"Globular Proteins"

I. Overview

- Globular proteins are spherical (or "globelike") in overall shape.
- They are usually somewhat water-soluble, possessing many hydrophilic amino acids on their outer surface, facing the aqueous environment.
- More nonpolar amino acids face the interior of the protein, providing hydrophobic interactions to further stabilize the globular structure.
- This is in contrast to fibrous proteins, which:
 - · Form long rodlike filaments
 - · Are relatively inert or water-insoluble
 - Provide structural support in the extracellular environment

II. Globular Hemeproteins

- Hemeproteins are a group of specialized globular proteins that contain heme as a tightly bound prosthetic group
- The function of the heme group is dictated by the three-dimensional structure of the protein.
- In the mitochondrial electron transport chain:
 - The cytochrome protein structure allows for rapid and reversible oxidation-reduction electron transfer of the heme-coordinated iron
 - \circ The iron reversibly transitions between its ferrous (Fe²⁺) and ferric (Fe³⁺) states.

Role of Heme in Enzymes and Hemoglobin

- In the enzyme catalase, the heme group is structurally part of the enzyme's active site, which catalyzes the breakdown of hydrogen peroxide.
- The protein structure of hemoglobin can affect the alignment of the ferrous (Fe²⁺) iron with respect to the plane of the heme prosthetic group.
- Changes in this alignment can affect the binding affinity and transport of oxygen by hemoglobin between the lungs and tissues.

A. Heme Structure

- Heme is a planar structure, comprised of:
 - A porphyrin ring
 - With ferrous iron (Fe²⁺) coordinated in the porphyrin ring center.
- The iron is held in the center of the heme molecule by:
 - · Bonds to four nitrogens of the porphyrin ring

- The heme Fe²⁺ can form two additional bonds, one on each side of the planar porphyrin ring.
- In hemoglobin:
 - One of these positions is coordinated to the side chain of a histidine residue of the globin molecule
 - \circ The other position is available to bind O_2

B. Myoglobin Structure and Function

- Myoglobin, a hemeprotein present in heart and skeletal muscle, functions:
 - · As an oxygen reservoir
 - And as an oxygen carrier that increases the rate of oxygen transport within the muscle cell
- · Myoglobin consists of:
 - · A single polypeptide chain
 - That is structurally similar to the individual polypeptide chains of the tetrameric hemoglobin molecule

 This homology makes myoglobin a useful model for interpreting some of the more complex properties of hemoglobin.

1. a-Helical Content

- · Myoglobin is a compact molecule, with:
 - \circ ~80% of its polypeptide chain folded into eight stretches of α -helix
- These α-helical regions are terminated either by:
 - \circ The presence of proline, whose five-membered ring cannot be accommodated in an α -helix (see p. 16)
 - o Or by β-bends and loops stabilized by:
 - Hydrogen bonds
 - Ionic bonds (Note: Ionic bonds are also termed electrostatic interactions or salt bridges)

- 2. Location of Polar and Nonpolar Amino Acid Residues
 - The interior of the globular myoglobin molecule is composed almost entirely of nonpolar amino acids.
 - Nonpolar amino acids are:
 - · Packed closely together
 - Forming a structure stabilized by hydrophobic interactions between these clustered residues
 - In contrast, polar amino acids are located almost exclusively on the surface, where:
 - They can form hydrogen bonds, both:
 - With each other
 - And with water
- 3. Binding of the Heme Group
 - The heme prosthetic group of the myoglobin molecule:
 - Sits in a crevice lined with nonpolar amino acids
 - Notable exceptions to the nonpolar lining are:
 - Two histidine residues, which are basic amino acids

- · One of the histidine residues is:
 - The proximal histidine (F8), which binds directly to the Fe²⁺ of heme
- · The second histidine is:
 - o The distal histidine (E7), which:
 - Does not directly interact with the heme group
 - But helps stabilize the binding of O2 to Fe2+
- The protein (globin) portion of myoglobin:
 - Creates a special microenvironment for the heme that permits oxygenation
 - Oxygenation = Reversible binding of one oxygen molecule
- Oxidation (simultaneous loss of electrons by Fe^{2+} to ferric $[Fe^{3+}]$ form):
 - · Occurs only rarely

C. Hemoglobin Structure and Function

- 1. Location and Primary Function
 - Hemoglobin is found exclusively in red blood cells (RBCs)
 - Its main function is to:
 - \circ Transport O_2 from the lungs to the capillaries of the tissues
- 2. Structure of Hemoglobin A (HbA)
 - Hemoglobin A (HbA) is the major hemoglobin in adults
 - Composed of four polypeptide chains:
 - · Two a chains
 - · Two β chains

