Contains both isozymes of ACC
- Additional Regulation:
 - Regulated by the acetyl CoA / CoA ratio:
 - As the ratio increases, the CoA-requiring thiolase reaction decreases

c. Carnitine Sources

- Dietary source:
 - · Carnitine is found primarily in meat products
- Endogenous synthesis:
 - · Synthesized from lysine and methionine
 - · Enzymatic pathway is present in:
 - Liver
 - Kidneys
 - Not synthesized in:
 - Skeletal muscle
 - Cardiac muscle
- Tissue dependency:
 - · Skeletal and cardiac muscles are:
 - Totally dependent on carnitine uptake from:
 - Endogenous synthesis (via blood)
 - · Diet
- · Distribution note:
 - Skeletal muscle contains 47% of all carnitine in the body

Carnitine Transport into Cells

- Transport mechanism: Carnitine enters cells via carnitine transporters
- · High-affinity transporter (in heart, muscle, kidney):
 - Organic cation transporter novel 2 (OCTN2)
- Liver transporter:
 - Different, low-affinity, high-capacity carnitine transporter
- Primary carnitine deficiency:
 - · Due to defect in OCTN2
 - · Leads to:
 - Urinary loss of carnitine
 - Low serum and cellular carnitine levels
- d. Carnitine Deficiencies
- 1. Primary Carnitine Deficiency
 - Cause: Defects in membrane transporter

- · Prevents carnitine uptake by:
 - Cardiac muscle
 - Skeletal muscle
 - Kidneys
- · Effect: Carnitine is excreted in urine
- Treatment: Carnitine supplementation
- 2. Secondary Carnitine Deficiency
 - Primary cause: Defects in fatty acid oxidation
 - · Leads to accumulation of acylcarnitines
 - · Acylcarnitines are excreted in urine
 - Result: Decreased carnitine availability
 - · Acquired causes:
 - Liver disease → Decreased carnitine synthesis
 - Valproic acid (antiseizure drug) → Decreased renal reabsorption

3. CPT-I and CPT-II Deficiencies (Defects in mitochondrial oxidation)

- CPT-I deficiency:
 - · Affects the liver
 - Impaired LCFA usage for fuel
 - Severe effect on hepatic glucose synthesis during fasting (an endergonic process)
 - · Leads to:
 - Severe hypoglycemia
 - Coma
 - Death
- CPT-II deficiency:
 - · Affects:
 - Liver
 - Cardiac muscle
 - Skeletal muscle
 - Most common form: Affects skeletal muscle (least severe)
 - Presents as:
 - Muscle weakness
 - · Myoglobinemia after prolonged exercise

- Treatment:
 - Avoid fasting
 - · High-carbohydrate, low-fat diet
 - · Supplement with medium-chain TAG
- 2. Entry of Shorter-Chain Fatty Acids into Mitochondria
 - Fatty acids ≤12 carbons:
 - Can cross inner mitochondrial membrane without carnitine or CPT system
 - · Once inside mitochondria:
 - · Activated to CoA derivatives by matrix enzymes
 - Undergo oxidation
 - · Note:
 - · Medium-chain fatty acids:
 - Plentiful in human milk
 - Oxidation is independent of CPT-I
 - Therefore, malonyl CoA does not inhibit their oxidation

3. B-Oxidation Reactions

- Overview:
 - \circ Involves four sequential reactions at the β -carbon (carbon 3)
 - Result: Shortens the fatty acid by two carbons at the carboxylate end

Steps of B-Oxidation:

- 1. Oxidation:
 - · Produces FADH2
- 2. Hydration
- 3. Second oxidation:
 - · Produces NADH
- 4. CoA-dependent thiolytic cleavage:
 - · Releases one molecule of acetyl CoA

- · Enzyme Specificity:
 - Each step is catalyzed by enzymes with chainlength specificity
- · Note:
 - For long-chain fatty acids (LCFA), the last three steps are catalyzed by a trifunctional protein

Cycle Repetition:

