## "Cholesterol, Lipoprotein, and Steroid Metabolism"

#### I. Overview

## Cholesterol - General Characteristics

- Cholesterol is the major steroid alcohol in animals.
- It performs a number of essential functions in the body.

## Structural and Functional Roles of Cholesterol

- Structural Component:
  - · Present in all cell membranes.
  - · Modulates membrane fluidity.
- Precursor Molecule (in specialized tissues):
  - · Bile acids
  - · Steroid hormones
  - · Vitamin D

# Importance of Cholesterol Supply

 It is critically important that cells of the body receive an appropriate supply of cholesterol.

# Hepatic Role in Cholesterol Homeostasis

#### Central Role of the Liver

 The liver plays a central role in regulating the body's cholesterol homeostasis.

# Sources of Hepatic Cholesterol Pool

- · Cholesterol enters the hepatic cholesterol pool from:
  - · Dietary cholesterol
  - · Cholesterol synthesized de novo by:
    - Extrahepatic tissues
    - The liver itself

## Cholesterol Elimination Pathways

## Routes of Cholesterol Elimination from Liver

- Cholesterol is eliminated from the liver via:
  - · Unmodified cholesterol in the bile
  - Conversion to bile salts, which are secreted into the intestinal lumen
  - · Incorporation into plasma lipoproteins, which:
    - Carry lipids to peripheral tissues

## Imbalance and Atherosclerosis

## Influx-Efflux Imbalance

 In humans, the balance between cholesterol influx and efflux is not precise.

## Consequences of Imbalance

- Gradual deposition of cholesterol in tissues occurs.
- This is especially significant in endothelial linings of blood vessels.

#### Atherosclerosis

- Lipid deposition leads to plaque formation.
- Plaque formation causes:
  - · Narrowing of blood vessels (atherosclerosis)
  - · Increased risk of:
    - Cardiovascular disease
    - Cerebrovascular disease
    - Peripheral vascular disease

# Sources of Liver Cholesterol (Influx) and Routes by which Cholesterol Leaves the Liver (Efflux)



## II. Cholesterol Structure

## General Properties

· Cholesterol is a very hydrophobic compound.

#### Core Structure

- Composed of four fused hydrocarbon rings (A-D),
   collectively called the steroid nucleus.
- Contains an eight-carbon, branched hydrocarbon chain attached to carbon 17 of the D ring.

# Ring Modifications

- Ring A: has a hydroxyl group at carbon 3.
- Ring B: has a double bond between carbon 5 and carbon 6.

#### A. Sterols

## Definition of Sterols

- · Steroids with:
  - 8 to 10 carbon atoms in the side chain at carbon
    17
  - A hydroxyl group at carbon 3
- · Classified as sterols.

## Cholesterol as a Sterol

Cholesterol is the major sterol in animal tissues.

## Sources of Cholesterol

- · Arises from:
  - De novo synthesis
  - · Absorption of dietary cholesterol

# Intestinal Uptake of Cholesterol

Mediated by the Niemann-Pick CI-like I (NPCILI) protein.

- NPCILI is the target of the drug ezetimibe, which:
  - · Reduces absorption of dietary cholesterol.

Note: Plant Sterols (Phytosterols)

| Feature                 | Plant Sterols (e.g., <b>B</b> -sitosterol)                | Cholesterol                      |
|-------------------------|-----------------------------------------------------------|----------------------------------|
| Absorption in<br>Humans | Poorly absorbed<br>(≈5%)                                  | ≈40% absorbed                    |
| Fate in Enterocytes     | Actively transported<br>back into the<br>intestinal lumen | Some transported<br>back as well |

Defects in the efflux transporter (ABCG5/8) cause:

- Sitosterolemia: plant sterols accumulate in blood and tissues.
- Consequences:
  - · Reduced blood flow

- · Increased risk of:
  - Heart attack
  - Stroke
  - Sudden death

# Dietary Use of Plant Sterols

- Some cholesterol is transported back, so plant sterols:
  - · Reduce absorption of dietary cholesterol
- Daily ingestion of plant sterol esters (e.g., in spreads):
  - Is a dietary strategy to reduce plasma cholesterol levels

## B. Cholesteryl Esters

## Structure

- Most plasma cholesterol is in esterified form:
  - o Fatty acid (FA) is attached at carbon 3

## Properties

• More hydrophobic than free (nonesterified) cholesterol.

#### Location

- · Not found in membranes
- · Normally present at low levels in most cells

## Transport Requirements

- Due to hydrophobicity, cholesterol and esters must be:
  - o Transported in association with protein
    - As part of a lipoprotein particle, or
  - · Solubilized by:
    - Phospholipids
    - Bile salts in the bile

# III. Cholesterol Synthesis

#### Tissues Involved

- Cholesterol is synthesized by virtually all tissues in humans.
- Tissues contributing most significantly to the cholesterol pool:
  - o Liver
  - o Intestine
  - · Adrenal cortex
  - · Reproductive tissues, including:
    - Ovaries
    - Testes
    - Placenta

# Substrates and Energy Sources

- · Carbon atoms in cholesterol are provided by:
  - · Acetyl coenzyme A (CoA)

- · Reducing equivalents are provided by:
  - Nicotinamide adenine dinucleotide phosphate (NADPH)

## Energy Considerations

- The pathway is endergonic.
- Driven by:
  - Hydrolysis of high-energy thioester bond of acetyl
     CoA
  - · Hydrolysis of terminal phosphate bond of ATP

## Enzyme Locations

- Synthesis requires enzymes located in:
  - · Cytosol
  - · Smooth endoplasmic reticulum (SER) membrane
  - · Peroxisome

## Regulation and Homeostasis

• The pathway is responsive to changes in cholesterol concentration.

- Regulatory mechanisms balance:
  - · Rate of cholesterol synthesis
  - · Rate of cholesterol excretion

## Clinical Relevance

- Imbalance in regulation may lead to:
  - · Elevated circulating plasma cholesterol
  - · Potential for vascular disease

A. 3-Hydroxy-3-Methylglutary Coenzyme A (HMG CoA) Synthesis

## Step Similarity

• The first two reactions are similar to ketone body synthesis pathway.

# Sequence of Reactions

| Step | Enzyme/Process                                           | Product                                                                     |
|------|----------------------------------------------------------|-----------------------------------------------------------------------------|
|      | Condensation of two acetyl CoA molecules                 | Acetoacetyl CoA                                                             |
| 2    | Addition of a third acetyl<br>CoA by HMG CoA<br>synthase | 3-Hydroxy-3-<br>methylglutaryl CoA (HMG<br>CoA) -> a six-carbon<br>compound |

## Isoenzymes of HMG CoA Synthase

- Liver parenchymal cells contain two isoenzymes:
  - · Cytosolic enzyme:
    - Participates in cholesterol synthesis
  - Mitochondrial enzyme:
    - Functions in ketone body synthesis

# B. Mevalonate Synthesis

## Catalyzed Reaction

- HMG CoA is reduced to mevalonate by:
  - · HMG CoA reductase

# Key Characteristics

- · This step is:
  - · Rate-limiting
  - Key regulated step in cholesterol synthesis
- · Occurs in the:
  - · Cytosol
- · Requires:
  - Two NADPH molecules as reducing agents
- · Releases:
  - · CoA

- The reaction is:
  - · Irreversible

Enzyme Details: HMG CoA Reductase

- Integral membrane protein of the SER
- Catalytic domain projects into the cytosol

C. Cholesterol Synthesis From Mevalonate

[1] Formation of S-Pyrophosphomevalonate

- Mevalonate is converted to 5-pyrophosphomevalonate in two steps.
- Each step involves the transfer of a phosphate group from ATP.