- · Chains are held together by noncovalent interactions
- Each chain (subunit) has:
 - o Stretches of a-helical structure
 - A hydrophobic heme-binding pocket, similar to that in myoglobin
- 3. Complexity Compared to Myoglobin
 - The tetrameric hemoglobin molecule is:
 - Structurally and functionally more complex than myoglobin
- 4. Additional Transport Functions
 - · Hemoglobin can transport:
 - · Protons (H+)
 - Carbon dioxide (CO₂)
 - From the tissues to the lungs
 - Can carry four molecules of O_2 from the lungs to the cells of the body

5. Regulation of Oxygen-Binding

- The oxygen-binding properties of hemoglobin are:
 - Regulated by interaction with allosteric effectors

6. Physiological Relevance

- Obtaining O₂ solely by diffusion:
 - Greatly limits the size of organisms
- · Circulatory systems overcome this limitation
- But transport molecules like hemoglobin are also required because:
 - \circ O_2 is only slightly soluble in aqueous solutions such as blood

- 1. Quaternary Structure of Hemoglobin
- A. Dimer Formation and Interactions
 - The hemoglobin tetramer can be envisioned as composed of:
 - \circ Two identical dimers: $\alpha\beta_1$ and $\alpha\beta_2$
 - The two polypeptide chains within each dimer are:
 - Held tightly together primarily by hydrophobic interactions
- B. Distribution of Hydrophobic Residues
 - In this instance:
 - · Hydrophobic amino acid residues are located:
 - Not only in the interior of the molecule
 - But also on a region of the surface of each subunit
 - These interchain hydrophobic interactions:
 - \circ Form strong associations between the $\alpha-subunit$ and $\beta-subunit$ in each dimer

C. Interaction Between Dimers

- The two dimers are held together primarily by polar bonds
- These weaker interactions:
 - Allow the dimers to move with respect to one another
- · As a result:
 - The two dimers occupy different relative positions in:
 - Deoxyhemoglobin versus oxyhemoglobin
- a. T Form (Taut/Tense Form)

A. Structure of T Form

 The deoxy form of hemoglobin is called the "T" form, or taut (tense) form

· In this form:

- The two αβ dimers interact through a network of ionic bonds and hydrogen bonds
- These interactions constrain the movement of the polypeptide chains

B. Position of Iron and Oxygen Affinity

- In the T form:
 - The iron (Fe²⁺) is pulled out of the heme planar structure
- The T conformation represents:
 - The low-oxygen-affinity form of hemoglobin

b. R Form (Relaxed Form)

A. Effect of O2 Binding

- Binding of O₂ to hemoglobin:
 - \circ Causes rupture of some polar bonds between the two $\alpha\beta$ dimers
 - Allows movement of Fe²⁺ relative to the planar heme structure

B. Movement of Iron and Globin Chains

- Specifically:
 - \circ O_2 binding to Fe^{2+} pulls the iron more directly into the plane of the heme ring
 - Because Fe²⁺ is linked to the proximal histidine (F8):
 - This movement shifts the globin chains
 - Alters the interface between the aB dimers

C. R Conformation Properties

- This conformational change results in the:
 - o "R" form, or relaxed form of hemoglobin
- The R form is:
 - The high-oxygen-affinity conformation
- D. Oxygen Binding to Myoglobin and Hemoglobin
- A. Binding Capacity
 - Myoglobin:
 - · Can bind only one O2 molecule
 - · Because it contains only one heme group
 - · Hemoglobin:
 - Can bind four O₂ molecules
 - One at each of its four heme groups

B. Degree of Saturation (Y)

- Y (Degree of Saturation):
 - Represents how many oxygen-binding sites are occupied
 - Can range from:
 - 0%: All sites are empty
 - 100%: All sites are full (fully saturated)

C. Clinical Note: Pulse Oximetry

- · Pulse oximetry:
 - A noninvasive and indirect method for measuring oxygen saturation of arterial blood
 - Based on differences in light absorption:
 - Between oxyhemoglobin and deoxyhemoglobin

1. Oxygen-Dissociation Curve

A. Definition

- A graph of degree of saturation (Y) at different partial pressures of oxygen (pO_2 or PO_2)
- · Called the oxygen-dissociation curve
- B. Comparison: Myoglobin vs. Hemoglobin
 - Myoglobin has a higher O_2 affinity at all pO_2 values than hemoglobin
 - PSO (partial pressure needed for 50% saturation):
 - Myoglobin: ~I mm Hg
 - Hemoglobin: ~26 mm Hg
 - Interpretation:
 - Higher oxygen affinity \rightarrow Lower PSO (binds O_2 more tightly)