- For saturated fatty acids with even-numbered carbon chains:
 - Number of cycles = (n/2) 1 (where n = number of carbons)
- Each cycle yields:
 - · I acetyl CoA
 - · I NADH
 - I FADH₂

- Final cycle produces:
 - 2 acetyl CoA

Fates of Acetyl CoA and Reduced Coenzymes:

- Acetyl CoA can be:
 - · Oxidized
 - Used in hepatic ketogenesis
- · Reduced coenzymes:
 - · NADH oxidized by ETC Complex I
 - · FADH2 oxidized by coenzyme Q
- · Note:
 - Acetyl CoA is a positive allosteric effector of pyruvate carboxylase (see Chapter 10)
 - This links fatty acid oxidation with gluconeogenesis

Enzymes involved in the β -oxidation of fatty acyl coenzyme A (CoA)

4. B-Oxidation Energy Yield

- Fatty Acid β-Oxidation Produces High Energy:
 - The energy yield from fatty acid β-oxidation is very high.

Example: Complete Oxidation of Palmitoyl CoA (C16:0)

- Yields the following:
 - 8 acetyl CoA
 - o 7 NADH
 - o 7 FADH₂
- These products can generate a total of 131 ATP.
- Activation of the fatty acid consumes 2 ATP, so:
 - · Net ATP yield = 129 ATP.

Energy Calculation for even-numbered aturated fatty acid

• Let n = number of carbon atoms in the saturated fatty acid (even-numbered).

- Use the following steps:
 - \circ Number of β -oxidation cycles = (n/2) 1
 - Each cycle removes 2 carbons as I acetyl CoA.
 - So for C_{16} (16 / 2) 1 = 7 cycles.
 - Acetyl CoA produced = (n / 2)
 - One additional acetyl CoA is produced in the final cycle, when a 4-carbon fatty acyl CoA is cleaved into two acetyl CoA.
 - So for palmitate (C16), you get 8 acetyl CoA.
 - \circ NADH and FADH₂ = number of β -oxidation cycles
 - Each of the 7 cycles produces:
 - I NADH = 7 NADH (total)
 - $I FADH_2 = 7 FADH_2$ (total)

ATP Yield Summary for Palmitate (C16)

Molecule	Quantity	ATP per molecule	Total ATP
Acetyl CoA	8	12	96
NADH	7	3	21
FADH ₂	7	2	14
Subtotal	_		131 ATP
Activation cost	_	_	-2 ATP
Grand total	<u>-</u>	_	Net: 129 ATP

Summary of the Energy Yield from the Oxidation of Palmitoyl Coenzyme A (CoA) (16 carbons)

Note: Activation of palmitate to palmitoyl CoA requires the equivalent of 2 ATP [ATP \rightarrow AMP + PPi

5. Medium-Chain Fatty Acyl CoA Dehydrogenase (MCAD) Deficiency

- Fatty Acyl CoA Dehydrogenases in Mitochondria:
 - There are four species of fatty acyl CoA dehydrogenases.
 - · Each has distinct but overlapping specificity for:
 - Short-chain fatty acids
 - Medium-chain fatty acids
 - Long-chain fatty acids
 - Very-long-chain fatty acids

MCAD Deficiency

- Most common inborn error of β-oxidation
- · Genetic basis:
 - · Autosomal recessive disorder
- Prevalence:
 - Found in 1:14,000 births worldwide
 - Higher incidence in Caucasians of Northern European descent

Pathophysiology

- Impaired oxidation of fatty acids with 6 to 10 carbons
- · Results in:
 - · Decreased production of acetyl CoA
 - · Increased reliance on glucose for energy
 - Leads to hypoketotic hypoglycemia

Laboratory Findings

- · Urine studies show:
 - · Accumulation of medium-chain acyl carnitines
 - · Presence of medium-chain dicarboxylic acids

Treatment:

- · Avoidance of fasting
- 6. Oxidation of Fatty Acids with an Odd Number of Carbons
 - Follows same β -oxidation steps as even-numbered fatty acids.

