Ch 30: DNA Structure, Replication, and Repair

Wednesday, September 3, 2025 4:59 All

DNA Structure, Replication, and Repair

I. Overview

- Nucleic acids: Storage + expression of genetic information.
 - O DNA: Repository of genetic information (genome).
 - RNA: Expression and translation of genetic information.

· Locations of DNA:

- Eukaryotes: Chromosomes (nucleus), mitochondria, chloroplasts (plants).
- Prokaryotes: Single chromosome + plasmids (extrachromosomal DNA).
- · Genetic information flow:
 - \circ Replication \to DNA copied for daughter cells.
 - \circ Transcription \to DNA \to RNA.
 - \circ Translation \to RNA \to protein.

- O This is the Central Dogma of molecular biology.
- Exceptions: Some viruses use RNA as genetic material.

• Gene expression:

- Each cell expresses only the genes required for its function.
- \circ Fertilized egg \to DNA directs development \to billions of cells.
- O DNA must:
 - 1. Replicate precisely during division.
 - 2. Express selectively for functional RNA + proteins.

II. DNA Structure

- DNA = Polymer of dNMPs (deoxyribonucleoside monophosphates).
- Linkage: Covalently linked via 3'-5' phosphodiester bonds.
- Form: Primarily double-stranded (dsDNA) helix (except some viruses with ssDNA).

• Protein association:

- \circ Eukaryotes \rightarrow DNA + proteins = nucleoprotein (in nucleus).
- \circ Prokaryotes \to DNA + proteins = nucleoid (non-membrane bound).

· Levels of structure:

- Primary: Nucleotide sequence.
- Secondary: Double helix.

A. 3'-5' Phosphodiester Bonds

· Bond formation:

 Joins 3'-OH of one deoxyribose to 5'-OH of next via phosphate group.

• Chain polarity:

- o 5' end = free phosphate group.
- 3' end = free hydroxyl group.
- \circ By convention \rightarrow sequence written $5' \rightarrow 3'$ (e.g., TACG = thymine-adenine-cytosine-guanine).

Cleavage:

- O Enzymatic: Nucleases.
 - DNases (DNA).
 - RNases (RNA).
- O Chemical: Hydrolytic cleavage.
- Note: RNA (not DNA) is cleaved by alkali.

B. DNA Double Helix

· General structure:

- \circ Two DNA chains \rightarrow coiled around common axis (helical axis).
- \circ Strands oriented antiparallel (5' \rightarrow 3' paired with 3' \rightarrow 5').

• Backbone:

 \circ Hydrophilic sugar-phosphate backbone \to outside.

• Bases:

 \circ Hydrophobic bases stacked inside \rightarrow ladder-like arrangement.

• Grooves:

- O Major groove (wide).
- O Minor groove (narrow).
- Provide binding sites for regulatory proteins (sequence recognition).

Clinical correlation:

 \circ Certain anticancer drugs (e.g., Dactinomycin / Actinomycin D) intercalate into the minor groove, blocking DNA + RNA synthesis \rightarrow cytotoxic effect.

1. Base Pairing

- Complementary pairing:
 - \circ A \longleftrightarrow T (Adenine with Thymine).
 - \circ G \longleftrightarrow C (Guanine with Cytosine).
- Chargaff's rule:
 - \circ In dsDNA \rightarrow A = T, G = C.
 - \circ Total purines (A + G) = pyrimidines (T + C).

- Bonding & stability:
 - o 2 H-bonds between A-T.
 - \circ 3 H-bonds between G-C \rightarrow stronger.
 - \circ Bases are stacked parallel along the axis \to hydrophobic interactions + H-bonds stabilize helix.
- Implication: Knowing one strand allows determination of the complementary strand.

2. DNA Strand Separation

- ullet Disruption of H-bonds o strand separation.
- · Methods:
 - Change in pH (ionizes bases).
 - · Heat (thermal denaturation).
- Phosphodiester bonds remain intact (only H-bonds disrupted).
- Melting temperature (Tm):
 - Temp. at which 50% of helix is lost (half DNA is ssDNA).

 \circ Monitored by absorbance at 260 nm (\uparrow in ssDNA vs dsDNA).

• GC vs AT content:

- \circ High AT DNA \rightarrow lower Tm.
- \circ High GC DNA \rightarrow higher Tm (stronger bonding).

• Reannealing (renaturation):

- \circ Cooling or neutralizing pH \rightarrow strands reform helix.
- Occurs naturally during DNA and RNA synthesis.