- a. Myoglobin
- A. Curve Shape
 - The oxygen-dissociation curve is hyperbolic
- B. Reason for Hyperbolic Shape
 - Due to reversible binding of a single O_2 molecule
 - · Simple equilibrium:
 - \circ Mb + $O_2 \rightleftharpoons$ Mb O_2
- C. Effect of O2 Levels
 - Equilibrium shifts:
 - \circ To the right when O_2 is added
 - \circ To the left when O_2 is removed
- D. Functional Role of Myoglobin
 - Binds O_2 released by hemoglobin at low pO_2 (as in muscle)

- \bullet Releases O_2 within the muscle cell in response to oxygen demand
- b. Hemoglobin
- A. Curve Shape
 - The oxygen-dissociation curve is sigmoidal
- B. Reason for Sigmoidal Shape
 - Due to cooperative binding:
 - \circ Binding of O_2 at one subunit increases the O_2 affinity of the remaining subunits
- C. Cooperative Binding Mechanism
 - First O2 binds with difficulty
 - Subsequent O₂ molecules bind with increasingly higher affinity
 - Reflected by:
 - Steep upward curve between 20-30 mm Hg pO2

E. Allosteric Effectors of Hemoglobin

A. Definition

- Hemoglobin's ability to reversibly bind O_2 is influenced by:
 - o p02 (partial pressure of oxygen)
 - o pH of the environment
 - o pCO2 (partial pressure of carbon dioxide)
 - 2,3-bisphosphoglycerate (2,3-BPG)

B. Mechanism

- These are called allosteric ("other site") effectors:
 - \circ They bind at sites other than the O_2 -binding site
 - Cause structural changes that affect 02 binding to heme iron at other sites within the hemoglobin molecule
- Myoglobin (monomeric) is not influenced by allosteric effectors

- 1. Oxygen (O_2) as an Allosteric Effector
- A. Cooperativity and Structural Change
 - \bullet The sigmoidal O_2 -dissociation curve reflects structural changes initiated at one subunit and transmitted to others
 - Net effect of cooperativity:
 - \circ Hemoglobin's affinity for the 4th O_2 molecule is \sim 300 times greater than for the 1st O_2 molecule
 - O2 itself acts as an allosteric effector:
 - O Stabilizes the R (relaxed) form of hemoglobin
- a. Loading and Unloading of Oxygen
 - In lungs (high pO2):
 - Hemoglobin becomes almost fully saturated
 ("loaded") with O₂

- In peripheral tissues (low pO_2):
 - \circ Hemoglobin releases ("unloads") O_2 for use in oxidative metabolism
- Cooperative binding allows efficient delivery of O_2 in response to small changes in pO_2
- b. Significance of the Sigmoidal Oxygen-Dissociation Curve
 - The steep slope of hemoglobin's curve in the physiological pO_2 range enables:
 - · Efficient O2 uptake in lungs
 - Effective O2 release in tissues
 - In contrast, myoglobin (with a hyperbolic curve):
 - · Has high O2 affinity throughout the range
 - Would not release significant O2 in tissues
 - Therefore, not suitable for O₂ delivery function like hemoglobin

2. Bohr Effect

A. Definition

- Bohr effect = The phenomenon where O_2 release from hemoglobin is enhanced under certain conditions:
 - ↓ pH (↑ [H+])
 - ↑ pCO₂ (partial pressure of CO₂)
- · Both conditions cause:
 - ↓ 02 affinity of hemoglobin
 - · Rightward shift of the oxygen-dissociation curve
 - Stabilization of the T (tense/deoxy) form

B. Opposite Conditions

- ↑ pH or ↓ CO2 concentration causes:
 - ↑ O₂ affinity
 - · Leftward shift in the oxygen-dissociation curve
 - · Stabilization of the R (relaxed/oxy) form

a. Source of the Protons That Lower pH

- \bullet In metabolically active tissues, concentrations of H+ and CO2 are higher than in alveolar capillaries
- In these tissues, the enzyme carbonic anhydrase (zinccontaining) catalyzes:
 - $CO_2 + H_2O \rightleftharpoons H_2CO_3$ (carbonic acid)
 - H₂CO₃ then spontaneously ionizes into:
 - HCO3- (bicarbonate, major blood buffer)
 - H+ (proton responsible for \ pH):

A. Role of pH Gradient

- · H+ ions produced by:
 - \circ CO₂ + H₂O \rightleftharpoons H₂CO₃ \rightleftharpoons HCO₃⁻ + H⁺
 - Contribute to lowering pH in peripheral tissues
- pH gradient between lungs and tissues:
 - · Lungs: Higher pH
 - O Tissues: Lower pH

