Ch 22: Nucelotide Metabolism

Saturday, August 23, 2025

4:00 PM

"Nucleotide Metabolism"

I. Overview

- Nucleotides = essential building blocks for life.
- Functions:
 - \circ Nucleic acid synthesis \rightarrow required for DNA & RNA \rightarrow protein synthesis & cell proliferation.
 - Carriers of activated intermediates in biosynthesis:
 - UDP-glucose \rightarrow glycogen synthesis.
 - CDP-choline → phospholipid synthesis.
 - · Components of coenzymes:
 - Coenzyme A (CoA)
 - FAD(H₂)
 - NAD(H)
 - NADP(H)
 - · Second messengers in signaling:

- CAMP
- cGMP
- Energy sources:
 - ATP = universal energy currency.
- Regulators of metabolism:
 - Allosteric inhibitors/activators of key enzymes.
- Sources of bases:
 - O De novo synthesis (from scratch).
 - Salvage pathways (reuse of preformed bases).
 - \circ Dietary nucleotides: rarely used \rightarrow dietary nucleic acids degraded in GIT.

II. Structure of Nucleotides

- Components:
 - 1. Nitrogenous base (purine or pyrimidine)
 - 2. Pentose sugar (ribose in RNA, deoxyribose in DNA)
 - 3. Phosphate group(s) (mono-, di-, or triphosphate).

A. Nitrogenous Bases

Purines (Double-ring)

- Adenine (A)
- Guanine (G)
- Present in both DNA & RNA.

Pyrimidines (Single-ring)

- \bullet Cytosine (C) \rightarrow DNA & RNA
- Thymine (T) \rightarrow only in DNA
- Uracil (U) \rightarrow only in RNA
- Difference between T & U: Thymine has a methyl group.

B. Unusual (Modified) Bases

- Found in:
 - O Viral DNA
 - +RNA & rRNA (more common in RNA)
- Types of modifications:
 - Methylation

- Glycosylation
- Acetylation
- · Reduction
- Functions:
 - · Recognition signals for specific enzymes.
 - Protection from nuclease degradation.

B. Nucleosides

- Definition: Base + Pentose sugar (ribose or deoxyribose) linked by N-glycosidic bond.
- Types:
 - Ribonucleosides (sugar = ribose):
 - Adenosine (A)
 - Guanosine (G)
 - Cytidine (C)
 - Uridine (U)
 - O Deoxyribonucleosides (sugar = 2-deoxyribose):
 - Deoxyadenosine
 - Deoxyguanosine
 - Deoxycytidine

■ Thymidine (note: "deoxy-" prefix usually omitted since thymine only exists in DNA).

Numbering:

- \circ Base atoms \rightarrow numbered without prime (1,2,3...)
- \circ Sugar atoms \rightarrow numbered with prime (1' to 5')
- Important in exam: 5'-carbon refers to pentose,
 not the base.

C. Nucleotides

- Definition: Nucleoside + phosphate group(s).
- Phosphate attachment:
 - \circ First phosphate esterified to 5'-OH of sugar \rightarrow 5'-nucleotide.
 - O Example: Adenosine monophosphate (AMP).

• Types:

- Monophosphate → AMP
- Diphosphate → ADP
- Triphosphate → ATP

- High-energy bonds:
 - O Between phosphate groups (2nd & 3rd).
 - \circ Hydrolysis releases large $-\Delta G \rightarrow$ drives cellular reactions.
- Key exam fact:
 - \circ Phosphates confer negative charge \to DNA & RNA = nucleic acids.

III. Purine Nucleotide Synthesis

Sources of Atoms for Purine Ring

- ullet Amino acids o Glycine, Glutamine, Aspartate
- CO₂
- N¹⁰-formyl tetrahydrofolate (THF)

Exam tip: "Purine = built on ribose step by step."

A. S-Phosphoribosyl-I-pyrophosphate (PRPP) Synthesis

• Precursor: Ribose-S-phosphate (from PPP).

• Reaction:

- \circ ATP + Ribose-S-P \rightarrow PRPP
- Enzyme = PRPP synthetase (X-linked).