3. Structural Forms of DNA

• B-DNA (biological form):

- Right-handed helix.
- 0 10 base pairs / turn.
- O Bases perpendicular to helical axis.
- O Major form in chromosomal DNA.

A-DNA:

- Right-handed helix.
- Oll base pairs / turn.

- O Bases tilted 20° from perpendicular.
- Found in DNA-RNA hybrids and dsRNA regions.

• Z-DNA:

- · Left-handed helix.
- 0 12 base pairs / turn.
- Backbone has zigzag pattern.
- Found in alternating purine-pyrimidine sequences (e.g., GC repeats).
- May play role in gene expression regulation (B →
 Z transitions).

C. Linear and Circular DNA Molecules

• Eukaryotes:

- \circ Nuclear chromosomes \rightarrow linear dsDNA bound with histone + nonhistone proteins \rightarrow chromatin.
- \circ Mitochondria + chloroplasts \rightarrow closed circular dsDNA.

• Prokaryotes:

- O Typically one circular dsDNA chromosome.
- \circ DNA compacted with nonhistone proteins ightarrow

nucleoid.

- Also contain plasmids:
 - Small circular extrachromosomal DNA.
 - Replicate independently of chromosome.
 - Often carry genes for antibiotic resistance.
 - Facilitate horizontal gene transfer between bacteria.
 - Widely used as vectors in recombinant DNA technology.

III. Steps in Prokaryotic DNA Replication

Overview

- Semiconservative replication:
 - Each daughter molecule contains one parental strand + one newly synthesized strand (antiparallel orientation).
- DNA polymerases:
 - Template-directed, Mg²+-dependent.
 - High fidelity in replication.

• Origins:

- Prokaryotes (E. coli): single origin of replication (oriC).
- Eukaryotes: multiple origins (faster replication of large DNA molecules).
- Commitment: Once initiated, replication proceeds until entire genome is duplicated.

A. Complementary Strand Separation

- Requirement: DNA polymerases require single-stranded DNA (ssDNA) templates.
- Origin of replication (ori/oriC in E. coli):
 - Specific consensus sequence recognized by initiator proteins.
 - Contains AT-rich regions (easier to melt due to only 2 H-bonds between A-T).
- Eukaryotes: Multiple origins per chromosome.
- Outcome: Localized melting → short stretch of ssDNA exposed.

B. Replication Fork Formation

- Process:
 - \circ Strands unwind bidirectionally from ori \to two replication forks form.
 - Together they create a replication bubble.
 - Each fork resembles a Y-shaped structure.
- 1. Required Proteins (Prepriming Complex in E. coli)
 - DnaA protein:
 - O Binds to specific sequences (DnaA boxes) in oriC.
 - \circ Initiates melting of AT-rich DNA unwinding element \rightarrow ssDNA generated.
 - DNA helicases (e.g., DnaB, requires DnaC):
 - Bind near replication fork.
 - Use ATP hydrolysis to unwind dsDNA.
 - Cause local unwinding but introduce torsional strain (supercoils).
 - Single-stranded DNA-binding (SSB) proteins:

- · Bind cooperatively to exposed ssDNA.
- Functions:
 - Prevent reannealing (favor ssDNA state).
 - Protect ssDNA from nucleases.
 - Keep template available for DNA polymerase.
- Note: Not enzymes purely stabilizing proteins.
- 2. Solving the Problem of Supercoils
 - Cause: Helicase unwinding introduces torsional strain:
 - \circ Ahead of fork \rightarrow positive supercoils.
 - \circ Behind fork \rightarrow negative supercoils.
 - Effect: Positive supercoils hinder further strand separation.
 - Solution: DNA topoisomerases
 - Enzymes that relieve supercoiling by transiently cleaving DNA strands (one or both), allowing rotation, then resealing.
 - Analogy: Telephone cord twisting tighter = positive supercoils; twisting opposite = negative supercoils.

III. Steps in Prokaryotic DNA Replication (continued)

- a. Type I DNA Topoisomerases
 - Function: Relieve supercoiling by transiently nicking one strand of DNA.
 - Mechanism:
 - \circ Cleave one DNA strand \rightarrow rotate around intact strand \rightarrow reseal nick.
 - Do not require ATP (energy from phosphodiester bond cleavage is reused for resealing).
 - Activity:
 - O E. coli: relax negative supercoils.
 - Many prokaryotes & eukaryotes: relax both negative and positive supercoils.
- b. Type II DNA Topoisomerases
 - Function: Relieve supercoiling by transiently cutting both strands of DNA.