- · This pH difference:
 - Favors unloading of O2 in tissues
 - o Favors loading of O2 in the lungs
- Therefore:
 - \circ O_2 affinity of hemoglobin is finely regulated by small shifts in pH
 - · Makes hemoglobin a highly efficient O2 transporter
- b. Mechanism of the Bohr Effect
 - Deoxyhemoglobin has greater affinity for H+ than oxyhemoglobin
 - · Due to:
 - Ionizable functional groups (e.g., histidine side chains) that:
 - Have higher pKa in deoxyhemoglobin than in oxyhemoglobin

- When [H+] increases (↓ pH):
 - · These groups become protonated (charged)
 - · Form ionic bonds (salt bridges)
 - o These bonds stabilize deoxyhemoglobin (T form)
 - · Resulting in decreased oxygen affinity
- Note: Hemoglobin also functions as an important blood buffer

Schematic Representation

• Bohr effect reaction:

$$\circ$$
 HbO₂ + H⁺ \rightleftharpoons HbH + O₂

- Oxyhemoglobin → Deoxyhemoglobin
- Interpretation:
 - ↑ H+ (or \downarrow pO₂) → shifts equilibrium to the right (favors O₂ release)
 - ↑ pO_2 (or ↓ H^+) → shifts equilibrium to the left (favors O_2 binding)

3. 2,3-BPG Effect on Oxygen Affinity

A. General Overview

- 2,3-Bisphosphoglycerate (2,3-BPG) is a major regulator of O_2 binding to hemoglobin
- · It is the most abundant organic phosphate in RBCs
 - Its concentration is approximately equal to hemoglobin
- Source: Synthesized from an intermediate of the glycolytic pathway

B. 2,3-BPG Binding to Deoxyhemoglobin

- \bullet Decreases O_2 affinity by binding only to deoxyhemoglobin
- · Does not bind to oxyhemoglobin

- Binding of 2,3-BPG:
 - · Stabilizes the T (tense) form of hemoglobin
- · Schematic reaction:
 - \circ HbO₂ + 2,3-BPG \rightleftharpoons Hb-2,3-BPG + O₂
 - Binding of 2,3-BPG promotes 02 release

C. 2,3-BPG-Binding Site

- One molecule of 2,3-BPG binds to a pocket in deoxyhemoglobin
 - o Formed by the two β-globin chains
- · The pocket:
 - Contains positively charged amino acids
 - These form ionic bonds with negatively charged phosphate groups of 2,3-BPG

- Important note:
 - \circ Amino acid replacement at this site can result in hemoglobin variants with abnormally high O_2 affinity
 - Can lead to compensatory erythrocytosis (↑
 RBC production)
- Oxygenation of hemoglobin:
 - · Narrows the central pocket
 - Causes release of 2,3-BPG
- D. Shift in Oxygen-Dissociation Curve
 - Hemoglobin without 2,3-BPG:
 - · Has very high O2 affinity
 - Hemoglobin with 2,3-BPG:
 - Has reduced 02 affinity
 - · Shifts the oxygen-dissociation curve to the right

- · This shift:
 - \circ Enables hemoglobin to release O_2 more efficiently at tissue-level pO_2
- D. 2,3-BPG Levels in Chronic Hypoxia or Anemia
 - Increased 2,3-BPG occurs in chronic hypoxia and anemia
 - · Seen in conditions such as:
 - Chronic Obstructive Pulmonary Disease (COPD)
 (e.g., emphysema)
 - High altitudes (\$\po_2)
 - Chronic anemia (\ RBC count)
 - · Mechanism:
 - \circ Low oxygen availability \rightarrow \uparrow 2,3-BPG in RBCs
 - · Effect:
 - \circ 1 2,3-BPG \rightarrow 1 02 affinity of hemoglobin
 - Promotes greater O₂ unloading in peripheral tissues
 - Helps meet tissue oxygen demands despite reduced 02 delivery

E. 2,3-BPG in Transfused Blood

- · Stored blood in blood banks:
 - o Gradually depletes its 2,3-BPG content
- Consequences:
 - \circ Hemoglobin in stored blood has abnormally high O_2 affinity
 - Leads to poor O_2 unloading \rightarrow acts as an O_2 "trap"
- Recovery:
 - Transfused RBCs can restore 2,3-BPG within 6-24 hours
- Clinical concern:
 - \circ Severely ill patients may not tolerate delayed O_2 delivery

· Solution:

- Stored blood is treated with "rejuvenation solution"
 - Rapidly restores 2,3-BPG
 - Also restores ATP lost during storage