Regulation:

- Activated by inorganic phosphate (Pi).
- Inhibited by purine nucleotides (feedback inhibition).
- Important: PRPP sugar = ribose \rightarrow so de novo purine synthesis produces ribonucleotides.
 - Later converted to deoxyribonucleotides for DNA synthesis.

B. S-Phosphoribosylamine Synthesis

- · Committed step of purine biosynthesis.
- Reaction:
 - \circ PRPP + Glutamine \rightarrow S-Phosphoribosylamine
 - Enzyme = Glutamine:PRPP amidotransferase (GPAT).

Regulation:

- o Inhibited by AMP & GMP (end products).
- Rate dependent on PRPP concentration.
- \circ PRPP normally below Km of GPAT \to small increases strongly increase rate.

C. Inosine Monophosphate (IMP) Synthesis

- Pathway:
 - 9 enzymatic steps from 5-Phosphoribosylamine.
 - · Requires:
 - 4 ATP molecules (energy).
 - 2 N¹⁰-formyl-THF (one-carbon donors).
- Product: IMP (Inosine Monophosphate) \rightarrow base = hypoxanthine.
- Importance:
 - \circ IMP = parent nucleotide \rightarrow precursor for AMP & GMP.
- Clinical note: Hypoxanthine also found in tRNA wobble base.

D. Synthetic Inhibitors of Purine Synthesis

1. Sulfonamides (Antibacterials)

Mechanism:

- Structural analogs of PABA (para-aminobenzoic acid).
- \circ Block bacterial synthesis of folic acid $\to \downarrow$ nucleotide synthesis.

• Selectivity:

 \circ Humans do not synthesize folic acid (depend on diet) \rightarrow selective for bacteria.

2. Methotrexate (Anticancer drug)

· Mechanism:

- Structural analog of folic acid.
- \circ Inhibits dihydrofolate reductase (DHFR) $\to \downarrow$ regeneration of tetrahydrofolate (THF).
- \circ Blocks purine + pyrimidine synthesis $\to \downarrow$ DNA/RNA synthesis.

- Use:
 - Cancer chemotherapy.
- · Toxicity (to rapidly dividing human cells):
 - \circ Bone marrow suppression o anemia
 - GI mucosa → ulceration, diarrhea
 - \circ Skin \rightarrow scaly changes
 - Immune system → immunodeficiency
 - \circ Hair follicles \rightarrow alopecia

Exam tip: "Methotrexate \rightarrow inhibits DHFR \rightarrow affects both purines & pyrimidines \rightarrow anticancer drug but causes severe side effects."

- E. AMP and GMP Synthesis from IMP
 - IMP → AMP pathway:
 - o Requires Aspartate (N donor).
 - · Requires GTP (energy).
 - Inhibited by AMP (end-product feedback).
 - IMP → GMP pathway:

- o Requires Glutamine (N donor).
- · Requires ATP (energy).
- o Inhibited by GMP.

Regulation:

- Balances purine pools → whichever nucleotide (AMP or GMP) is less abundant is preferentially synthesized.
- \circ If both AMP & GMP adequate \rightarrow GPAT (committed step) inhibited.

Drug: Mycophenolic Acid

- Mechanism: Reversible inhibitor of IMP dehydrogenase (enzyme in GMP synthesis).
- Clinical use:
 - \circ Immunosuppressant \rightarrow prevents graft rejection (kidney, liver, heart).
 - Treats autoimmune disorders: lupus, Crohn's disease.
- Selectivity:

- \circ T & B lymphocytes highly dependent on GMP \rightarrow strongly affected.
- F. Nucleoside Di- and Triphosphate Synthesis
- I. Monophosphate \rightarrow Diphosphate
 - Enzyme: Base-specific nucleoside monophosphate kinases.
 - Examples:
 - \circ AMP \rightarrow ADP (enzyme = adenylate kinase).
 - Features:
 - Specific for base (A, G, C, U) but not for ribose vs deoxyribose.
 - Phosphate donor = usually ATP.
- 2. Diphosphate → Triphosphate
 - Enzyme: Nucleoside diphosphate kinase.
 - Features:
 - O Broad substrate specificity (can work with A, G, C,

V).