· Mechanism:

- \circ Break both strands \to pass another segment of dsDNA through break \to reseal.
- O Requires ATP hydrolysis.
- Special enzyme: DNA gyrase (in bacteria & plants):
 - O Introduces negative supercoils into circular DNA.
 - Helps neutralize positive supercoils ahead of replication fork.
 - o Facilitates both DNA replication and transcription.

• Clinical relevance:

- O Anticancer drugs:
 - lacktriangle Camptothecins ightarrow inhibit human topoisomerase I.
 - lacktriangledown Etoposide ightarrow inhibits human topoisomerase II.
- Antibacterial drugs:
 - Fluoroquinolones (e.g., ciprofloxacin) \rightarrow inhibit bacterial DNA gyrase.

C. Direction of DNA Replication

- Polarity:
 - \circ DNA polymerases read template 3' \rightarrow 5'.
 - \circ New strand synthesized 5' \rightarrow 3' (antiparallel to template).
- Result: Both strands copied but by different mechanisms.
- 1. Leading strand
 - Synthesized continuously.
 - Oriented toward replication fork.
- 2. Lagging strand
 - · Synthesized discontinuously.
 - Oriented away from replication fork.
 - Produced in short DNA stretches = Okazaki fragments.
 - Fragments later joined by DNA ligase into continuous strand.
- D. RNA Primer Requirement

- DNA polymerases cannot initiate de novo synthesis.
- Require a short RNA primer with a free 3'-OH group to start nucleotide addition.
- Primer forms a DNA-RNA hybrid.

1. Primase (DnaG)

- A special RNA polymerase.
- Synthesizes ~10-nucleotide RNA primers complementary to template.
- Uses ribonucleoside triphosphates as substrates, releasing pyrophosphate (PPi).
- Strand differences:
 - · Leading strand: only one primer at the origin.
 - Lagging strand: new primers required for each
 Okazaki fragment.

2. Primosome

Formed when primase is added to prepriming complex.

• Functions:

- Synthesizes RNA primer for leading strand.
- Repeatedly initiates Okazaki fragments on lagging strand.
- Primer synthesis also occurs in $5' \rightarrow 3'$ direction.

III. Steps in Prokaryotic DNA Replication (continued)

E. Chain Elongation

- General principle:
 - DNA polymerases elongate DNA by adding deoxyribonucleotides to the 3'-OH end of the growing strand.
 - Template strand dictates base sequence (complementary base-pairing).
 - O Substrates: dATP, dTTP, dCTP, dGTP.
 - \circ Reaction is 5' \rightarrow 3' polymerization.

1. DNA Polymerase III

Main enzyme of elongation in prokaryotes.

- Starts at the 3'-OH of RNA primer.
- Features:
 - \circ Highly processive \rightarrow stays bound to template.
 - \circ Processivity due to β -subunit sliding clamp, held in place by clamp loader (ATP-dependent).
 - \circ Hydrolysis of pyrophosphate (PPi \to 2 Pi) drives reaction irreversibly.
 - Requires all 4 dNTPs; synthesis stalls if concentration drops below Km.
- 2. Proofreading Activity of DNA Pol III
 - Has $3' \rightarrow 5'$ exonuclease activity in addition to $5' \rightarrow 3'$ polymerase.
 - Proofreading ensures high fidelity:
 - \circ If incorrect nucleotide is added \rightarrow polymerase halts.
 - \circ 3' \rightarrow 5' exonuclease removes mispaired base.
 - · Correct base is reinserted.
 - · Example of mutation from failed proofreading: sickle

cell anemia (A \rightarrow T substitution in β -globin gene).

F. RNA Primer Excision and Replacement by DNA

- DNA pol III stops when it reaches RNA primer.
- DNA Polymerase I removes primer and replaces it with DNA.

1. DNA Pol I Activities

- $5' \rightarrow 3'$ exonuclease: removes RNA primer nucleotides (unique to Pol I).
- $5' \rightarrow 3'$ polymerase: fills gap with DNA.
- $3' \rightarrow 5'$ exonuclease: proofreads new DNA.
- Functions simultaneously: primer removal, gap filling, error correction.
- Also used in DNA repair processes.
- 2. Comparison of Exonuclease Functions
 - $5' \rightarrow 3'$ exonuclease (Pol I): removes RNA primers (or damaged DNA) from the 5' end.