F. Clinical Application 3.1: 2,3—BPG Offloads Oxygen to the Tissues

Scenario: Two individuals compared

- 1. Sea-level Individual (5 mmol/L 2,3-BPG)
 - · At sea level:
 - Hemoglobin O₂ saturation in lungs: ~100%
 - \circ In tissues: $\sim 60\%$ saturation $\rightarrow 40\%$ O_2 delivered
 - · At high altitude:
 - Lung saturation: ~90%
 - Tissue saturation: ~60%
 - O₂ delivery drops to ~30%

2. High-altitude Acclimatized Individual (8 mmol/L 2,3-BPG)

- \bullet Increased 2,3-BPG shifts the O_2 -binding curve rightward
- Lung saturation: ~80%
- Tissue saturation: ~40%
- O2 delivery remains ~40%, similar to sea level

Conclusion:

- Increased 2,3-BPG compensates for reduced lung O_2 uptake by improving O_2 unloading in tissues
- Allows consistent oxygen delivery despite environmental hypoxia

4. CO2 Binding to Hemoglobin

- Major transport form of CO₂:
 - \circ As bicarbonate ion (HCO₃⁻) via hydration (catalyzed by carbonic anhydrase)
- Alternate transport form:
 - · Carbamate formation with hemoglobin:
 - Reaction:
 - $Hb-NH_2 + CO_2 \rightleftharpoons Hb-NH-COO^- + H^+$
 - CO_2 binds to terminal amino groups on globin chains (not the heme iron)
 - Forms carbaminohemoglobin
- Functional consequence:
 - Stabilizes T (tense/deoxy) form of hemoglobin
 - Decreases O_2 affinity \rightarrow Right shift of O_2 —dissociation curve
 - Facilitates O₂ unloading in tissues
- In lungs:
 - CO₂ dissociates from hemoglobin
 - · Released in the exhaled breath

5. CO (Carbon Monoxide) Binding to Hemoglobin

- Forms carboxyhemoglobin:
 - o CO binds to the heme iron in hemoglobin
 - · Binding is tight but reversible
 - · Shifts hemoglobin to R (relaxed) form

Effect on O₂ binding:

- \circ Remaining heme sites bind O_2 with abnormally high affinity
- · O2-dissociation curve shifts left
- · Sigmoid curve becomes hyperbolic
- \circ Impaired O_2 release to tissues \rightarrow causes tissue hypoxia

Affinity facts:

- \circ Hemoglobin's affinity for CO is ~220× greater than for O_2
- Even low environmental CO levels → toxic carboxyhemoglobin concentrations

- · Sources of CO:
 - · Environmental pollution
 - Tobacco smoke († CO levels in smokers)
- CO toxicity mechanisms:
 - · Tissue hypoxia
 - Direct cellular toxicity
 - CO also inhibits Complex IV (cytochrome c oxidase) of the electron transport chain
- Treatment:
 - 100% oxygen at high pressure (hyperbaric oxygen therapy)
 - Promotes rapid dissociation of CO from hemoglobin

Additional Note: Nitric Oxide (NO) and Hemoglobin

- NO binding:
 - · Hemoglobin can carry nitric oxide
- · Role of NO:
 - · Potent vasodilator
- Hemoglobin modulates NO:
 - Can salvage or release NO
 - Influences vascular diameter and blood pressure regulation

F. Minor Hemoglobins

- Human Hemoglobin A (HbA) is only one of several related oxygen-carrying proteins
- All hemoglobins are tetramers:
 - \circ Composed of 2 α -globin (or α -like) + 2 β -globin (or β -like) chains

- · Other hemoglobins include:
 - HbF (Fetal Hemoglobin) dominant in fetal life
 - \circ HbA₂ low levels in adults
 - HbA1c glycated form of HbA
- 1. Fetal Hemoglobin (HbF)

Structure

- Tetramer: a2y2
 - o Two a chains: same as in HbA
 - · Two y chains: members of the β-globin gene family
- a. HbF Synthesis During Development
 - 1st month after conception:
 - · Embryonic hemoglobins synthesized by yolk sac
 - Example: Hb Gower $I = \zeta_2 \varepsilon_2$
 - 2 zeta (ζ) chains (α-like)
 - 2 epsilon (ϵ) chains (β -like)

- 5th week of gestation:
 - · Site of globin synthesis shifts:
 - From yolk sac → liver → bone marrow
 - Primary product = HbF
- · Late fetal life:
 - HbF is the major hemoglobin (~60% of total hemoglobin in RBCs)
- · 8th month of gestation:
 - · HbA synthesis begins in bone marrow
 - HbA gradually replaces HbF postnatally

b. 2,3-BPG Binding to HbF

- HbF has higher O2 affinity than HbA
 - Due to weaker binding of 2,3-BPG

• Reason:

- \circ Y chains of HbF lack some positively charged residues present in β chains
- These positive residues are important for 2,3-BPG binding
- · Physiologic consequence:
 - \circ Less 2,3-BPG binding \rightarrow higher O_2 affinity
 - \circ Facilitates O_2 transfer from maternal blood \to fetal RBCs across the placenta
- If 2,3-BPG is removed:
 - · HbF and HbA show similar O2 affinity

2. Hemoglobin A2 (HbA2)

- · Minor component of normal adult hemoglobin
- · Appears shortly before birth
- In adults: constitutes ~2% of total hemoglobin

Structure

- Tetramer: α2δ2
 - 2 α-globin chains
 - 2 δ-globin chains

3. Hemoglobin A1c (HbA1c)

Definition

- Formed via nonenzymatic glycation of hemoglobin A (HbA)
- · Sugar molecules, primarily glucose, are added to HbA

Glycation Process

- Nonenzymatic and dependent on plasma glucose concentration
- \bullet Glycation occurs at the N-terminal valines of the $\beta-$ globin chains

Structure

- · Glucose residues covalently attached to HbA
- Produces HbA1c, the most abundant glycated form

Clinical Significance

- Increased HbA1c levels found in patients with diabetes mellitus
 - Due to prolonged exposure of RBCs (120-day lifespan) to elevated glucose levels
- Used as a marker for average blood glucose levels

III. Globin Gene Organization

- Understanding gene organization is essential to grasp hemoglobin-related genetic disorders.
- Globin genes direct synthesis of different globin chains via gene families located on separate chromosomes.
- Gene expression begins in RBC precursors with transcription of the globin gene.

Gene Expression Process

- DNA → Transcription → pre-mRNA
- · Two introns are spliced out
- · Three exons are joined to form mature mRNA
- Mature mRNA undergoes translation to produce globin chains

A. a-Gene Family

- · Located on Chromosome 16
- Called the a-gene cluster

Contains:

- Two functional α-globin genes
- ζ (zeta) gene
 - · Expressed early in embryonic development
 - Produces a-globin-like chains (part of embryonic hemoglobin)

Additional Notes:

- Also includes globin-like pseudogenes
 - · Structurally similar but nonfunctional
 - · Do not produce any globin chains

B. B-Gene Family

- · Located on Chromosome 11
- Called the B-gene cluster

Contains:

- One β-globin gene (functional in adult HbA)
- Four additional β-globin-like genes:
 a.ε (epsilon):
 - Expressed early in embryonic development b. Two y (gamma) genes:
 - Gy and Ay
 - Expressed in fetal hemoglobin (HbF)
 - c.δ (delta) gene:
 - \blacksquare Produces the δ -globin chain
 - Found in HbA2 (minor adult hemoglobin)

IV. Hemoglobinopathies

- Group of genetic disorders involving:
 - · Structurally abnormal hemoglobin
 - · Reduced synthesis of normal hemoglobin
 - o Or both abnormalities (rare)

Types of Hemoglobinopathies:

- · Qualitative hemoglobinopathies:
 - · Due to structural defects in globin chains
 - Examples:
 - Sickle cell anemia (HbS)
 - Hemoglobin C disease (HbC)
 - Hemoglobin SC disease (HbSC = HbS + HbC)
- · Quantitative hemoglobinopathies:
 - · Due to reduced production of globin chains
 - Example:
 - Thalassemias

A. Sickle Cell Anemia (Hemoglobin 5 Disease)

- Caused by a point mutation in the β-globin gene
 - Substitution of valine for glutamic acid at position
 - \circ Produces β^5 -globin chain, forming abnormal Hb5 $(\alpha_2\beta^5)$

Genetic Pattern:

- · Autosomal recessive disorder
- Affected individuals inherit two mutant alleles (one from each parent)

Morphological Impact:

- HbS polymerizes under low oxygen \rightarrow RBC sickling
- · Sickled RBCs:
 - Are crescent/sickle-shaped
 - Less flexible → block blood flow
 - Have reduced lifespan (<20 days) vs. 120 days in normal RBCs
 - Leads to chronic hemolytic anemia and hyperbilirubinemia

Onset:

 Symptoms begin once HbF declines post-infancy and HbS dominates

Clinical Features:

- Painful crises (vaso-occlusive episodes)
- · Chronic anemia
- Hyperbilirubinemia
- Increased risk of infections (especially in infancy)
- · Acute chest syndrome
- · Stroke
- Splenic and renal dysfunction
- · Bone changes due to marrow hyperplasia
- Reduced life expectancy: median age ~ mid-40s

Sickle Cell Trait (Heterozygous Individuals)

- Have one normal β-globin allele and one sickle allele
- Blood contains both HbA and HbS
- Usually asymptomatic
 - Rare sickling under extreme dehydration or exertion
- Represent 1 in 12 African Americans
- · Have a normal lifespan
- · Condition termed sickle cell trait, not sickle cell disease

1. Amino Acid Substitution in HbS B Chains

- Composition of HbS molecule in sickle cell anemia:
 - 0 2 normal α-globin chains
 - · 2 mutant β^5-globin chains
- · Molecular change:
 - \circ Glutamate (Glu) at position 6 in β -globin replaced by valine (Val)
 - · Glutamate: negatively charged, polar
 - · Valine: neutral, nonpolar
- Effect on charge and electrophoretic mobility:
 - HbS has less negative charge than HbA
 - During alkaline pH electrophoresis, HbS migrates more slowly toward the anode than HbA
 - Electrophoresis of lysed RBC hemoglobin is a routine diagnostic test for:
 - Sickle cell anemia (disease)
 - Sickle cell trait
 - DNA analysis can also diagnose sickle cell anemia

2. Sickling and Tissue Anoxia

- Cause of sickling:
 - \circ Valine substitution creates a hydrophobic protrusion on β^{5} -globin chain
 - This interacts with a complementary hydrophobic pocket on another HbS molecule
- Polymerization under low O2 tension:
 - Deoxygenated HbS polymerizes inside RBCs
 - · Forms insoluble fibrous polymers
 - \circ Leads to stiffening and distortion of RBCs \to rigid, sickle-shaped cells
- Consequences of sickled RBCs:
 - · Block small capillaries, impairing blood flow
 - \circ Causes localized tissue anoxia \rightarrow leads to:
 - Severe pain
 - Ischemic cell death (infarction)
 - Anoxia further increases deoxygenated HbS, worsening sickling

- RBC and capillary size mismatch:
 - o RBC diameter: ~7.5 µm
 - · Capillary diameter: ~3-4 µm
 - · Sickled RBCs:
 - Have less deformability
 - Increased adhesion to endothelium
 - Result in microvascular occlusion

3. Variables That Increase Sickling

- Sickling is worsened by factors that increase deoxygenated HbS, including:
 - $\circ \downarrow pO_2$ (low oxygen tension)
 - ↑ pCO₂ (high carbon dioxide)
 - ↓ pH (acidosis)
 - · Dehydration
 - ↑ 2,3-BPG concentration in RBCs

4. Treatment

- Supportive management:
 - · Adequate hydration
 - Analgesics (for pain management)
 - · Aggressive antibiotics if infection present
- Transfusion therapy:
 - Used in high-risk patients to prevent fatal vessel occlusion
 - · Reduces stroke risk
 - · Risks of transfusion include:
 - Iron overload (hemosiderosis)
 - Blood-borne infections
 - Immunologic reactions
- Pharmacologic therapy:
 - · Hydroxyurea (hydroxycarbamide):
 - An antitumor drug
 - Increases HbF (fetal hemoglobin) levels
 - HbF reduces sickling by diluting HbS

- Hydroxyurea therapy effects:
 - ↓ Frequency of painful vaso-occlusive crises
 - Dverall mortality in sickle cell anemia patients
- Curative option:
 - · Stem cell transplantation is a potential cure
- · Newborn screening:
 - Sickle cell anemia included in newborn screening panels
 - o Enables early initiation of prophylactic antibiotics
 - · Helps prevent early complications and mortality
- 5. Selective Advantage of the Heterozygous State
 - High prevalence of β^{5} mutation in Black Africans despite harmful homozygous effects suggests selective benefit for heterozygotes

- Protection against malaria:
 - Heterozygotes (HbAS) less susceptible to severe malaria caused by Plasmodium falciparum
 - · P. falciparum requires RBCs for part of its lifecycle
 - Shortened RBC lifespan in heterozygotes may prevent parasite maturation
 - Provides evolutionary advantage in malariaendemic regions
- · Geographic correlation:
 - Sickle cell gene distribution in Africa closely matches malaria endemic zones

B. Hemoglobin C Disease

- Nature of HbC mutation:
 - \circ Single amino acid substitution at position 6 of $\beta-$ globin chain
 - Lysine replaces glutamate (vs. valine in HbS)

- Electrophoresis pattern:
 - · HbC is less negatively charged
 - Migrates more slowly toward anode than HbA or HbS
- · Clinical features of HbC disease (HbCC):
 - · Rare homozygous patients
 - · Have mild chronic hemolytic anemia
 - Do not experience infarctive crises
 - · No specific therapy generally needed