Maintains balance among NTPs.

Special role of Adenylate Kinase

- Highly active in muscle & liver.
- Maintains equilibrium among AMP, ADP, ATP.
- G. Purine Salvage Pathway
 - Importance:
 - Salvages purines from:
 - Normal nucleic acid turnover.
 - Small amount from diet.
 - Especially crucial in the brain (limited de novo synthesis).
- 1. Enzymes in Purine Salvage
 - Adenine → AMP
 - Enzyme = Adenine phosphoribosyltransferase (APRT).
 - Hypoxanthine + Guanine \rightarrow IMP/GMP

- Enzyme = Hypoxanthine-Guanine
 Phosphoribosyltransferase (HGPRT) (X-linked).
- Substrate: Both use PRPP (ribose donor).
- Irreversible: Due to pyrophosphate hydrolysis.
- 2. Special Note: Adenosine Salvage
 - Adenosine → AMP
 - Enzyme = Adenosine kinase.
 - Adenosine = only purine nucleoside directly salvaged.

Purine Metabolism Disorders & Deoxyribonucleotide Synthesis

- 1. Lesch-Nyhan Syndrome
 - Inheritance: X-linked recessive.
 - Defect: HGPRT deficiency (Hypoxanthine-guanine phosphoribosyltransferase).

· Pathophysiology:

- \circ Failure of salvage pathway \rightarrow hypoxanthine & guanine cannot be reused.
- \circ PRPP levels \uparrow (excess substrate for de novo synthesis).
- IMP & GMP levels ↓ (loss of negative feedback).
- \circ De novo purine synthesis $\uparrow \to$ more purine degradation \to hyperuricemia.

· Clinical features:

- \circ Hyperuricemia \rightarrow uric acid stones (urolithiasis), gouty arthritis, urate deposits in soft tissue.
- Neurological & behavioral symptoms:
 - Motor dysfunction
 - Cognitive impairment
 - Self-mutilation (biting lips, fingers very high yield exam feature).
- Exam tip: Inherited cause of hyperuricemia + neurobehavioral symptoms = Lesch-Nyhan.

2. Deoxyribonucleotide Synthesis

• DNA synthesis requires deoxyribonucleotides (dNTPs).

- Enzyme: Ribonucleotide reductase (acts during 5-phase of cell cycle).
- Reaction: Converts ribonucleoside diphosphates (ADP, GDP, CDP, UDP) \rightarrow deoxy forms (dADP, dGDP, dCDP, dUDP).

A. Ribonucleotide Reductase Structure

- RI (α) subunit: Catalytic + allosteric sites.
- R2 (β) subunit: Contains stable tyrosyl radical for catalysis.
- Hydrogen donor: Two -SH groups on RI (form disulfide bond during reaction).

B. Regeneration Cycle

- 1. Enzyme regeneration:
 - O Disulfide bond on RI must be reduced.
 - O Thioredoxin donates -SH groups.
- 2. Thioredoxin regeneration:

- Reduced by thioredoxin reductase (a selenoprotein).
- Uses NADPH + H+ as electron donor.
- 3. Regulation of Ribonucleotide Reductase
 - Ensures balanced supply of all dNTPs for DNA replication.
 - Allosteric regulation (at RI subunit):
- > Activity sites:
 - \circ ATP binding \rightarrow activates enzyme.
 - \circ dATP binding \rightarrow inhibits enzyme (prevents all ribonucleotide reduction).
 - Explains toxicity of \uparrow dATP in ADA deficiency \rightarrow \downarrow DNA synthesis \rightarrow SCID.
- > Substrate specificity sites:
 - Binding of specific dNTPs regulates which ribonucleotide is reduced.
 - \circ Example: dTTP binding \rightarrow stimulates GDP \rightarrow dGDP conversion.
- 4. Clinical Application: Hydroxyurea

- Mechanism: Inhibits ribonucleotide reductase $\rightarrow \downarrow$ dNTP synthesis $\rightarrow \downarrow$ DNA synthesis.
- Uses:
 - o Cancer therapy (melanoma, CML).
 - Sickle cell disease:
 - Increases fetal Hb (HbF) levels.
 - Mechanism: due to gene expression changes, not enzyme inhibition.

Purine Nucleotide Degradation & Gout

- 1. Overview
 - Site:
 - O Dietary nucleic acids degraded in small intestine.
 - \circ De novo purines degraded in liver \to free bases sent to peripheral tissues for salvage.
 - Final product in humans: Uric acid (excreted in urine).
 - Note:

- \circ Other mammals: uric acid degraded further by uricase \rightarrow all antoin (more soluble).
- Recombinant uricase now used clinically to lower urate.
- 2. Degradation in Small Intestine
 - i) Pancreatic nucleases (RNAse, DNAse) \rightarrow oligonucleotides.
- ii) Phosphodiesterases → mononucleotides.
- iii) Nucleotidases \rightarrow nucleosides.
- iv) Nucleosidases (phosphorylases) \rightarrow free bases + ribose-I-phosphate.
- v) Dietary purine bases \rightarrow degraded to uric acid (not reused for DNA/RNA).
- vi) Most uric acid \rightarrow absorbed \rightarrow blood \rightarrow urine.
- 3. Pathway of Uric Acid Formation (Enzymes & Steps)
 - i) AMP \rightarrow IMP (by AMP deaminase) or adenosine \rightarrow inosine (by ADA).

- ii) IMP, GMP \rightarrow inosine, guanosine (by 5'-nucleotidase).
- iii) Inosine, guanosine \rightarrow hypoxanthine, guanine (by purine nucleoside phosphorylase).
- iv) Guanine \rightarrow xanthine (by guanine deaminase).
- v) Hypoxanthine \rightarrow xanthine (by xanthine oxidase).
- vi) Xanthine \rightarrow uric acid (by xanthine oxidase).
 - Xanthine oxidase (XO) = molybdenum-containing enzyme.
- 4. Diseases of Purine Degradation

A. Gout

- Definition: Disorder due to hyperuricemia → deposition of monosodium urate (MSV) crystals in joints & soft tissue.
- Pathogenesis:
 - i. Hyperuricemia (> 6.8 mg/dL):

- Overproduction of uric acid OR
- Underexcretion by kidney (most common).
- ii. MSV crystals \rightarrow deposit in joints.
- iii. Crystals trigger inflammatory response \rightarrow acute gouty arthritis.
- iv. Progression \rightarrow chronic tophaceous gout (nodular MSU deposits = tophi).

B. Clinical Features of Gout

- Acute gouty arthritis (red, swollen, painful joint; classic = 1st MTP = podagra).
- Tophi = nodular MSU crystal deposits in soft tissues.
- Urolithiasis = uric acid kidney stones.
- Diagnosis:
 - Synovial fluid aspiration + polarized light microscopy → needle-shaped crystals.

C. Causes of Hyperuricemia

- i. Underexcretion of uric acid (>90% cases):
 - · Primary: idiopathic renal defects.
 - Secondary:
 - Renal disease.
 - Lactic acidosis (lactate competes with urate for excretion).
 - Drugs: thiazide diuretics, lead toxicity (saturnine gout).
- ii. Overproduction of uric acid (<10% cases):
 - O Primary:
 - PRPP synthetase mutation $\rightarrow \uparrow$ Vmax, \downarrow Km, or loss of feedback inhibition $\rightarrow \uparrow$ PRPP $\rightarrow \uparrow$ purine synthesis.
 - Lesch-Nyhan syndrome (HGPRT deficiency \rightarrow salvage failure \rightarrow ↑ PRPP availability).
 - Secondary:
 - High cell turnover (e.g., chemotherapy, myeloproliferative disorders).
 - Metabolic diseases: Von Gierke disease,
 Hereditary fructose intolerance.

S. Clinical Pearls

- Hyperuricemia ≠ always gout, but gout always has hyperuricemia.
- Xanthine oxidase inhibitors (e.g., allopurinol, febuxostat) \unic acid formation (important therapy).
- Urate oxidase therapy (rasburicase, pegloticase) used in tumor lysis syndrome.
- Lesch-Nyhan syndrome = inherited cause of hyperuricemia + neurobehavioral features.

Dietary Risk Factors for Gout

- Increases risk:
 - o Meat (esp. organ meat)
 - Seafood (shellfish)
 - \circ Alcohol (esp. beer & spirits $\rightarrow \uparrow$ lactic acid $\rightarrow \downarrow$ urate excretion)
- Decreases risk:

Low-fat dairy products

- D. Treatment of Gout
 - > Acute Gout Attack
 - Aim: | inflammation (no effect on uric acid levels).
 - Drugs:
 - \circ Colchicine \rightarrow inhibits microtubule polymerization \rightarrow \downarrow neutrophil migration.
 - NSAIDs (e.g., indomethacin).
 - O Corticosteroids (e.g., prednisone).
 - > Chronic / Long-Term Management
 - Aim: Lower serum uric acid < 6.5 mg/dL (below saturation).
 - In underexcretors:
 - \circ Uricosuric drugs: probenecid, sulfinpyrazone $\to \uparrow$ renal excretion.
 - In overproducers:

- Allopurinol (hypoxanthine analog):
 - Converted \rightarrow oxypurinol = long-lived xanthine oxidase inhibitor.
 - ↓ uric acid synthesis.
 - Hypoxanthine & xanthine accumulate (more soluble than uric acid).
 - Salvage of hypoxanthine by HGPRT \rightarrow \downarrow PRPP \rightarrow \downarrow de novo purine synthesis.
- Febuxostat: non-purine xanthine oxidase inhibitor (alternative).

Additional Notes

- Uric acid normally near saturation point in plasma \rightarrow believed to have antioxidant role.
- Tumor lysis syndrome (chemotherapy): risk of uric acid nephropathy → treat with rasburicase/pegloticase (urate oxidase).

Adenosine Deaminase (ADA) Deficiency

- ullet Normal role: ADA deaminates adenosine ullet inosine.
- Deficiency (autosomal recessive):
 - · Adenosine & dATP accumulate.

- \circ High dATP \to inhibits ribonucleotide reductase $\to \downarrow$ dNTP synthesis $\to \downarrow$ DNA replication.
- \circ Lymphocytes (T, B, NK) most affected \rightarrow severe combined immunodeficiency (SCID).

Clinical Features

- Onset in infancy.
- Severe, recurrent infections (bacterial, viral, fungal).
- Failure to thrive.
- Without treatment \rightarrow death by 2 years.

Treatment

- Bone marrow transplantation (curative).
- Enzyme replacement therapy (PEG-ADA).
- Gene therapy (ADA gene transfer into stem cells).

Purine Nucleoside Phosphorylase (PNP) Deficiency

• Rarer, less severe than ADA deficiency.

ullet Affects primarily T cells o partial immunodeficiency.

Pyrimidine Synthesis and Degradation

General Features

- Purine vs. Pyrimidine synthesis:
 - \circ Purine ring \rightarrow built on ribose-S-phosphate.
 - \circ Pyrimidine ring \rightarrow synthesized first, then attached to ribose-S-phosphate (from PRPP).
- Sources of atoms for pyrimidine ring:
 - Glutamine
 - \circ CO₂
 - Aspartate

A. Carbamoyl Phosphate Synthesis (Regulated Step)

- Enzyme: Carbamoyl phosphate synthetase II (CPS II).
- Reaction: Glutamine + $CO_2 \rightarrow Carbamoyl phosphate$.
- Location: Cytosol.

• Regulation:

- o Inhibited by UTP (end product).
- Activated by PRPP.

· Clinical correlation:

 \circ Defects in ornithine transcarbamylase (OTC) in urea cycle $\to \uparrow$ carbamoyl phosphate \to shunted into pyrimidine synthesis $\to \uparrow$ orotic acid.

• Comparison: CPS I vs. CPS II

Feature	CPSI	CPS II
Location	Mitochondria	Cytosol
Pathway	Urea cycle	Pyrimidine synthesis
N source	Ammonia	Amide group of glutamine

Activator N-acetylglutamate PRPP

UTP

B. Orotic Acid Synthesis

- Enzyme I: Aspartate transcarbamoylase → forms carbamoylaspartate.
- ullet Enzyme 2: Dihydroorotase o closes the ring o dihydroorotate.
- Step: Dihydroorotate oxidized \rightarrow orotic acid (orotate).
- Cofactor: FMN reduced in this reaction.