[2] Formation of Isopentenyl Pyrophosphate (IPP)

- 5-pyrophosphomevalonate is decarboxylated to form:
  - Isopentenyl pyrophosphate (IPP) a five-carbon isoprene unit.
- The reaction requires ATP.

#### Note:

- IPP is the precursor of the isoprenoids family:
  - · Cholesterol is a sterol isoprenoid.
  - · Nonsterol isoprenoids include:
    - Dolichol
    - Ubiquinone (coenzyme Q)
- [3] Isomerization to Dimethylallyl Pyrophosphate
  - IPP is isomerized to:
    - o 3,3-dimethylallyl pyrophosphate (DPP)
- [4] Formation of Geranyl Pyrophosphate (GPP)
  - IPP and DPP condense to form:
    - 10-carbon geranyl pyrophosphate (GPP)
- [5] Formation of Farnesyl Pyrophosphate (FPP)
  - · A second IPP molecule condenses with GPP to form:
    - IS-carbon farnesyl pyrophosphate (FPP)

#### Note:

- Prenylation = covalent attachment of farnesyl to proteins (e.g., ras)
  - Function: Anchors proteins to inner face of plasma membranes

# [6] Formation of Squalene

- Two molecules of FPP combine and are:
  - · Reduced
  - Release pyrophosphate
- Product: 30-carbon squalene

### Note:

- · Squalene is made from six isoprenoid units
- ATP Requirement:
  - $\circ$  3 ATP per mevalonate  $\rightarrow$  IPP
  - Therefore, 18 ATP required to form polyisoprenoid squalene

## [7] Formation of Lanosterol

- · Squalene is converted to lanosterol in two reactions
- Enzymes are:
  - · SER-associated
- Co-factors used:
  - Molecular oxygen (O<sub>2</sub>)
  - · NADPH

### Mechanism:

 Hydroxylation of linear squalene triggers cyclization to lanosterol

## [8] Conversion of Lanosterol to Cholesterol

- A multistep process involving:
  - Shortening of side chain
  - · Oxidative removal of methyl groups
  - · Reduction of double bonds
  - Migration of a double bond

# Clinical Correlation: Smith-Lemli-Opitz Syndrome (SLOS)

- Cause: Partial deficiency of:
  - 7-dehydrocholesterol-7-reductase
    - Enzyme that reduces the double bond in 7dehydrocholesterol (7-DHC) to form cholesterol
- Inheritance: Autosomal-recessive
- · Pathophysiology: Impaired cholesterol biosynthesis
- SLOS is one of several:
  - Multisystem embryonic malformation syndromes linked to defective cholesterol synthesis

#### Note:

• 7-DHC is also the precursor of vitamin  $D_3$  in the skin

## Synthesis of Cholesterol from Mevalonate



# D. Branch-Point Reactions in the Biosynthesis of Cholesterol

## Diversion of Intermediates

 Cholesterol synthesis intermediates are shunted for modification of other molecules.

#### First Branch Point

- Begins at Step 2 of the cholesterol synthesis pathway:
  - Formation of isopentenyl pyrophosphate (IPP) SC

# Subsequent Isoprenoid Products

- Sequential addition of S-carbon isoprene units forms:
  - · Geranyl pyrophosphate (GPP) 10C
  - Farnesyl pyrophosphate (FPP) ISC
  - Geranylgeranyl pyrophosphate (GGPP) 20C

# Functional Roles of Farnesyl & Geranylgeranyl Groups

| Modification                               | Product                          | Function                                                                        |
|--------------------------------------------|----------------------------------|---------------------------------------------------------------------------------|
| Farnesylation                              | Heme → Heme<br>A                 | Specialized heme in cytochrome a of the electron transport chain                |
| Farnesylation /<br>Geranylgeranyl<br>ation | Proteins (e.g.,<br>ras oncogene) | Anchors proteins to membranes;<br>activates cell signaling for<br>proliferation |
| Geranylgeranyl<br>ation                    | Dolichol                         | Required for sugar transfer in glycoprotein synthesis                           |
| Geranylgeranyl<br>ation                    | Ubiquinone                       | Lipid-soluble electron carrier in oxidative phosphorylation                     |

Pharmacological Relevance: Bisphosphonates

- Bisphosphonates are used to:
  - o Inhibit bone resorption in:
    - Osteoporosis
    - Paget disease

- New-generation bisphosphonates can:
  - · Kill cancer cells
  - o Mechanism: Inhibit synthesis of:
    - Farnesyl-PP
    - Geranylgeranyl-PP

## E. Cholesterol Synthesis Regulation

# Key Regulatory Enzyme

- HMG CoA reductase is the major control point for cholesterol biosynthesis.
- It is subject to multiple types of metabolic control.
- 1. Sterol-Dependent Regulation of Gene Expression
- a. Transcriptional Control
  - Gene expression of HMG CoA reductase is regulated by:
    - Sterol regulatory element-binding protein 2 (SREBP-2)

## b. Mechanism of Activation

- SREBP-2 binds DNA at:
  - Sterol regulatory element (SRE) (a cis-acting site upstream of the gene)
- Inactive SREBP-2 is an:
  - o Integral protein of the SER membrane
  - Associates with SREBP cleavage—activating protein (SCAP)

#### c. Low Sterol Conditions

- SREBP-2-SCAP complex translocates from:
  - Endoplasmic reticulum (ER) → Golgi apparatus
- In Golgi membrane:
  - Two proteases sequentially cleave SREBP-2
  - · Generate a soluble fragment that:
    - Enters the nucleus
    - Binds the SRE
    - Activates transcription

#### Result:

- → Increased HMG CoA reductase synthesis
- → Increased cholesterol synthesis
- d. High Sterol Conditions
  - Sterols bind to SCAP at its sterol-sensing domain
  - · SCAP then binds to:
    - Insulin-induced gene proteins (INSIGS) in the ER membrane
  - · Effect:
    - SCAP-SREBP complex is retained in the SER
    - Prevents activation of SREBP-2
    - · Leads to downregulation of cholesterol synthesis

## Note on SREBP-Ic

- SREBP-Ic:
  - · Upregulates expression of enzymes involved in:
    - Fatty acid synthesis

- · Responds to insulin
- 2. Sterol-Accelerated Enzyme Degradation
  - HMG CoA reductase is a sterol-sensing integral protein of the SER membrane.
  - When sterol levels are high in the SER:
    - · Reductase binds to INSIG proteins
    - (See Fig. 18.7)
    - Binding leads to:
      - Transfer to the cytosol
      - Ubiquitination
      - Proteasomal degradation of the enzyme
- 3. Sterol-Independent Phosphorylation / Dephosphorylation

| Enzyme                              | Action                                | Result                 |
|-------------------------------------|---------------------------------------|------------------------|
| AMP-activated protein kinase (AMPK) | Phosphorylates HMG<br>CoA reductase   | Inactivates the enzyme |
| Phosphoprotein<br>phosphatase       | Dephosphorylates<br>HMG CoA reductase | Activates the enzyme   |

• Regulation is covalent.