- 3'→5' exonuclease (Pol I & Pol III): removes mismatched bases from 3' end of growing DNA.
- Combined activities \rightarrow replication error rate ≤ 1 mistake per 10^7 nucleotides.

G. DNA Ligase

- Role: Joins DNA fragments by sealing the final phosphodiester bond.
- Links:
 - o S'-phosphate end of DNA synthesized by Pol III.
 - \circ 3'-OH end of DNA synthesized by Pol I.
- Energy source: $ATP \rightarrow AMP + PPi$.

H. Termination

- In E. coli:
 - Specific sites = Ter sites.
 - Protein = Tus (terminus utilization substance).
 - \circ Tus binds Ter sites \rightarrow halts replication fork

movement \rightarrow ensures proper termination.

IV. Eukaryotic DNA Replication

General Features

- Eukaryotic DNA replication is fundamentally similar to prokaryotic replication.
- Key differences:
 - Multiple origins of replication in eukaryotes (vs. single origin in prokaryotes).
 - RNA primer removal by RNase H and flap endonuclease I (FENI) (instead of DNA polymerase I).
 - Similar proteins identified: origin recognition proteins, ssDNA-binding proteins, ATP-dependent helicases.

A. Eukaryotic Cell Cycle

- Cell cycle = events of DNA replication + mitosis (cell division).
- Phases:

- O GI phase (Gap I): Cell grows; precedes replication.
- S phase (Synthesis): DNA replication occurs.
- O G2 phase (Gap 2): Prepares for mitosis.
- O M phase (Mitosis): Cell division.
- G0 phase: Non-dividing/quiescent cells (e.g., mature T lymphocytes). Can reenter G1 upon stimulation.

Regulation:

- Checkpoints ensure each phase is complete before next begins.
- Controlled by cyclins and cyclin-dependent kinases (Cdks).

B. Eukaryotic DNA Polymerases

 Five major high-fidelity polymerases, named with Greek letters.

I. DNA pol α (pol α /primase):

- Multisubunit enzyme.
- O Primase subunit synthesizes short RNA primer.
- \circ Extended by 5' \rightarrow 3' polymerase activity, producing short DNA stretches.

 Function: Initiates replication on leading strand and each Okazaki fragment.

2. DNA pol ϵ (epsilon):

- o Completes DNA synthesis on the leading strand.
- \circ Proofreads using 3' \rightarrow 5' exonuclease activity.
- Works with PCNA (proliferating cell nuclear antigen),
 a sliding clamp for high processivity.

3. DNA pol δ (delta):

- Elongates Okazaki fragments on the lagging strand.
- \circ Has 3' \rightarrow 5' exonuclease proofreading.

4. DNA pol β (beta):

Involved in DNA repair (gap filling).

5. DNA pol γ (gamma):

Replicates mitochondrial DNA.

C. Telomeres

• Definition: DNA-protein complexes (with shelterin

proteins) at chromosome ends.

• Functions:

- · Protect ends from nuclease attack.
- O Distinguish chromosome ends from dsDNA breaks.
- Maintain chromosome integrity.

• Structure:

- Human telomeric repeat: AGGGTT (G-rich) paired with AACCCT (C-rich).
- \circ G-rich strand extends beyond C-strand \rightarrow leaves 3' ssDNA overhang.
- Overhang folds into loop structure stabilized by proteins.

1. Telomere Shortening

- Occurs in most somatic cells because gap left after RNA primer removal cannot be filled.
- Leads to progressive shortening with each cell division.
- Once critical length reached \rightarrow cell becomes senescent (no further division).

· Not shortened in:

- · Germ cells
- Stem cells
- Cancer cells (due to telomerase activity).

2. Telomerase

- Ribonucleoprotein complex:
 - TERT (telomerase reverse transcriptase): synthesizes DNA.
 - TERC (telomerase RNA component): provides template (C-rich RNA).

· Mechanism:

- o TERC base pairs with G-rich 3' overhang.
- \circ TERT extends DNA in $5' \rightarrow 3'$ direction.
- O Process repeats, elongating telomere.
- \circ Pol α primase then lays primer, extends with DNA pol α , primer later removed.
- Clinical importance:

- Telomeres act as "mitotic clocks."
- Research relevance in aging, premature aging diseases (progerias), cancer biology.