C. Pyrimidine Nucleotide Synthesis

- Attachment of ribose-5-phosphate:
 - Enzyme: Orotate phosphoribosyltransferase.
 - \circ Reaction: Orotate + PRPP \rightarrow OMP (orotidine monophosphate).
 - \circ Releases PPi \rightarrow irreversible.
- Conversion to UMP:
 - O Enzyme: Orotidylate decarboxylase.

- \circ OMP \rightarrow UMP.
- Both enzymes (transferase + decarboxylase) = domains of UMP synthase.

· Clinical correlation:

- \circ Hereditary orotic aciduria: deficiency of UMP synthase $\rightarrow \uparrow$ orotic acid in urine + megaloblastic anemia.
- Treatment: Uridine (bypasses block, feedback inhibits CPS II).
- OTC deficiency (urea cycle) $\rightarrow \uparrow$ carbamoyl phosphate $\rightarrow \uparrow$ orotate in urine (but no anemia).
- Further conversions:
 - \circ UMP \to UDP \to UTP.
 - \circ UDP \to substrate for ribonucleotide reductase \to dUDP \to dUTP \to rapidly hydrolyzed to dUMP (by dUTPase, prevents misincorporation of U into DNA).

D. Cytidine Triphosphate (CTP) Synthesis

• Enzyme: CTP synthetase.

- Reaction: UTP + glutamine \rightarrow CTP.
- Fates:
 - \circ CTP \to CDP \to substrate for ribonucleotide reductase \to dCDP \to dCTP (DNA synthesis).
 - \circ dCDP \rightarrow dCMP \rightarrow deaminated \rightarrow dUMP.

E. Deoxythymidine Monophosphate (dTMP) Synthesis

- Reaction: $dUMP \rightarrow dTMP$.
- Enzyme: Thymidylate synthase.
- Cofactor: N⁵,N¹⁰-methylene tetrahydrofolate (THF).
 - o Provides both methyl group + 2 hydrogens.
 - \circ THF \rightarrow oxidized to DHF.
- DHF \rightarrow THF (by DHF reductase).
- Inhibitors:
 - \circ S-Fluorouracil (S-FU) \rightarrow converted to S-FdUMP \rightarrow suicide inhibitor of thymidylate synthase $\rightarrow \downarrow$ dTMP $\rightarrow \downarrow$ DNA synthesis \rightarrow used in cancer

therapy.

 \circ Methotrexate (MTX) and other folate analogs \rightarrow inhibit DHF reductase $\rightarrow \downarrow$ THF $\rightarrow \downarrow$ purine + \downarrow dTMP synthesis $\rightarrow \downarrow$ DNA synthesis \rightarrow anticancer effect.

Other analogs:

- \circ Acyclovir (purine analog) \rightarrow HSV infections.
- \circ AZT (zidovudine, pyrimidine analog) \to HIV infections.

F. Pyrimidine Salvage and Degradation

1. Degradation of Pyrimidines

Unlike purines:

- \circ Purines \rightarrow not cleaved in humans \rightarrow excreted as uric acid (poorly soluble).
- \circ Pyrimidines \to ring is opened \to degraded into soluble products.

End products:

- \circ CMP & UMP \rightarrow degraded to β -alanine.
- \circ TMP \rightarrow degraded to β -aminoisobutyrate.
- Other products formed: Ammonia (NH_3) and CO_2 .
- Clinical note: Since products are highly soluble, pyrimidine degradation does not cause gout-like disorders.

2. Pyrimidine Salvage Pathway

- ullet Process: Pyrimidine bases ullet converted to nucleosides ullet phosphorylated to nucleotides.
- Clinical significance:
 - Less critical than purine salvage (because pyrimidine degradation products are soluble and easily excreted).
 - O Exception:
 - Uridine salvage is clinically important.
 - Basis of treatment for hereditary orotic aciduria (supplemented uridine bypasses UMP synthase deficiency and inhibits CPS II by feedback).