## Note:

- AMPK is activated by AMP
- ullet Therefore, when ATP levels are low, AMP levels rise ightarrow cholesterol synthesis decreases
- · Mechanism is similar to fatty acid synthesis regulation
- 4. Hormonal Regulation
  - HMG CoA reductase activity is influenced by hormones:

| Hormone                      | Effect                                                    |
|------------------------------|-----------------------------------------------------------|
| Insulin ↑                    | Favors dephosphorylation → Activates HMG CoA<br>reductase |
| Glucagon ↑ and Epinephrine ↑ | Opposite effect $ ightarrow$ Inhibits the reductase       |
| Cholesterol<br>levels ↑      | Also contribute to inhibition                             |

# S. Drug Inhibition (Statins)

# Statins as Enzyme Inhibitors

- Statin drugs (e.g.):
  - · Atorvastatin
  - · Fluvastatin
  - · Lovastatin
  - · Pravastatin
  - · Rosuvastatin
  - · Simvastatin
- These are:
  - · Structural analogs of HMG CoA
  - o (Or are metabolized to such)
  - Act as reversible, competitive inhibitors of HMG
     CoA reductase

## Clinical Use

 Used to decrease plasma cholesterol levels in patients with hypercholesterolemia

# Recognized Adverse Effects

- Muscle pain
- Fatigue
- Weakness
- · Rhabdomyolysis

## Possible Mechanism:

- · Inhibition of:
  - · Heme A synthesis
  - · Ubiquinone synthesis
- Both are essential for oxidative phosphorylation and energy production

## Genetic Polymorphisms & Statin Response

| Protein                                                    | Genetic Marker                        | Effect                                   |
|------------------------------------------------------------|---------------------------------------|------------------------------------------|
| Organic anion transporting polypeptide (OATPIBI / SLCOIBI) | Polymorphism at<br>nucleotide S21 T>C | Biomarker for<br>simvastatin<br>myopathy |

# Regulation of Hydroxymethylglutaryl Coenzyme A (HMG CoA) Reductase



## IV. Cholesterol Degradation

Human Inability to Fully Degrade Cholesterol

• Humans cannot metabolize the cholesterol ring structure to carbon dioxide  $(CO_2)$  and water.

#### Routes of Elimination

- The intact steroid nucleus is eliminated via:
  - · Conversion to bile acids and bile salts
    - A small percentage is excreted in feces
  - · Direct secretion of cholesterol into bile
    - Bile transports cholesterol to the intestine for elimination

## Bacterial Modification in the Intestine

- Some cholesterol in the intestine is modified by bacteria before excretion.
- · Primary bacterial products:
  - · Coprostanol
  - · Cholestanol
    - Both are reduced derivatives of cholesterol
- These compounds, together with cholesterol, form the:
  - · Bulk of neutral fecal sterols

## V. Bile Acids and Bile Salts

# General Composition of Bile

- Bile is a watery mixture of organic and inorganic compounds
- Most important organic components:
  - Phosphatidylcholine (PC) (also called lecithin; see Chapter 17)
  - Conjugated bile salts

## Bile Transport

- Bile can:
  - a. Pass directly from the liver (site of synthesis) into the duodenum via the common bile duct
  - b. Be stored in the gallbladder when not immediately needed for digestion

### A. Structure

## Core Features of Bile Acids

Contain 24 carbon atoms

- Have:
  - · Two or three hydroxyl groups
  - · A side chain terminating in a carboxyl group

# Acid-Base Properties

- Carboxyl group has a pKa  $\approx 6$
- In the duodenum (pH  $\approx$  6):
  - · About half the molecules are:
    - Protonated → Bile acids
    - Deprotonated → Bile salts

# Terminology Note

 "Bile acid" and "bile salt" are often used interchangeably

# Stereochemistry

- $\bullet$  Hydroxyl groups: oriented  $\alpha$  (lie below the plane of rings)
- Methyl groups: oriented  $\beta$  (lie above the plane of rings)

## Functional Role: Amphipathic Emulsifiers

- Molecules have:
  - · Both a polar surface and a nonpolar surface
- Therefore, they act as:
  - Emulsifying agents in the intestine

## Function:

- $\rightarrow$  Aid in preparation of dietary fat (triacylglycerol [TAG])
- → Enable degradation by pancreatic digestive enzymes

# B. Synthesis

## Site & General Description

- Bile acids are synthesized in the liver
- The pathway is:
  - · Multistep
  - Multi-organelle

- · Key transformations of the cholesterol molecule:
  - Hydroxyl groups are inserted at specific positions
     on the steroid structure
  - Double bond of the B ring of cholesterol is reduced
  - Hydrocarbon chain is shortened by 3 carbons
    - A carboxyl group is introduced at the end of the chain

## Primary Bile Acids

- Most common products:
  - · Cholic acid (a triol)
  - · Chenodeoxycholic acid (a diol)
- · These are termed primary bile acids

## Rate-Limiting Step

| Step                                          | Enzyme              | Location           | Туре                                      |
|-----------------------------------------------|---------------------|--------------------|-------------------------------------------|
| Hydroxylation<br>at C-7 of<br>steroid nucleus | 7-a-<br>hydroxylase | SER-<br>associated | Cytochrome<br>P450 (CYP)<br>monooxygenase |

Enzyme is found only in the liver

Regulation of 7-a-Hydroxylase Expression

Negative Feedback (Downregulation)

- Bile acids and cholesterol:
  - $\circ$  Downregulate expression of 7- $\alpha$ -hydroxylase

# Transcriptional Regulation

| Stimulus               | Nuclear Receptor                                                 | Effect on 7- <b>a</b> -<br>Hydroxylas |
|------------------------|------------------------------------------------------------------|---------------------------------------|
| 1 Cholesterol in liver | Liver X receptor (LXR)                                           | Upregulates<br>transcription          |
| 1 Bile acids           | Bile acid receptor (BAR)<br>a.k.a. Farnesoid X<br>receptor (FXR) | Downregulates<br>transcription        |

#### Summary:

- Cholesterol  $\uparrow \rightarrow LXR$  activation  $\rightarrow \uparrow 7-\alpha-$  hydroxylase expression  $\rightarrow \uparrow$  bile acid synthesis
- Bile acids  $\uparrow \rightarrow FXR/BAR$  activation  $\rightarrow \downarrow 7-\alpha-$  hydroxylase expression  $\rightarrow \downarrow$  bile acid synthesis

Synthesis and Regulation of the Bile Acids, Cholic Acid and Chenodeoxycholic Acid from Cholesterol



thehandynotes.online

# C. Conjugation

#### Process Overview

- Before leaving the liver, bile acids are conjugated with:
  - Glycine
  - · Taurine (an end product of cysteine metabolism)

# Type of Bond

- · Amide bond formation occurs between:
  - · Carboxyl group of the bile acid
  - · Amino group of glycine or taurine

# Resulting Conjugated Structures

| Conjugating<br>Molecule | Resulting Bile Acids                         |
|-------------------------|----------------------------------------------|
| Glycine                 | Glycocholic acid, Glycochenodeoxycholic acid |
| Taurine                 | Taurocholic acid, Taurochenodeoxycholic acid |

• Ratio of glycine: taurine forms in bile  $\approx$  3:1

# Ionization Properties & Detergent Function

| Conjugate | Functional Group Added     | Ionization at<br>Alkaline pH |
|-----------|----------------------------|------------------------------|
| Glycine   | Carboxyl group (lower pKa) | Fully ionized (-)            |
| Taurine   | Sulfonate group            | Fully ionized (-)            |

 At the alkaline pH of bile and duodenum, both modifications result in fully ionized (negatively charged) bile salts

# Functional Advantage

- Conjugated, ionized bile salts:
  - Are more effective detergents than unconjugated bile acids
  - · Have enhanced amphipathic nature
  - · Therefore, only conjugated forms are found in bile

#### Clinical Note

- Individuals with genetic deficiency in cholesterol → bile acid conversion:
  - · Treated with exogenous chenodeoxycholic acid

### Excretory Function

- Bile salts serve as the only significant route for cholesterol excretion:
  - · As a metabolic product of cholesterol
  - · As a solubilizer of cholesterol in bile

# D. Enterohepatic Circulation

#### Definition

- The continuous cycle of:
- 1. Bile salt secretion into bile
- 2. Passage through duodenum (some undergo deconjugation & dehydroxylation → secondary bile salts)
- 3. Reabsorption in ileum
- 4. Return to liver as primary + secondary bile salts
- $\rightarrow$  This entire process is termed enterohepatic circulation

# Efficient Reabsorption

 >95% of bile salts secreted into the intestine are efficiently reabsorbed and reused

# Liver Transport

- · Liver secretes bile salts into bile via:
  - Bile salt export pump

# Intestinal Reabsorption

- In the terminal ileum, bile salts are:
  - · Reabsorbed via:
    - Apical sodium (Na+)-bile salt cotransporter
  - Returned to blood via a separate transport system

#### Note:

· Lithocholic acid is poorly absorbed

# Hepatic Reuptake

- Hepatocytes efficiently reabsorb bile salts from the blood
  - · Via an isoform of the bile salt cotransporter

#### Note:

Albumin binds bile salts in blood (similar to FA transport)

### Quantitative Summary

| Parameter                                                                | Value            |
|--------------------------------------------------------------------------|------------------|
| Bile salts secreted daily                                                | 15-30 g          |
| Bile salts lost in feces                                                 | ~0.5 g/day (<3%) |
| Bile salts synthesized in liver from cholesterol (to replace fecal loss) | ~0.5 g/day       |

Clinical Application: Bile Acid Sequestrants

- Cholestyramine:
  - Binds bile salts in the gut → prevents
     reabsorption → promotes fecal excretion
  - · Used to treat hypercholesterolemia

#### Mechanism:

ullet Removal of bile salts o relieves feedback inhibition on bile acid synthesis

→ More cholesterol diverted into bile acid synthesis

#### Note:

 Dietary fiber also binds bile salts and increases excretion

E. Bacterial Action on Bile Salts

#### Site of Action

- · A small portion of bile salts reaches the colon
- · Here, they are modified by intestinal microbiota

# Types of Bacterial Modifications

| Modification Type | Description                                    |
|-------------------|------------------------------------------------|
| Deconjugation     | Removal of glycine and taurine from bile salts |
| Dehydroxylation   | Removal of hydroxyl group at C-7               |

# Examples of Secondary Bile Acids:

| Precursor (Primary Bile Acid) | Secondary Bile Acid |
|-------------------------------|---------------------|
| Cholic acid                   | Deoxycholic acid    |
| Chenodeoxycholic acid         | Lithocholic acid    |

# Fate of Secondary Bile Acids

- · Small proportion:
  - · Absorbed by colonic epithelium
  - May be reconjugated and hydroxylated by liver enzymes → secondary bile salts
- Majority:
  - · Eliminated in feces

# Enterohepatic Circulation of Bile Salts. (Note: Ionized bile acids are called bile salts.)



# F. Bile Salt Deficiency: Cholelithiasis

# Cholesterol Solubilization Requirement

- Movement of cholesterol from liver into bile must be accompanied by:
  - Simultaneous secretion of phospholipid (phosphatidylcholine [PC])
  - · Secretion of bile salts

# Pathogenesis of Gallstones

- If this dual process is disrupted, and more cholesterol is present than can be solubilized by:
  - $\circ$  Bile salts and PC  $\rightarrow$
  - · Cholesterol may precipitate in the gallbladder
- $\rightarrow$  Leads to cholesterol gallstone disease or cholelithiasis

### Major Causes

- 1. Decrease in bile acids in the bile
- 1. Increased cholesterol secretion into bile
  - Seen with fibrates (e.g., gemfibrozil) used to lower blood cholesterol & TAG

# Treatment Options

| Treatment                        | Description                                                                                                                             |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Laparoscopic cholecystectomy     | Surgical removal of the gallbladder via small incision → treatment of choice                                                            |
| Oral<br>chenodeoxycholic<br>acid | Given to patients unable to undergo surgery → supplements bile acid pool → causes gradual gallstone dissolution (takes months to years) |

# Gallstone Types (Epidemiology)

- Cholesterol stones: >85% of cases
- · Bilirubin and mixed stones: Account for the remainder

# VI. Plasma Lipoproteins

#### Structure

- Plasma lipoproteins are:
  - Spherical macromolecular complexes of:
    - Lipids
    - Proteins (apolipoproteins)

# Major Classes of Lipoprotein Particles

| Туре                                     | Description                                  |
|------------------------------------------|----------------------------------------------|
| Chylomicrons                             | Largest, TAG-rich particles                  |
| Chylomicron remnants                     | Leftover after TAG delivery                  |
| Very-low-density lipoproteins<br>(VLDLs) | TAG carriers from liver                      |
| VLDL remnants (IDLs)                     | Intermediate-density lipoproteins            |
| Low-density lipoproteins (LDLs)          | Cholesterol-rich, atherogenic                |
| High-density lipoproteins (HDLs)         | Involved in reverse cholesterol<br>transport |
| Lipoprotein (a) [Lp(a)]                  | LDL-like particle with apolipoprotein(a)     |

# Differentiating Factors Among Lipoproteins

- · Lipid and protein composition
- Size
- Density
- Site of origin

# Note on Composition

- Lipoprotein particles constantly interchange:
  - · Lipids
  - · Apolipoproteins
- $\rightarrow$  Therefore, actual composition is variable

#### Functions

- · Solubilize component lipids for plasma transport
- Provide efficient transport mechanism of lipids:
  - o To and from tissues

#### Clinical Relevance

 In humans, there is a gradual deposition of lipid, especially cholesterol, in tissues

# A. Composition

# General Structure of Lipoproteins

- · Core:
  - · Neutral lipids:
    - Triacylglycerol (TAG)
    - Cholesteryl esters
- · Surface shell:
  - · Amphipathic apolipoproteins
  - · Phospholipids
  - · Nonesterified (free) cholesterol

# Amphipathic Orientation

- Surface molecules are oriented with:
  - · Polar portions exposed on the outer surface
  - $\circ \to \text{This renders the particle soluble in aqueous}$  solutions

### Lipid Sources

- TAG and cholesterol in lipoproteins are derived from:
  - O Dietary (exogenous) sources
  - · De novo (endogenous) synthesis

#### Clinical Measurement of Cholesterol

- Cholesterol content of plasma lipoproteins is measured in fasting blood
- Friedewald equation (to calculate LDL-C):

- Assumes TAG:cholesterol ratio in VLDL = 5:1
- · Goal value for total cholesterol: <200 mg/dL

# 1. Size and Density of Lipoproteins

| Lipoprotein  | Density             | Size     | Lipid %                 | Protein %                  |
|--------------|---------------------|----------|-------------------------|----------------------------|
| Chylomicrons | Lowest<br>density   | Largest  | Highest<br>(mainly TAG) | Lowest                     |
| VLDLs        | Lower<br>than LDL   | Large    | High TAG                | Moderate                   |
| LDLs         | Denser<br>than VLDL | Smaller  | High<br>cholesterol     | Higher<br>protein<br>ratio |
| HDLs         | Highest<br>density  | Smallest | Lower lipid             | Highest<br>protein %       |