C. Hemoglobin SC Disease

- Definition:
 - A form of RBC sickling disease
 - Some β-globin chains carry the HbS mutation (valine substitution)
 - Others carry the HbC mutation (lysine substitution)

- · Genetic nature:
 - · Patients are compound heterozygotes
 - Both B-globin genes are abnormal but different
- · Clinical features:
 - Hemoglobin levels are higher than in sickle cell anemia
 - May be low-normal
 - · Painful crises:
 - Less frequent and less severe than in sickle cell anemia
 - · Clinical variability is significant among individuals

D. Methemoglobinemias

- · Definition:
 - Oxidation of heme iron from Fe²⁺ (ferrous) to Fe³⁺
 (ferric) state
 - Methemoglobin (Fe³+) cannot bind O2

- Causes:
 - · Acquired:
 - Due to drugs (e.g., nitrates)
 - Endogenous reactive oxygen species
 - Congenital:
 - NADH-cytochrome b₅ reductase deficiency (aka NADH-methemoglobin reductase)
 - Enzyme that reduces Fe3+ back to Fe2+
 - \blacksquare HbM production due to rare mutations in α -or β -globin chains
 - HbM is resistant to enzymatic reduction
- · Newborns:
 - RBCs have ~50% lower capacity to reduce methemoglobin compared to adults

- Clinical presentation:
 - Chocolate cyanosis:
 - Blue skin & mucous membranes
 - Brown-colored blood
 - Symptoms depend on tissue hypoxia:
 - Anxiety
 - Headache
 - Dyspnea
 - Severe cases: coma or death
- Treatment:
 - · Methylene blue
 - Acts as an electron acceptor
 - Oxidized as Fe³+ is reduced back to Fe²+

E. Thalassemias

- · Definition:
 - Hereditary hemolytic anemias caused by imbalanced synthesis of globin chains
 - · Most common single-gene disorders in humans
- Normal physiology:
 - \circ Coordinated synthesis of $\alpha-$ and $\beta-globin$ chains
 - Forms HbA $(\alpha_2\beta_2)$
- · Pathology:
 - \circ Defective synthesis of either $\alpha-$ or $\beta-$ globin chain
 - · Leads to reduced hemoglobin concentration
- · Genetic causes:
 - · Can include:
 - Whole gene deletions
 - Point mutations
 - Nucleotide deletions or substitutions

· Classification:

- \circ α^0- or β^0- thalassemia: No chain production
- o α+- or β+-thalassemia: Reduced chain production

1. β-Thalassemias

· Defect:

- · Reduced or absent β-globin synthesis
- Usually due to point mutations affecting mRNA production
- o a-globin synthesis is normal

• Consequences:

- Excess α-globin chains:
 - Cannot form stable tetramers
 - Precipitate in erythroid precursors → premature cell death
- · Increased levels of:
 - HbA₂ (α₂δ₂)
 - HbF (α₂γ₂)

· Genetics:

- Two β-globin genes per individual (I per chromosome II)
- · Classification based on number of affected genes:
 - β-Thalassemia trait (minor):
 - One defective β-globin gene
 - · Mild anemia, usually no treatment needed
 - β-Thalassemia major (Cooley anemia):
 - Both β-globin genes defective
 - · No β-chain production
- Clinical features of β-Thalassemia major:
 - Healthy at birth (β-globin not expressed prenatally)
 - Symptoms appear after a few months:
 - Severe anemia
 - Ineffective erythropoiesis
 - Skeletal deformities (due to extramedullary hematopoiesis)

• Treatment:

- Regular blood transfusions (lifesaving)
 - Risk: Iron overload
- · Iron chelation therapy improves outcome
- o Only cure: Hematopoietic stem cell transplantation

2. α-Thalassemias

· Definition:

- \circ Disorders with decreased or absent α -globin chain synthesis
- · Most commonly caused by deletional mutations

• Genetics:

- \circ Each person has 4 α -globin genes (2 on each chromosome 16)
- Severity depends on the number of defective alleles:

Levels of a-Globin Deficiency:

1.1 defective gene:

- o "Silent" carrier
- · No clinical symptoms

1.2 defective genes:

- o a-Thalassemia trait
- · Usually mild anemia or asymptomatic

1.3 defective genes:

- Hemoglobin H disease (HbH, β₄)
- · Moderate to severe hemolytic anemia

1.4 defective genes:

- Hemoglobin Bart's disease (Hb Bart, Y4)
- · Leads to:
 - Hydrops fetalis
 - Fetal death
- \circ Reason: α -globin chains are essential for HbF $(\alpha_2\gamma_2)$ formation

- Note:
 - \circ Both $\alpha-$ and $\beta-$ thalassemias offer heterozygote advantage against malaria