D. Reverse Transcriptases

- RNA-directed DNA polymerases.
- Found in:
 - Telomerase (TERT uses RNA template for DNA synthesis).
 - O Retroviruses (e.g., HIV):
 - ullet Viral ssRNA genome o reverse transcriptase synthesizes DNA.
 - DNA integrates into host genome.
 - Transposons (retrotransposons):
 - Mobile DNA elements; transcribed to RNA \rightarrow reverse transcribed \rightarrow inserted into genome.

E. DNA Replication Inhibition by Nucleoside Analogs

• Modified nucleosides \to converted to nucleotides in cells \to incorporated into DNA \to block chain

elongation.

Examples:

- 1. Didanosine (ddI):
 - \circ 2',3'-dideoxyinosine (lacks 3'-0H).
 - o Prevents further elongation.
- 2. Cytarabine (araC):
 - Sugar replaced with arabinose.
 - Used in anticancer chemotherapy.
- 3. Vidarabine (araA):
 - · Adenine arabinoside.
 - Antiviral drug.
- 4. Azidothymidine (AZT/ZDV):
 - o Thymidine analog with azido group.
 - Used in HIV therapy.
- V. Eukaryotic DNA Organization

General Overview

- Human diploid somatic cell: 46 chromosomes, total DNA \approx 2 m long.
- DNA must be efficiently packaged to:
 - O Fit inside the nucleus.
 - Allow replication and gene expression.
- Packaging requires DNA interaction with proteins, primarily histones.
- DNA + protein complex = chromatin.
- Basic structural unit = nucleosome ("beads on a string").

A. Histories and Nucleosome Formation

1. Histones

- Five classes: HI, H2A, H2B, H3, H4.
- Features:
 - Small, evolutionarily conserved.

- \circ Rich in lysine and arginine \to positively charged at physiologic pH.
- Bind negatively charged DNA phosphate groups via ionic interactions.
- Also stabilized by cations (e.g., Mg²+).

2. Nucleosomes

- Core: Octamer of 2 × (H2A, H2B, H3, H4).
- ~146 bp DNA wraps around core nearly twice \rightarrow introduces negative supercoiling.
- Histone modifications (epigenetics):
 - Acetylation, methylation, phosphorylation at Nterminal tails.
 - \circ Regulate histone-DNA interactions \rightarrow influence gene expression.
- Linker DNA (~50 bp): Connects adjacent nucleosomes.
- HI histone:
 - · Not part of core.
 - O Binds linker DNA.

- Promotes tighter packing → more compact chromatin.
- Most tissue-specific and species-specific histone.

3. Higher Levels of Organization

- Nucleosomes stack \rightarrow nucleofilament (30-nm fiber).
- Fiber forms loops anchored to nuclear scaffold proteins.
- Higher order folding \rightarrow final chromosomal structure (visible in mitosis).

B. Nucleosome Fate During DNA Replication

- · Parental nucleosomes disassembled for replication.
- After DNA synthesis \rightarrow nucleosomes rapidly reassemble.
- Histories come from both new synthesis and parental historie recycling.

VI. DNA Repair

General Features

- DNA damage arises from:
 - Replication errors (mispaired bases, insertions).
 - \circ Chemical insults (e.g., nitrous acid \to base deamination).
 - · Radiation:
 - UV light: induces pyrimidine dimers.
 - Ionizing radiation: causes double-strand breaks.
 - Spontaneous base loss/alteration (thousands per cell/day).
- If unrepaired \rightarrow mutations \rightarrow disease (e.g., cancer).
- Most repair mechanisms = excision repair systems:
 - i. Recognize DNA lesion.
 - ii. Excise damaged region.
 - iii. Fill gap using complementary strand as template.
 - iv. Seal with ligase.
- Excision repair typically removes 1-10s of nucleotides.
- DNA repair can occur outside 5 phase.

A. Mismatch Repair (MMR)

- 1. Replication Error Escape
 - Sometimes proofreading fails → mismatched bases remain.
 - Timing: Acts within minutes after replication.
 - Error rate reduction: From 1 in $10^7 \rightarrow 1$ in 10^9 nucleotides.
- 2. Mismatch Identification
 - Prokaryotes (E. coli):
 - Mediated by Mut proteins.
 - Distinguish correct (parental) vs. incorrect (daughter) strand via methylation.
 - DAM methylase methylates adenine in GATC sequences (every ~1000 bp).
 - \circ Newly synthesized strand is unmethylated (hemimethylated DNA) \to identified as daughter strand for repair.
 - Eukaryotes:

- · Mechanism less defined.
- Likely involves recognition of nicks in newly synthesized strand.

3. