#### "Structure of Proteins"

#### Overview

- The 20 amino acids commonly found in proteins are joined together by peptide bonds.
- The linear sequence of the linked amino acids contains
  the information necessary to generate a protein
  molecule with a unique three-dimensional shape.
- The complexity of protein structure is best analyzed by considering the molecule in terms of four organizational levels:
  - · Primary
  - Secondary
  - · Tertiary
  - Quaternary
- An examination of these hierarchies of increasing complexity has revealed that certain structural elements are repeated in a wide variety of proteins.
- This suggests that there are general "rules" regarding the ways in which proteins achieve their native, functional form.

- These repeated structural elements range from:
  - $\circ$  Simple combinations of  $\alpha$ -helices and  $\beta$ -sheets forming small motifs
  - To the complex folding of polypeptide domains of multifunctional proteins

### Primary Structure of Proteins

- The sequence of amino acids in a protein is called the primary structure of the protein.
- Understanding the primary structure of proteins is important because:
  - Many genetic diseases result in proteins with abnormal amino acid sequences
  - These abnormal sequences cause improper folding and loss or impairment of normal function
- If the primary structures of the normal and the mutated proteins are known:
  - This information may be used to diagnose or study the disease

### A. Peptide Bond

- In proteins, amino acids are joined covalently by peptide bonds
- · Peptide bonds are:
  - $\circ$  Amide linkages between the  $\alpha$ -carboxyl group of one amino acid and the  $\alpha$ -amino group of another
- Example:
  - Valine and alanine can form the dipeptide valylalanine through the formation of a peptide bond
- Peptide bonds are not broken by conditions that denature proteins, such as:
  - · Heating
  - High concentrations of urea
- Prolonged exposure to a strong acid or base at elevated temperatures is required to hydrolyze these bonds nonenzymically

# Naming and Characteristics of Peptides

# 1. Naming the Peptide

- By convention:
  - The free amino end (N-terminal) of the peptide chain is written to the left
  - The free carboxyl end (C-terminal) is written to the right
- Therefore, all amino acid sequences are read from the N- to the C-terminal end of the peptide.
- Linkage of many amino acids through peptide bonds results in an unbranched chain called a polypeptide
- Each component amino acid in a polypeptide is called a "residue":
  - This is because it is the portion of the amino acid remaining after the atoms of water are lost in the formation of the peptide bond.

- · When a polypeptide is named:
  - All amino acid residues have their suffixes (-ine, an, -ic, or -ate) changed to -yl
  - Exception: The C-terminal amino acid retains its original suffix
- Example: A tripeptide composed of:
  - N-terminal valine
  - Glycine
  - · C-terminal leucine
  - · Is named valyl glycyl leucine

# 2. Characteristics of the Peptide Bond

- The peptide bond has a partial double-bond character
  - o It is shorter than a single bond
  - · It is rigid and planar
- This prevents free rotation around the bond between the carbonyl carbon and the nitrogen of the peptide bond

- However, bonds between the:
  - o a-carbons and a-amino groups
  - α-carbons and α-carboxyl groups
  - Can be freely rotated
    - Although rotation is limited by the size and character of the R-groups
- This flexibility allows the polypeptide chain to assume a variety of possible configurations
- The peptide bond is generally a trans bond (instead of cis)
  - This is due to steric interference of the R-groups when in the cis position

### 3. Polarity of the Peptide Bond

- Like all amide linkages:
  - The -C=O and -NH groups of the peptide bond are uncharged
  - They neither accept nor release protons over the pH range of 2-12

- Therefore, the charged groups present in polypeptides consist solely of:
  - The N-terminal (α-amino) group
  - The C-terminal (α-carboxyl) group
  - Any ionized groups present in the side chains of the constituent amino acids
- The -C=O and -NH groups of the peptide bond are polar
  - They are involved in hydrogen bonds, for example, in:
    - a-helices
    - β-sheet structures

B. Determination of the Amino Acid Composition of a Polypeptide

Step 1: Hydrolysis of the Polypeptide

- The first step in determining the primary structure of a polypeptide is to:
  - · Identify and quantitate its constituent amino acids

- A purified sample of the polypeptide is:
  - Hydrolyzed by strong acid at 110°C for 24 hours
  - This treatment cleaves the peptide bonds and releases the individual amino acids

# Step 2: Separation by Cation-Exchange Chromatography

- The released amino acids can be separated by cation exchange chromatography
- In this technique:
  - · A mixture of amino acids is applied to a column
  - The column contains a resin to which a negatively charged group is tightly attached
  - [Note: If the attached group is positively charged, the column becomes an anion-exchange column]
- The amino acids bind to the column with different affinities, depending on their:
  - Charges
  - · Hydrophobicity
  - o Other characteristics

- Each amino acid is sequentially released from the chromatography column by eluting with:
  - Solutions of increasing ionic strength and pH

### Step 3: Quantitation by Ninhydrin Reaction

- The separated amino acids contained in the eluate from the column are quantitated by:
  - · Heating them with ninhydrin
- Ninhydrin is a reagent that:
  - · Forms a purple compound with most:
    - Amino acids
    - Ammonia
    - Amines

### Quantitation of Amino Acids in a Polypeptide

- Quantitation Process:
  - After separation, amino acids are reacted with ninhydrin, which reacts with:

- Primary amino groups (-NH2),
- Ammonia,
- Amines.
- Forms a purple-colored complex, except:
  - Proline and hydroxyproline give a yellow color due to secondary amine group.
- Spectrophotometric Measurement:
  - The intensity of color produced by ninhydrin-amino acid reaction is measured spectrophotometrically.
  - The absorbance at a specific wavelength (usually 570 nm) indicates the quantity of the amino acid.
- Amino Acid Analyzer:
  - · An automated instrument that:
    - Performs cation-exchange chromatography,
    - Applies ninhydrin derivatization,
    - Uses spectrophotometric detection to quantify each amino acid.

# C. Peptide Sequencing from N-Terminal End (Edman Degradation)

- · Sequencing Definition:
  - Determining the order of amino acids in a polypeptide from the N-terminal.
- Edman Reagent (Phenylisothiocyanate):
  - · Used under mildly alkaline conditions.
  - Reacts with the free α-amino group of the Nterminal amino acid.
  - Forms a phenylthiocarbamoyl derivative, which is cleaved to yield:
    - A stable phenylthiohydantoin (PTH)-amino acid.

### • Key Features:

- The PTH-amino acid can be identified by chromatography.
- Remaining peptide (shortened by one residue) can be cycled repeatedly for sequencing.
- Useful for sequencing peptides up to ~50 residues.

# D. Fragmentation of Polypeptides for Sequencing

- Problem with Large Polypeptides:
  - Polypeptides >100 amino acids are too large to sequence directly.
- Solution: Fragmentation:
  - Polypeptide is cleaved at specific sites to generate smaller fragments.
  - · Each fragment is individually sequenced.
  - Overlapping fragments (from different cleavage methods) help reconstruct full sequence.
- Cleavage Agents:
  - o Enzymes (Proteases/Peptidases):
    - Exopeptidases: Cut terminal residues.
      - Aminopeptidases: Remove from Nterminal.
      - Carboxypeptidases: Remove from Cterminal.
    - Endopeptidases: Cleave within the chain (e.g., trypsin, chymotrypsin).
  - Chemical Cleavers: e.g., cyanogen bromide (cleaves at methionine).

### E. Primary Structure Determination by DNA Sequencing

- Genetic Basis of Protein Sequence:
  - The DNA coding sequence in a gene determines the amino acid sequence of the polypeptide.
- DNA Sequencing Advantage:
  - Direct sequencing of the DNA allows in silico translation using the genetic code.
  - Especially useful for large proteins or when peptide sequencing is difficult.

#### · Note:

 Requires knowledge of reading frame and posttranslational modifications for accurate interpretation.

# Limitations of Indirect Amino Acid Sequencing

- · Common Practice:
  - DNA sequencing is routinely used to predict a protein's amino acid sequence.

#### · Limitations:

- O Disulfide bonds:
  - Cannot identify positions of disulfide bridges
     (-5-5-) in the folded polypeptide.
- · Post-translational modifications (PTMs):
  - Cannot detect modified amino acids (e.g., hydroxylation, phosphorylation, methylation).
  - PTMs occur after translation, affecting structure and function.
- Importance of Direct Protein Sequencing:
  - · Provides the true primary sequence, including:
    - Disulfide linkage positions.
    - Identification of chemically altered residues.

### Secondary Structure of Proteins

#### · Definition:

- Regular, repetitive 3D arrangements of nearby amino acids in the polypeptide chain.
- Governed by hydrogen bonding between backbone atoms (not R-groups).

### • Examples of Secondary Structures:

- o a-helix
- o B-pleated sheet
- β-bend (β-turn)
- Collagen α-chain helix (special case—see separate notes)

#### A. a-Helix Structure

#### · General Features:

- Right-handed spiral with a tightly coiled backbone core.
- R-groups project outward from the helix axis to minimize steric clashes.
- Found in both fibrous proteins (e.g., keratin) and globular proteins (e.g., myoglobin).

### • Example Proteins:

- Keratins: Almost entirely α-helical; rigid due to many disulfide bonds.
- $\circ$  Myoglobin: Highly  $\alpha$ -helical; globular and flexible in structure..

# 1. Hydrogen Bonds in the a-Helix

- Intrachain Hydrogen Bonding:
  - Between carbonyl oxygen (C=0) of one amino acid and the amide hydrogen (N-H) of an amino acid 4 residues ahead.
  - O Direction: Parallel to the axis of the helix.
  - Stabilizes helix by forming a continuous hydrogenbond network.

#### · Result:

- All peptide bond components (except the first and last few) are linked by intrachain H-bonds.
- $\circ$  Individual H-bonds are weak, but collectively they stabilize the  $\alpha$ -helix.

### 2. Amino Acids per Turn

- Turn Characteristics:
  - o 3.6 amino acid residues per complete helical turn.
  - Amino acids 3-4 residues apart in primary structure are close together spatially in the helix.

### 3. Amino Acids That Disrupt a-Helix

#### · Proline:

- Has a secondary amino group (imino), forming a rigid ring structure.
- $\circ$  Cannot form normal hydrogen bonds  $\rightarrow$  inserts a kink, breaking the helix.
- · Charged Amino Acids (when in high concentration):
  - · Glutamate, Aspartate (acidic),
  - O Histidine, Lysine, Arginine (basic).
  - May repel each other or form ionic bonds, destabilizing the helix.
- Bulky or β-branched Amino Acids:
  - Tryptophan (bulky indole ring) → steric hindrance.
  - $\circ$  Valine, Isoleucine ( $\beta$ -branched at R-group)  $\rightarrow$  disrupt tight packing.
  - Prevent smooth helical folding if present in clusters.

### B. B-Sheet (B-Pleated Sheet)

### • Definition:

- A type of secondary structure formed by hydrogen bonding between peptide bond components of extended polypeptide segments.
- Surfaces appear pleated, hence the name β-pleated sheet.

# • Representation:

 In diagrams, β-strands are often shown as broad arrows, indicating the direction from N-terminal to C-terminal.

# 1. Comparison of $\beta$ -Sheet vs. $\alpha$ -Helix

#### • a-Helix:

- Composed of a single polypeptide forming a righthanded coil.
- · Hydrogen bonds are parallel to the helix axis.

### • B-Sheet:

- $\circ$  Composed of 2 or more  $\beta$ -strands (either from different chains or the same chain folded back).
- · Polypeptide chains are fully extended, not coiled.
- Hydrogen bonds are perpendicular to the backbone axis.
- · Hydrogen bonding occurs between adjacent strands.

# 2. Types of B-Sheets

- Antiparallel β-Sheet:
  - Adjacent strands run in opposite directions (N $\rightarrow$ C and C $\leftarrow$ N).
  - Hydrogen bonds are more linear → stronger and more stable.
- Parallel β-Sheet:
  - $\circ$  Strands run in the same direction (all N $\rightarrow$ C).
  - · Hydrogen bonds are angled, hence slightly weaker.
- Interchain vs. Intrachain:
  - o Interchain β-sheets:
    - Formed by different polypeptide chains.
    - Stabilized by interchain hydrogen bonds.

- o Intrachain β-sheets:
  - Formed when a single chain folds back on itself.
  - Stabilized by intrachain hydrogen bonds.
- Structural Note in Globular Proteins:
  - B-sheets are often twisted with a right-handed curl when viewed along the backbone.
  - This twist helps form the hydrophobic core of globular proteins.

#### · Functional Note:

 $\circ$  Both  $\alpha$ -helices and  $\beta$ -sheets allow maximum hydrogen bonding within a polypeptide's interior.

### C. B-Bends (Reverse Turns or B-Turns)

### · Function:

- Induce a reversal in the direction of the polypeptide chain.
- Essential for forming compact, globular shapes.
- Often found on the surface of proteins, helping to orient chains inward or outward.

- Association with β-Sheets:
  - $\circ$  Often connect adjacent antiparallel  $\beta$ -strands, facilitating the zig-zag structure.

### · Composition:

- Typically 4 amino acids long.
- · Common amino acids:
  - Proline: Inserts a kink due to its rigid ring structure.
  - Glycine: Frequently present due to its small size (H as R-group), providing flexibility.

#### · Stabilization:

- Maintained by:
  - Hydrogen bonds (usually between the carbonyl oxygen of residue I and the amide hydrogen of residue 4).
  - Sometimes ionic interactions between charged side chains.

### D. Nonrepetitive Secondary Structure

#### · Definition:

- $\circ$  The portion of a polypeptide chain not organized into  $\alpha$ -helices or  $\beta$ -sheets.
- · Typically adopts loop or coil conformations.

### Proportion in Globular Proteins:

- About 50% of a typical globular protein is nonrepetitive.
- $\circ$  The rest is made of  $\alpha$ -helices and  $\beta$ -sheets (repetitive structures).

#### · Characteristics:

- Though nonrepetitive, these structures are not random.
- They exhibit specific conformations essential for function.
- Distinct from "random coils", which refer to denatured/disordered proteins (loss of 3D structure).

### E. Supersecondary Structures (Motifs)

### • Definition:

- $\circ$  Specific combinations of  $\alpha$ -helices,  $\beta$ -sheets, and loops that form compact folding patterns.
- Represent intermediate levels between secondary and tertiary structures.

#### · Location in Proteins:

- Found mostly in the core (interior) of globular proteins.
- $\circ$  Loop regions (like  $\beta$ -bends) connect them and are typically located on the protein surface.

### • Formation Mechanism:

- Formed by close packing of side chains from adjacent structural elements.
- $\circ$  Often, adjacent  $\alpha$ -helices and  $\beta$ -sheets in the sequence are also spatially adjacent in the 3D structure.

### • Examples of Common Motifs:

- · Helix-loop-helix motif:
  - Common in DNA-binding proteins.
  - Frequently found in transcription factors.
  - Provides structural support for DNA interaction.

### Tertiary Structure of Globular Proteins

#### · Definition:

- The 3D folding of a single polypeptide chain into its final functional shape.
- Involves both the folding of individual domains and their arrangement.

#### • Determinant:

 Dictated entirely by the primary structure (amino acid sequence).

#### · Domains:

- · Basic structural and functional units of a protein.
- Each domain may perform a specific function (e.g., binding site, catalytic site).

- Structural Features in Aqueous Solution:
  - Protein is compact with high atomic packing density.
  - · Hydrophobic side chains:
    - Buried in the interior.
    - Shielded from aqueous environment.
  - · Hydrophilic groups:
    - Located on the surface.
    - Interact with water and other polar molecules.

#### A. Domains

#### · Definition:

- Domains are functional and structural units within a polypeptide.
- Each domain behaves like an independent compact globular protein.

#### · Occurrence:

Polypeptides with >200 amino acids usually contain
2 or more domains.

#### · Structure:

- Core of each domain is made from supersecondary structures (motifs).
- Domains fold independently of each other within the same polypeptide chain.

### • Functional Independence:

- Each domain often has a distinct function (e.g., ligand binding, enzymatic activity, etc.).
- Structurally self-contained, maintaining integrity even when isolated.

### B. Interactions Stabilizing Tertiary Structure

#### · Overview:

- Tertiary structure is dictated by the primary amino acid sequence.
- Folding is guided by side chain interactions, forming a compact 3D structure.
- Four main types of interactions stabilize the structure:

### 1) Disulfide Bonds

#### · Definition:

- Covalent bond between the -SH groups of two cysteine residues.
- o Produces a cystine residue.

#### · Location:

- Cysteines may be far apart in the primary sequence or even on different polypeptides.
- Folding brings them into proximity to form the bond.

### • Function:

- · Stabilizes the tertiary structure.
- Protects proteins from denaturation, especially in extracellular environments.
- · Common in secreted proteins like immunoglobulins.

# 2) Hydrophobic Interactions

#### · Mechanism:

- Nonpolar side chains cluster in the interior of the protein.
- · Avoid contact with the aqueous environment.
- · Interact with other hydrophobic residues.

#### · Contrast:

 Polar/charged residues are exposed to the surface, interacting with water.

#### • In Membranes:

 This arrangement is reversed in membrane proteins (nonpolar groups outside).

#### · Result:

 Energetically favorable R-group segregation ensures stability.

# 3) Hydrogen Bonds

#### · Involvement:

- Side chains with -OH or -NH groups (e.g., serine, threonine) participate.
- Form bonds with electron-rich atoms like carbonyl oxygen or carboxyl groups.

#### · Effect:

- · Strengthens the folded structure.
- Bonds between surface polar groups and water enhance protein solubility.

# 4) Ionic Interactions (Salt Bridges)

- · Participants:
  - Negatively charged side chains:
    - Aspartate (-COO-), Glutamate (-COO-)
  - Positively charged side chains:
    - Lysine (-NH<sub>3</sub>+), Arginine (-NH<sub>3</sub>+)

#### · Result:

 Formation of ionic bonds contributes to structural stability.

# C. Protein Folding

#### · Definition:

- Folding is driven by interactions between side chains of amino acids.
- Occurs rapidly within seconds to minutes inside the cell.

### Folding Mechanism:

- Side chain attractions and repulsions direct the folding path.
  - Opposite charges (e.g., lysine and glutamate) attract.
  - Like charges repel.

### o Involves:

- Hydrogen bonding
- Hydrophobic interactions
- Disulfide bond formation

#### · Outcome:

- Folding follows a trial-and-error pathway, favoring configurations where attractions outweigh repulsions.
- · Results in a stable, low-energy conformation.

### D. Denaturation of Proteins

#### · Definition:

- Denaturation is the loss of secondary and tertiary structure without breaking peptide bonds.
- Leads to unfolding and disorganization of the protein structure.

# Denaturing Agents:

- · Heat
- · Organic solvents
- Mechanical mixing
- Strong acids or bases
- · Detergents
- · Heavy metal ions (e.g., lead, mercury)

### · Reversibility:

- Some proteins can refold to their original structure when the agent is removed (reversible).
- However, most proteins become permanently denatured and disordered.

#### · Result:

 Denatured proteins often become insoluble and precipitate from solution.

### E. Role of Chaperones in Protein Folding

- Folding Information:
  - Instructions for folding are encoded in the primary structure.
  - But proteins often don't refold correctly after denaturation.
- Folding Timing:
  - Folding starts during translation (not after full synthesis), which helps reduce misfolding.

- Chaperones (Heat Shock Proteins):
  - Specialized proteins that assist folding.
  - · Functions:
    - Prevent premature folding until full synthesis.
    - Accelerate folding (act as catalysts).
    - Shield vulnerable regions to prevent incorrect interactions.

# V. Quaternary Structure of Proteins

- · Definition:
  - Arrangement of two or more polypeptide subunits in a functional protein.
- Types of Proteins:
  - Monomeric proteins → single polypeptide chain.
  - $\circ$  Multimeric proteins  $\rightarrow$  two or more subunits (can be identical or different).

- Interactions Holding Subunits:
  - Noncovalent bonds, including:
    - Hydrogen bonds
    - Ionic bonds
    - Hydrophobic interactions

### Quaternary Subunit Function and Isoforms

- Subunit Functionality:
  - · Subunits in multimeric proteins may:
    - Function independently, or
    - Cooperate with each other.
      - Example: In hemoglobin, oxygen binding to one subunit increases the affinity of the other subunits for oxygen (positive cooperativity).

#### • Isoforms:

- Proteins that perform the same function but have different primary structures.
- May arise from:
  - Different genes, or
  - Tissue-specific processing of the product of a single gene.

#### • Isozymes:

 If isoforms are enzymes, they are called isozymes.

# VI. Protein Misfolding

- Nature of Folding:
  - · Folding is a complex trial-and-error process.
  - · Misfolded proteins can occur due to errors.
- Cellular Response:
  - Most misfolded proteins are:
    - Tagged for degradation.
    - Broken down by the cell's quality control mechanisms.
  - However, with age, these systems become less efficient.

#### · Result:

- Intracellular/extracellular aggregates of misfolded proteins may accumulate.
- o These deposits are linked to degenerative diseases.

### A. Amyloid Disease

- Causes of Misfolding:
  - · Spontaneous misfolding
  - · Gene mutations that alter protein structure.
  - Abnormal proteolytic cleavage of normal proteins, leading to misfolding.
- Amyloid Characteristics:
  - $\circ$  Misfolded proteins form long fibrillar aggregates with  $\beta$ -pleated sheet structure.
  - These insoluble aggregates are called amyloids.
- Diseases Involved:
  - Amyloids are implicated in several degenerative disorders, especially:
    - Alzheimer disease (AD)
- Amyloid- $\beta$  (A $\beta$ ) in Alzheimer Disease:
  - Aβ peptide contains 40-42 amino acids.
  - Derived from amyloid precursor protein (APP)—a single transmembrane protein.
  - · APP is cleaved proteolytically to form Aβ.

- Pathogenic Properties of AB:
  - $\circ$  Aggregates into non-branching fibrils with  $\beta$ -pleated sheets.
  - · Neurotoxic to brain cells.
  - · Central to cognitive decline in AD.
- AB Deposition Sites:
  - Found in brain parenchyma and around blood vessels.
- Genetic vs Sporadic Forms:
  - Most AD cases are sporadic.
  - About 5-10% of cases are familial (genetically inherited).

### Neurofibrillary Tangles in Alzheimer Disease

- Secondary Pathological Feature:
  - Accumulation of neurofibrillary tangles inside neurons.

### • Key Protein:

- · Composed of abnormal tau (T) protein.
- · Normal tau: Helps with microtubule assembly.
- Defective tau: Disrupts the function of normal tau,
   contributing to neuronal dysfunction.

#### B. Prion Disease

#### Overview

- Prion protein (PrP) is implicated in transmissible spongiform encephalopathies (TSEs).
- Examples of TSEs:
  - Creutzfeldt-Jakob disease (humans)
  - Scrapie (sheep)
  - Bovine spongiform encephalopathy (BSE) or "mad cow disease" (cattle)

# Discovery of the Infectious Agent

 Scientists found that the infectious agent in scrapie was a single protein, without any detectable nucleic acid.

- This infectious protein is designated PrP^Sc:
  - Sc = scrapie
  - · Highly resistant to proteolytic degradation
  - Forms insoluble fibrillar aggregates, similar to amyloids

The Normal Form: PrP^C

- PrP^C = Cellular prion protein
- · Found normally in mammalian brains
  - · Located on the surface of neurons and glial cells
- Encoded by the same gene as PrP^Sc
- · No difference in:
  - Primary structure
  - · Post-translational modifications

# Pathogenic Mechanism

- The key difference lies in the 3D conformation:
  - · Normal PrP^C: Rich in a-helices
  - · Infectious PrP^Sc: Increased β-sheet content
- Conformational change makes PrP^Sc:
  - · Protease-resistant
  - Capable of forming aggregates
- PrP^Sc acts as a template:
  - $\circ$  Induces the conversion of normal PrP^C  $\to$  pathogenic PrP^Sc
  - Leads to progressive accumulation of infectious protein

### Clinical Impact

- TSEs are invariably fatal
- Currently, no treatment exists to reverse or half the disease