# Separation methods:

- Electrophoresis
- Ultracentrifugation by density

# 2. Apolipoproteins

### Functions:

- Provide recognition sites for cell-surface receptors
- Act as activators or coenzymes for enzymes in lipoprotein metabolism

#### Structural Roles:

- Some apolipoproteins are essential structural components:
  - · Cannot be removed
  - · Particles cannot form without them
- Other apolipoproteins:
  - o Can be freely transferred between lipoproteins

#### Classification:

- · Apolipoproteins are grouped by:
  - · Structure and function
  - · Denoted by letters
  - · Each class has subclasses:
    - e.g., apo C-II, apo C-III

#### Note:

 Functions of all apolipoproteins are not yet fully known

# B. Chylomicron Metabolism

#### Overview

- Chylomicrons are:
  - · Assembled in intestinal mucosal cells
  - · Transport dietary (exogenous) lipids:
    - TAG
    - Cholesterol
    - Fat-soluble vitamins
    - Cholesteryl esters

 TAGs account for ~90% of total chylomicron lipid content

# 1. Apolipoprotein Synthesis: Apo B-48

| Feature                         | Detail                                                                                                                                    |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Unique to                       | Chylomicrons                                                                                                                              |
| Site of synthesis               | Rough Endoplasmic Reticulum (RER)                                                                                                         |
| Post-translational modification | Glycosylated in RER → Golgi                                                                                                               |
| Genetic origin                  | Encoded by apo B gene, same as apo B-100                                                                                                  |
| Difference from apo B-100       | Apo B-48 = N-terminal 48% of apo B protein                                                                                                |
| Mechanism                       | Posttranscriptional cytosine $\rightarrow$ uracil editing in mRNA $\rightarrow$ nonsense stop codon $\rightarrow$ translation of only 48% |

(Note: Apo B-100 is synthesized by the liver and found in VLDL and LDL)

# 2. Chylomicron Assembly

| Component              | Detail                                                                                                |
|------------------------|-------------------------------------------------------------------------------------------------------|
| Enzymes involved       | Located in Smooth ER (SER)                                                                            |
| Key protein            | Microsomal Triglyceride Transfer Protein (MTP)                                                        |
| Function of MTP        | Loads apo B-48 with lipid before ER-to-Golgi<br>transition                                            |
| Packaging              | In Golgi → secretory vesicles                                                                         |
| Exocytosis             | Vesicles fuse with plasma membrane →<br>lipoproteins released                                         |
| Entry into circulation | Enters lymphatic system $ ightarrow$ via thoracic duct $ ightarrow$ empties into left subclavian vein |

# 3. Nascent Chylomicron Modification

| Stage                   | Detail                                  |
|-------------------------|-----------------------------------------|
| Nascent chylomicron     | Released from intestinal mucosal cell   |
| Functionally incomplete | Requires further modification in plasma |

- $\rightarrow$  Modified by HDL, which transfers:
  - Apolipoprotein E (apo E)
    - · Recognized by hepatic receptors
  - Apolipoprotein C (apo C)
    - $\circ$  Includes apo C-II  $\rightarrow$  activator of lipoprotein lipase (LPL)

(Note: Apo C-III, found on TAG-rich lipoproteins, inhibits LPL)

4. Triacylglycerol (TAG) Degradation by Lipoprotein Lipase (LPL)

### Enzyme Properties

- Lipoprotein lipase (LPL) is an extracellular enzyme.
- Anchored to capillary walls of most tissues, especially:
  - · Adipose tissue
  - · Cardiac muscle
  - · Skeletal muscle

· Not expressed by adult liver

#### Note:

 Hepatic lipase (found on surface of liver endothelial cells) plays a role in TAG degradation in chylomicrons, VLDL, and HDL metabolism.

# Mechanism of TAG Hydrolysis

- Activated by apo C-II (from circulating chylomicrons)
- Function: Hydrolyzes TAG  $\rightarrow$ 
  - Free fatty acids (FA)
  - · Glycerol

| Product  | Fa <del>l</del> e                                                                                                                                   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| FA       | Stored (in adipose) OR used for energy (in muscle)                                                                                                  |
| Glycerol | Taken up by liver $\rightarrow$ converted to dihydroxyacetone phosphate (DHAP) $\rightarrow$ enters glycolysis, gluconeogenesis, or lipid synthesis |

# Clinical Note: LPL or Apo C-II Deficiency

- Condition: Type I hyperlipoproteinemia / familial chylomicronemia
- Biochemical Finding:
  - Severe chylomicron—TAG accumulation ≥1,000 mg/dL even in the fasted state
- Manifestation: Hypertriacylglycerolemia
- Risk: Increased chance of acute pancreatitis
- Treatment: Dietary fat reduction

# S. Lipoprotein Lipase (LPL) Expression

| Tissue         | Regulation                                  |  |
|----------------|---------------------------------------------|--|
| Adipose tissue | 1 LPL synthesis in fed state (1 insulin)    |  |
| Muscle tissue  | ↑ LPL synthesis in fasted state (↓ insulin) |  |

- Tissue-specific isozymes of LPL are regulated by:
  - · Nutritional state
  - · Hormonal levels

#### Note:

Highest LPL concentration is in cardiac muscle, reflecting high FA use for cardiac energy needs

6. Chylomicron Remnant Formation and Hepatic Uptake

Transformation of Chylomicrons

- As chylomicrons circulate:
  - >90% of core TAG is degraded by LPL
  - → Particle decreases in size
  - $\circ \to Increases$  in density
- C apolipoproteins (e.g., C-II, C-III) are returned to HDL
- Apo B-48 and apo E remain on remnant

# Remnant Uptake by Liver

- Remaining particle = chylomicron remnant
- · Rapidly removed by the liver
- Hepatic cell membranes contain lipoprotein receptors that recognize apo E

### Endocytosis Process

- 1. Chylomicron remnant binds receptor
- 2. Endocytosed into hepatocyte
- 3. Vesicle fuses with lysosome
- 4. Hydrolytic degradation of:
  - · Apolipoproteins
  - · Cholesteryl esters
  - · Other remnant components

#### 5. Release of:

- · Amino acids
- · Free cholesterol
- Fatty acids

# 6. Receptor is recycled

# Metabolism of Chylomicrons.



# C. Very-Low-Density Lipoprotein (VLDL) Metabolism

#### Overview

- VLDLs are produced in the liver.
- Composed predominantly of endogenous triacylglycerol (TAG) (~60%).
- Function: Transport endogenous TAG from liver (site of synthesis) to peripheral tissues, where:
  - TAG is degraded by lipoprotein lipase (LPL) (as occurs with chylomicrons).

#### Note:

- Nonalcoholic fatty liver (hepatic steatosis) occurs when there's an imbalance between hepatic TAG synthesis and VLDL secretion.
- Common in obesity and type 2 diabetes mellitus.

#### 1. Release from the Liver

- VLDLs are secreted into the blood by the liver as nascent particles containing:
  - Apolipoprotein B-100 (apo B-100)
- VLDLs acquire:
  - · Apo C-II and apo E from circulating HDL
  - · Apo C-II is essential for activation of LPL

# Abetalipoproteinemia:

- A rare hypolipoproteinemia caused by microsomal triglyceride transfer protein (MTP) defect.
- Results in failure to load apo B with lipid, so:
  - Few VLDLs or chylomicrons are formed.
  - TAG accumulates in liver and intestine.
  - Fat-soluble vitamin absorption ↓.
  - · LDLs are low.

#### 2. Modification in the Circulation

- · As VLDLs circulate:
  - · TAG is degraded by LPL
  - $\circ \to VLDL$  decreases in size and increases in density.
- · Surface components (including apo C and apo E):
  - · Are returned to HDL
  - VLDL retains apo B-100.
- Exchange of lipids with HDL:
  - Some TAG is transferred from VLDL → HDL
  - Cholesteryl esters (CE) are transferred from HDL
     → VLDL
  - · Mediated by:
    - Cholesteryl ester transfer protein (CETP)

# 3. Conversion to Low-Density Lipoproteins (LDL)

#### Formation of IDL and LDL

- · With continued modification:
  - · VLDL is converted in plasma to LDL
  - IDLs (intermediate-density lipoproteins) of varying sizes are formed during this transition.

#### Fate of IDL

- IDL can be:
  - Taken up by liver via receptor-mediated endocytosis using apo E as the ligand.

# Apolipoprotein E (apo E) Isoforms and Clinical Implications

| Isoform | Prevalence          | Characteristics                                                                           |
|---------|---------------------|-------------------------------------------------------------------------------------------|
| E-2     | Least common        | Binds poorly to receptors                                                                 |
| E-3     | Most common         | Normal receptor binding                                                                   |
| E-4     | Variable prevalence | 1 Risk of late-onset Alzheimer<br>disease (dose-dependent;<br>homozygotes = highest risk) |

# E-2 Homozygotes:

- Impaired clearance of IDL and chylomicron remnants.
- → Familial type III hyperlipoproteinemia (aka familial dysbetalipoproteinemia / broad beta disease).
- · Clinical features:
  - · Hypercholesterolemia
  - · Premature atherosclerosis

# D. Low-Density Lipoprotein (LDL) Metabolism

# Composition and Function

- LDL particles:
  - Contain less triacylglycerol (TAG) than VLDLs.
  - Contain a high concentration of cholesterol and cholesteryl esters.
  - Carry ~70% of plasma cholesterol.
- Primary role: Deliver cholesterol to peripheral tissues or return it to the liver.
- 1. Receptor-Mediated Endocytosis
- a. Receptor Specificity
  - LDL binds to LDL receptors on the plasma membrane.
    - These receptors recognize apo B-100 (not apo B-48).
    - $\circ$  Also bind apo E  $\rightarrow$  Called apo B-100/apo E receptors.

Note:

The same mechanism is used for chylomicron remnants and IDL uptake by the liver.

b. Mechanism of Uptake

# [1] LDL receptors:

- Negatively charged glycoproteins, clustered in clathrin-coated pits on the cell membrane.
- · Clathrin (cytosolic side): stabilizes the pit.

[2] LDL-receptor complex is endocytosed:

o Forms a vesicle that enters the cytoplasm.

#### Clinical note:

- Deficiency of functional LDL receptors → Type IIa hyperlipidemia (Familial Hypercholesterolemia - FH):
- ↑ Plasma LDL-C
- ↑ Risk of premature atherosclerosis
- Inheritance: Autosomal dominant

#### · Other causes:

- $\circ$  Mutated apo B-100  $\rightarrow$   $\downarrow$  receptor binding
- ↑ Activity of PCSK9 (proprotein convertase subtilisin/kexin type 9)  $\rightarrow$  ↑ degradation of LDL receptors
- PCSK9 inhibitors are now used to treat hypercholesterolemia

### [3] Vesicle fusion:

- · Clathrin coat is removed.
- Vesicles fuse into larger compartments → endosomes.

# [4] Acidification of endosome:

- $\circ$  Endosomal ATPase pumps H+  $\rightarrow$   $\downarrow$  pH.
- · LDL dissociates from its receptor.
- · Receptors migrate to one side of the endosome.
- · LDL particles remain free in the lumen.

# [5] Receptor recycling and LDL degradation:

- Receptors → recycled back to the plasma membrane.
- $\circ$  LDL particles  $\rightarrow$  sent to lysosomes, where:
  - Degraded by lysosomal acid hydrolases → release:
    - · Free cholesterol
    - · Amino acids
    - Free fatty acids
    - · Phospholipids

# Note on Lysosomal Storage Disorders:

- ullet Wolman disease: Deficiency in lysosomal acid lipase ullet impaired hydrolysis of cholesteryl esters.
- Niemann-Pick disease type C: Defective transport of free cholesterol out of lysosomes.
- Both are autosomal recessive disorders.

# Metabolism of Very-Low-Density Lipoprotein (VLDL) and Low-Density Lipoprotein (LDL) Particles



# 2. Endocytosed Cholesterol and Cholesterol Homeostasis

#### Overview

Cholesterol derived from chylomicron remnants, IDL, and LDL influences cellular cholesterol homeostasis through three major mechanisms

# Inhibition of Cholesterol Synthesis

- High intracellular cholesterol inhibits HMG CoA reductase gene expression:
  - ↓ De novo cholesterol synthesis.
  - Degradation of HMG CoA reductase enzyme.

#### · Mechanism:

- Regulation occurs via the SRE (sterol regulatory element) and SREBP-2 (sterol regulatory elementbinding protein 2).
- High cholesterol inhibits the activation of SREBP-2, preventing it from entering the nucleus and promoting transcription of HMG CoA reductase.

# Downregulation of LDL Receptor Synthesis

- High intracellular cholesterol also 

   synthesis of new

   LDL receptor proteins:
  - ↓ LDL-C uptake into the cell.

#### · Mechanism:

- Similar to reductase regulation, this also involves
   SRE-SREBP-2 interaction.
- Coordinated regulation ensures that if cholesterol is abundant, both:
  - Synthesis (HMG CoA reductase) and
  - Uptake (LDL receptor)
  - are downregulated.

# Storage via Cholesteryl Ester Formation

- If the cholesterol is not needed immediately, it is esterified:
  - Enzyme: Acyl CoA:cholesterol acyltransferase (ACAT)
  - · Reaction:
    - Fatty acyl CoA + free cholesterol → cholesteryl ester
    - Esterified cholesterol can be stored in lipid droplets.
- ACAT activity increases when intracellular cholesterol is high.

# Summary Table

| Regulation Point     | Trigger                        | Outcome                                                           |
|----------------------|--------------------------------|-------------------------------------------------------------------|
| HMG CoA<br>Reductase | 1 Intracellular<br>cholesterol | <ul><li>↓ Gene expression,</li><li>↑ Enzyme degradation</li></ul> |
| LDL Receptor         | 1 Intracellular<br>cholesterol | ↓ Gene expression,<br>↓ LDL-C uptake                              |
| ACAT                 | 1 Intracellular<br>cholesterol | 1 Cholesteryl ester formation (storage)                           |

# Cellular Uptake and Degradation of Low-Density Lipoprotein (LDL) Particles



# 3. Uptake by Macrophage Scavenger Receptors

# Macrophage Uptake via Scavenger Receptors (SRs)

- Macrophages express scavenger receptor class A (SR-A):
  - These receptors bind a broad range of ligands, especially chemically modified LDL

## Modified LDL Recognition

- · SR-A binds LDL in which:
  - Lipid or apo B component has been oxidized (oxidized LDL).
  - These modified LDLs are not recognized efficiently by normal LDL receptors.

# Key Differences from LDL Receptor Pathway

- Scavenger receptors are not downregulated by increased intracellular cholesterol:
  - Unlike LDL receptors, which are tightly regulated by cholesterol levels.

 Macrophages can continue to take up cholesterol uncontrollably.

#### Foam Cell Formation

- Excess cholesteryl esters accumulate inside macrophages:
  - o Transforms macrophages into "foam cells".
- Foam cells are a hallmark of early atherosclerotic plaques:
  - They accumulate within the intima of blood vessels.
  - Trigger chronic inflammation, fibrous cap formation, and eventual plaque rupture.

#### Clinical Note

- LDL-C is the primary contributor to atherosclerosis:
  - Particularly when oxidized and taken up by SR-A on macrophages.
  - Preventing LDL oxidation or lowering LDL-C levels reduces atherosclerotic risk.

# Role of Oxidized Low-Density Lipoprotein (LDL) Particles in Plaque Formation in an Arterial Wall



# E. High-Density Lipoprotein (HDL) Metabolism

#### HDL Overview

- HDLs are a heterogeneous family of lipoproteins with complex, partially understood metabolism.
- Formed in the blood by addition of lipids to apo A-I:
  - Apo A-I is made and secreted by the liver and intestine.
  - Apo A-I comprises ~70% of HDL apolipoproteins.

# 1. Apolipoprotein Supply Function

- HDL serves as a circulating reservoir of apolipoproteins:
  - Apo C-II: Activates lipoprotein lipase (LPL);
     transferred to VLDL and chylomicrons.
  - Apo E: Required for receptor-mediated endocytosis of IDLs and chylomicron remnants.

# 2. Uptake of Nonesterified Cholesterol

- Nascent HDL particles:
  - Initially disc-shaped, rich in phospholipids (mostly PC), and apo A, C, E.
- Function: Take up free cholesterol from peripheral (non-hepatic) tissues.
- Return cholesterol to liver as cholesteryl esters.
- High phospholipid content of HDL enhances its ability to solubilize and accept cholesterol.

## 3. Cholesterol Esterification by LCAT

- LCAT (lecithin:cholesterol acyltransferase):
  - Synthesized and secreted by the liver.
  - · Activated by apo A-I on HDL
- · Mechanism:
  - Transfers FA from carbon 2 of PC (lecithin) to cholesterol.

#### o Forms:

- Cholesteryl ester: Hydrophobic; moves to HDL core.
- Lysophosphatidylcholine: Binds albumin in plasma.
- Maintains a cholesterol gradient to allow continued uptake by HDL

#### HDL Maturation

- As HDL collects cholesteryl esters:
  - $\circ$  Converts from nascent HDL  $\rightarrow$  HDL<sub>3</sub> (cholesteryl ester-poor)  $\rightarrow$  HDL<sub>2</sub> (cholesteryl ester-rich).
- · Hepatic lipase:
  - · Found on liver endothelium.
  - Degrades TAG and phospholipids.
  - Converts HDL2 back to HDL3.

# Role of CETP (Cholesteryl Ester Transfer Protein)

- Facilitates cholesteryl ester exchange:
  - Transfers cholesteryl esters from HDL to VLDL, in exchange for TAG.

#### · Results:

- · Prevents product inhibition of LCAT.
- Since VLDL becomes LDL, transferred cholesteryl esters eventually go to liver via LDL uptake.

## 4. Reverse Cholesterol Transport (RCT)

## Role and Importance

- Reverse cholesterol transport (RCT) is the process by which cholesterol is moved from peripheral tissues to the liver for:
  - Bile acid synthesis or
  - · Direct excretion via bile.
- · Key mechanism in maintaining cholesterol homeostasis.

- · Basis for why HDL is termed "good cholesterol":
  - Higher HDL levels = Lower atherosclerosis risk.
  - Exercise and estrogen both raise HDL levels.

#### Process of RCT

- 1. Cholesterol efflux from peripheral cells:
  - Mediated by ABCAI (ATP-binding cassette transporter AI).
  - Transfers cholesterol to lipid-poor nascent HDL particles.
  - (Note: Tangier disease is caused by ABCAI deficiency → nearly absent HDL levels due to apo A-I degradation.)

#### 2. Cholesterol esterification:

- · Carried out by LCAT once cholesterol enters HDL
- Converts cholesterol to cholesteryl esters → stored in the HDL core.
- $\circ$  Converts  $HDL_3 \rightarrow HDL_2$ .

## 3. Selective uptake by liver or steroidogenic tissues:

- HDL2 binds liver receptors (or to steroidogenic cells).
- Scavenger receptor class B type I (SR-BI):
  - Mediates uptake of cholesteryl esters.
  - HDL particle itself is not internalized—only the ester is taken in.
- Lipid-depleted HDL is returned to circulation as HDL<sub>3</sub>.

## ABCAI Transporter and Related Disorders

#### ABCAI:

- Belongs to ATP-binding cassette (ABC) family of transporters.
- Uses ATP hydrolysis to transport lipids and other materials across membranes.
- Related disorders caused by ABC transporter mutations:
  - Tangier disease: ABCAI deficiency → almost no HDL
  - Sitosterolemia: Defective transport of plant sterols.

- Cystic fibrosis: CFTR gene (a chloride channel ABC protein).
- X-linked adrenoleukodystrophy: Impaired peroxisomal FA transport.
- Neonatal respiratory distress syndrome: Due to reduced surfactant secretion.
- Cholestatic liver disease: Due to decreased bile salt secretion.

## Metabolism of High-Density Lipoprotein (HDL) Particles



# F. Lipoprotein (a) [Lp(a)] and Heart Disease

#### Structure

- Lp(a) is structurally almost identical to LDL
- Key difference: Contains an additional apolipoprotein(a)
  [apo(a)].
  - Apo(a) is covalently linked to apo B-100 at a single site.
  - Apo(a) is structurally similar to plasminogen:
    - Plasminogen is the inactive precursor of plasmin, a protease that breaks down fibrin.
    - Fibrin is the main protein component of blood clots.

# Clinical Significance

- Lp(a) is an independent risk factor for coronary heart disease (CHD).
- Its atherogenic potential may be due to:
  - Interference with fibrinolysis (due to apo(a)'s structural similarity to plasminogen).
  - · Promotion of atherosclerosis.

# Regulation and Impact of Lifestyle

- Circulating Lp(a) levels are mostly genetically determined.
- Diet and medications can influence Lp(a) to a limited extent:
  - o Trans fatty acids: Increase Lp(a) levels.
  - O Niacin (vitamin B3):
    - Decreases Lp(a), LDL-C, and TAG.
    - Increases HDL-C.

#### VII. Steroid Hormones

#### Overview

- Cholesterol is the precursor for all steroid hormones, including:
  - · Glucocorticoids (e.g., cortisol)
  - Mineralocorticoids (e.g., aldosterone)
  - · Sex hormones:
    - Androgens (e.g., testosterone)
    - Estrogens
    - Progestins

- · Glucocorticoids + mineralocorticoids = Corticosteroids
- Sites of synthesis:
  - · Adrenal cortex: cortisol, aldosterone, androgens
  - Ovaries & placenta: estrogens, progestins
  - · Testes: testosterone

# Transport in Blood

- Steroid hormones are hydrophobic → require carrier proteins:
  - Albumin: nonspecific carrier (e.g., carries aldosterone)
  - Specific plasma proteins: tighter binding
    - Example: Corticosteroid-binding globulin (CBG)
       aka transcortin → transports cortisol

#### Genetic Disorders

- Enzyme deficiencies in steroid hormone biosynthesis cause various diseases:
  - · Result in deficiency of downstream hormones
  - · Accumulation of precursor hormones/metabolites

- Collectively termed Congenital Adrenal Hyperplasia (CAH):
  - Leads to adrenal hyperplasia (enlarged adrenal glands)
- Example: Addison disease = adrenocortical insufficiency due to autoimmune destruction of adrenal cortex

A. Synthesis of Steroid Hormones

#### Initial Reaction

- First & rate-limiting step:
- Cholesterol → Pregnenolone (21C)
- Enzyme: Cholesterol side-chain cleavage enzyme
  - Also called P450scc, desmolase
  - Type: Cytochrome P450 (CYP), located in inner mitochondrial membrane
  - · Requires NADPH and O2

#### Cholesterol Sources

· Newly synthesized cholesterol

- Uptake from lipoproteins
- Hydrolysis of cytosolic cholesteryl esters by esterases

# Transport Control

- Cholesterol → outer mitochondrial membrane → transferred to inner membrane
- Mediated by Steroidogenic Acute Regulatory (StAR) protein
  - Major regulatory step in steroidogenesis

## Further Steps

- Pregnenolone → Progesterone:
  - · Via oxidation + isomerization
- Progesterone → Other steroid hormones:
  - Through CYP-catalyzed hydroxylation reactions in SER and mitochondria

#### B. Adrenal Cortical Steroid Hormones

#### Hormonal Control

- Steroid hormones of the adrenal cortex are synthesized and secreted in response to hormonal signals (not stored).
- Types of adrenal cortical steroids include:
  - · Glucocorticoids (e.g., cortisol)
  - Mineralocorticoids (e.g., aldosterone)
  - · Androgens

#### Site of Production

- Different hormones are produced in distinct zones of the adrenal cortex:
  - Each zone responds to specific regulatory signals from the body

## Adrenal Medulla (Contrast)

 The adrenal medulla, distinct from the cortex, synthesizes and secretes catecholamines (e.g., epinephrine and norepinephrine)

## Steroid Hormone Synthesis and Associated Diseases



#### 1. Cortisol

#### Site of Production

 Produced in the zona fasciculata (middle layer) of the adrenal cortex.

## Regulation

- Controlled by the hypothalamic-pituitary-adrenal (HPA)
   axis:
  - $\circ$  Stress (e.g., infection)  $\rightarrow$  hypothalamus secretes corticotropin-releasing hormone (CRH).
  - CRH travels via hypothalamic capillaries to the anterior pituitary.
  - Anterior pituitary secretes adrenocorticotropic hormone (ACTH).
  - ACTH stimulates the adrenal cortex to produce cortisol.

#### Mechanism

- ACTH binds to a G protein-coupled receptor (GPCR) on adrenal cells:
  - $\circ$  Activates adenylyl cyclase  $\to$   $\uparrow$  cAMP  $\to$  activates protein kinase A (PKA).
  - PKA phosphorylates:
    - Cholesteryl ester hydrolase (esterase) → releases free cholesterol.
    - StAR protein → transports cholesterol into mitochondria

## Functions of Cortisol

- Stress hormone helps body adapt to stress.
- Increases gluconeogenesis (energy production during fasting/stress).
- Suppresses immune and inflammatory responses.

## Feedback Regulation

 Rising cortisol levels inhibit both CRH and ACTH (negative feedback).

- CAH (Congenital Adrenal Hyperplasia):
  - $\circ$   $\downarrow$  Cortisol  $\rightarrow$   $\uparrow$  ACTH  $\rightarrow$  adrenal hyperplasia.

#### 2. Aldosterone

#### Site of Production

 Produced in the zona glomerulosa (outer layer) of the adrenal cortex.

## Regulation

- · Stimulated by:
  - ↓ Plasma Na+ / ↑ K+ ratio.
  - Angiotensin II (Ang-II).

# Renin-Angiotensin-Aldosterone System (RAAS)

- Angiotensinogen (from liver)  $\rightarrow$  Angiotensin I (Ang-I) via renin (from kidney).
- Ang-I  $\rightarrow$  Ang-II via angiotensin-converting enzyme (ACE) (mainly in lungs).

#### Mechanism

- Ang-II binds to cell surface receptors.
- Signal transduction via phosphatidylinositol 4,5bisphosphate (PIP2) pathway (not cAMP).

#### Function of Aldosterone

- · Acts on kidney tubules:
  - ↑ Na+ and water reabsorption.
  - ↑ K+ excretion.
- Leads to 1 blood volume and blood pressure.

## Clinical Note

 ACE inhibitors block Ang—II formation → used to treat renin-dependent hypertension.

# 3. Androgens (Adrenal)

#### Site of Production

 Produced in zona reticularis and zona fasciculata of the adrenal cortex.

## Major Forms

- Dehydroepiandrosterone (DHEA)
- · Androstenedione

#### Conversion

- · Weak androgens, but:
  - Converted to testosterone (stronger androgen) in testes via aromatase (CYP19).
  - Converted to estrogens in ovaries (mainly in premenopausal women).

#### Clinical Note

 In postmenopausal women, estrogen is produced extragonadally (e.g., breast tissue).  Aromatase inhibitors are used to treat estrogenresponsive breast cancer in postmenopausal women.

#### C. Gonadal Steroid Hormones

#### Gonads

- Testes and ovaries synthesize steroid hormones needed for:
  - · Sexual differentiation
  - · Reproduction

## Hormonal Control

- Gonadotropin-Releasing Hormone (GnRH) (from hypothalamus) stimulates:
  - · Anterior pituitary to release:
    - Luteinizing hormone (LH)
    - Follicle-stimulating hormone (FSH)

#### Function of LH

• Testes: Stimulates testosterone production.

 Ovaries: Stimulates production of estrogens and progesterone.

#### Function of FSH

- Ovaries: Stimulates follicular growth.
- Testes: Stimulates spermatogenesis.

#### Mechanism

• Both LH and FSH bind GPCRs on target cells  $\rightarrow \uparrow$  cAMP  $\rightarrow$  activation of steroidogenesis.

## D. Mechanism of Action of Steroid Hormones

## Transport and Entry

- · Steroid hormones are lipophilic:
  - O Diffuse across plasma membrane.
  - Bind to intracellular receptors (cytosolic or nuclear).

# Nuclear Activity

- · Hormone-receptor complex:
  - o Translocates to nucleus.
  - Dimerizes and binds to Hormone Response Elements (HREs) on DNA.
  - · Associates with:
    - Coactivators → ↑ transcription
    - Corepressors → ↓ transcription

#### Structural Notes

- Binding causes conformational change exposing DNAbinding domain.
- Domain contains a zinc finger motif for specific DNA interaction.

## Superfamily Members

- · Receptors for:
  - · Steroid hormones
  - · Thyroid hormone
  - · Retinoic acid
  - 1,25-dihydroxycholecalciferol (vitamin D)

#### E. Further Metabolism of Steroid Hormones

#### Inactivation Site

• Liver

#### Metabolic Modifications

- · Reduction of unsaturated bonds.
- Hydroxylation (addition of -OH groups).

# Conjugation

- · Made more water-soluble via:
  - · Glucuronic acid
  - Sulfate (from PAPS, 3'-phosphoadenosyl-5'phosphosulfate)

## Excretion

 Water-soluble conjugates do not need protein carriers.

- Excreted in:
  - Urine
  - Feces