- Continues until final three-carbon fragment: Propionyl CoA.
 - Also produced during the metabolism of some amino acids

Three-Step Metabolism of Propionyl CoA:

- a. D-Methylmalonyl CoA Synthesis
 - Enzyme: Propionyl CoA carboxylase
 - · Reaction:

Propionyl CoA + CO_2 + ATP \rightarrow D-Methylmalonyl CoA

- · Cofactors:
 - Biotin (Vitamin B7) same as in acetyl CoA carboxylase (ACC)
 - O ATP
- b. L-Methylmalonyl CoA Formation
 - Enzyme: Methylmalonyl CoA racemase
 - · Converts D-isomer to L-isomer

c. Succinyl CoA Synthesis

- Enzyme: Methylmalonyl CoA mutase
- · Reaction:

L-Methylmalonyl CoA → Succinyl CoA

- Cofactor: Vitamin B12 (deoxyadenosylcobalamin)
 - · One of only two BI2-dependent enzymes in humans

Clinical Correlation: Gluconeogenesis

- Succinyl CoA enters the TCA cycle
- ullet o Only known glucogenic product of fatty acid oxidation

Vitamin BI2-Related Notes

- Second B12-dependent enzyme: Methionine synthase
 - Converts homocysteine → methionine
 - Essential for:
 - Folate recycling
 - Conversion of B12 to coenzyme form

- Deficiency consequences:
 - Early: Hematologic abnormalities (similar to folate deficiency)
 - Late: Neurologic symptoms: paresthesias, numbness, ataxia
- Diagnostic markers:
 - ↑ Methylmalonic acid (MMA) in serum = B12
 deficiency
 - · Both propionic acid and MMA appear in urine
 - MMA helps differentiate BI2 deficiency from folate deficiency

Inherited Disorders

- Methylmalonic acidemia/aciduria:
 - Caused by:
 - Defects in methylmalonyl CoA mutase
 - Deficiency of methionine synthase

Metabolism of propionyl CoA

7. B-Oxidation of Unsaturated Fatty Acids

Challenge: Unsaturated FA oxidation forms
intermediates that cannot be acted on by 2,3-enoyl
CoA hydratase (step 2 of β-oxidation).

a. Odd-Numbered Double Bonds

- Example: Oleic acid = 18:1(9)
- After 3 β -oxidation rounds \rightarrow Intermediate: 3-cisenoyl CoA
- · Solution:
 - o Enzyme: 3,2-enoyl CoA isomerase
 - \circ Converts 3-cis \rightarrow 2-trans, the correct substrate for hydratase

b. Even-Numbered Double Bonds

- Example: Linoleic acid = 18:2(9,12)
- Problem: Produces 2,4-dienoyl CoA intermediate, which is not a substrate

- · Solution:
 - · Enzymes required:
 - 3,2-enoyl CoA isomerase
 - 2,4-dienoyl CoA reductase (requires NADPH)
- Note: Unsaturated FAs are less reduced \rightarrow fewer NADH/FADH₂ \rightarrow less ATP yield
- 8. Peroxisomal β -Oxidation (for VLCFA \geqslant 22 carbons)
 - VLCFAs are first oxidized in peroxisomes, not mitochondria.

a. Activation

- Peroxisomes contain acyl CoA synthetases for VLCFA.
- VLCFA-CoA is formed and enters peroxisomal β -oxidation.

b. Comparison: Mitochondrial vs. Peroxisomal β -Oxidation

Feature	Mitochondrial β- Oxidation	Peroxisomal β- Oxidation
Primary Substrate	Short-, medium-, and long- chain fatty acids (≤ 22 C)	Very-long-chain fatty acids (VLCFA ≥ 22 C)
Site of Activation	Cytosol/outer mitochondrial membrane	Peroxisome
Initial Dehydrogenation Enzyme	Acyl CoA dehydrogenase (produces FADH2)	Acyl CoA oxidase (produces FADH ₂ used to reduce $O_2 \rightarrow H_2O_2$)
Electron Acceptor	ETF o ETC o ATP	0 ₂ (no ATP generated directly)
Hydrogen Peroxide Formation	Not formed	H ₂ O ₂ formed; detoxified by catalase to H ₂ O
End Products	Acetyl CoA, NADH, FADH2	Shortened fatty acyl-CoA (e.g., octanoyl-CoA) + H2O2
Further Oxidation Site	Complete within mitochondria	Requires transfer to mitochondria (via carnitine) for completion
Clinical Relevance	Impaired in mitochondrial disorders	Defective in Zellweger syndrome, X-linked ALD

(ETF = Electron Transfer Flavoprotein)

thehandynotes.online

End Product: Shortened FA (linked to carnitine) \rightarrow sent to mitochondria for completion of oxidation

c. Clinical Correlations

- · Zellweger Syndrome:
 - · Cause: Peroxisomal biogenesis defect
 - · Result: Impaired import of matrix proteins
 - · Consequence: 1 VLCFA in blood and tissues
- X-linked Adrenoleukodystrophy (ALD):
 - Cause: Defective VLCFA transport into peroxisomes
 - · Consequence: Accumulation of VLCFA
 - · Affects: Primarily brain and adrenal cortex

C. Peroxisomal a-Oxidation

- Substrate: Phytanic acid
 - A branched-chain fatty acid derived from chlorophyll metabolism
 - \circ Problem: Methyl group on β -carbon prevents β oxidation

1. a-Oxidation Mechanism

- Step 1: Hydroxylation at α -carbon (carbon-2)
 - Enzyme: Phytanoyl CoA α-hydroxylase (PhyH)
 - · Requires peroxisomes
- Step 2: Decarboxylation carbon I released as CO_2
- Step 3: Product: Pristanal (ISC) \rightarrow oxidized to pristanic acid
- Step 4: Pristanic acid-CoA formed \rightarrow undergoes β -oxidation (in peroxisomes)

2. Refsum Disease

- · Cause: Autosomal recessive deficiency of PhyH
- Effect: Accumulation of phytanic acid in plasma and tissues
- Symptoms: Neurologic, e.g., peripheral neuropathy, cerebellar ataxia, retinitis pigmentosa

• Treatment:

 Strict dietary restriction of phytanic acid (avoidance of green vegetables, ruminant fats, and dairy)

3. W-Oxidation

- Site: Smooth Endoplasmic Reticulum (SER)
- Process: Oxidation at w-carbon (methyl end)
 - · Produces dicarboxylic acids
- Significance: Normally minor → upregulated in conditions like MCAD deficiency
 - · Acts as backup when β-oxidation is impaired

V. Ketone Bodies: AlternativeL Fuel For Cells

- · Liver Mitochondrial Role:
 - Converts acetyl CoA (from fatty acid oxidation) into ketone bodies.

- · Ketone bodies include:
 - Acetoacetate
 - 3-Hydroxybutyrate (β-hydroxybutyrate)
 - Acetone (nonmetabolized)
 - (Note: Acetoacetate and 3-hydroxybutyrate are functional organic acids.)
- Peripheral Use:
 - Transported via blood to peripheral tissues.
 - Reconverted into acetyl CoA → enters TCA cycle for energy.
 - · Tissues that use ketone bodies:
 - Skeletal muscle
 - Cardiac muscle
 - Intestinal mucosa
 - Renal cortex
 - Brain (during prolonged fasting or high ketone levels)
- Advantages of Ketone Bodies:
- a. Water-soluble no need for lipoproteins or albumin.
- b. Formed when hepatic acetyl CoA exceeds liver's oxidative capacity.

c. Utilized in proportion to their plasma concentration by extrahepatic tissues.

- Glucose-Sparing Role:
 - Especially important during prolonged fasting.
 - Reduces glucose requirement of brain and peripheral tissues.
- · Clinical Note:
 - Fatty acid oxidation disorders:
 - Lead to hypoketosis (\ acetyl CoA availability).
 - Lead to hypoglycemia (↑ glucose reliance).

A. Ketone Body Synthesis by the Liver: Ketogenesis

- Trigger:
 - Occurs during fasting when liver receives excess
 FFAs from adipose tissue.

- Resulting Hepatic Changes:
 - ↑ Acetyl CoA (from β-oxidation):
 - Inhibits pyruvate dehydrogenase.
 - Activates pyruvate carboxylase (PC) \rightarrow OAA \rightarrow used in gluconeogenesis (not TCA).
 - NADH $\uparrow \rightarrow OAA \rightarrow malate$ (see p. 124).
 - Low OAA = acetyl CoA diverted to ketogenesis.
 - Other acetyl CoA sources: Catabolism of ketogenic amino acids.

1. HMG CoA Synthesis (Rate-Limiting Step):

- Step 1: Two acetyl CoA molecules → acetoacetyl CoA (via reversal of fatty acid thiolase step).
- Step 2: Third acetyl CoA + acetoacetyl CoA \rightarrow HMG CoA (via HMG CoA synthase).
- HMG CoA synthase:
 - Rate-limiting enzyme of ketogenesis.
 - o Found in significant levels only in liver mitochondria.
 - (Note: HMG CoA also appears in cytosolic cholesterol synthesis — different cellular location & context.)

2. Ketone Body Formation:

- HMG CoA → acetoacetate + acetyl CoA (via HMG CoA lyase).
- Acetoacetate can:
 - · Be reduced to 3-hydroxybutyrate (using NADH).
 - Spontaneously decarboxylate to acetone in blood.
- Transport:
 - Not CoA-bound → can freely cross mitochondrial membrane.
- Equilibrium between ketones:
 - Controlled by NAD+/NADH ratio.
 - \circ Fatty acid oxidation \rightarrow low NAD+/NADH ratio \rightarrow favors 3-hydroxybutyrate formation.

Synthesis of Ketone Bodies

B. Ketone Body Use by the Peripheral Tissues: Ketolysis

- Liver constantly produces low levels of ketone bodies.
- During fasting, production increases to supply energy to peripheral tissues.
- Step 1: Oxidation of 3-hydroxybutyrate
 - 3-Hydroxybutyrate → Acetoacetate (via 3hydroxybutyrate dehydrogenase).
 - · NADH is produced in the process.
- Step 2: Activation of acetoacetate
 - Acetoacetate + CoA (from succinyl CoA) →
 Acetoacetyl CoA
 - Enzyme: Succinyl CoA:acetoacetate CoA transferase (thiophorase)
 - This reaction is reversible, but:
 - Acetoacetyl CoA is rapidly cleaved to two acetyl CoA by thiolase, pulling the reaction forward.

- BUtilization Sites:
 - · Extrahepatic tissues, including:
 - Skeletal muscle
 - Cardiac muscle
 - Brain (during prolonged fasting)
 - · Excluded tissues:
 - RBCs (lack mitochondria)
 - Liver: despite producing ketone bodies, lacks thiophorase, so cannot use them as fuel.

C. Excessive Ketone Body Production in Diabetes Mellitus

- · Overproduction of ketone bodies leads to:
 - · Ketonemia (elevated blood ketone levels)
 - Ketonuria (presence in urine)

C. Excessive Ketone Body Production in Diabetes Mellitus

- · Overproduction of ketone bodies leads to:
 - Ketonemia (elevated blood ketone levels)
 - Ketonuria (presence in urine)

- · Common in uncontrolled Type I Diabetes Mellitus (TID):
 - Blood ketones: can reach 40 mg/dL (normal: <3 mg/dL)
 - · Urinary excretion: up to 5,000 mg/24 hrs
- · Acidemia Mechanism:
 - Ketone bodies (acetoacetate, 3-hydroxybutyrate)
 have acidic carboxyl groups (pKa ~4)
 - In blood, they lose H+, leading to decreased blood
 pH
 - Termed diabetic ketoacidosis (DKA)
- · Compounding Factors:
 - \circ Glucose and ketone loss in urine \rightarrow dehydration
 - Loss of water → concentration of H⁺ in plasma → worsens acidosis

- Signs and Symptoms:
 - Fruity odor of breath (from acetone, a volatile ketone)
 - · May occur in:
 - Uncontrolled TID
 - Prolonged fasting
 - Excessive ethanol intake

Ketone Body Synthesis in the Liver and Use in Peripheral Tissues

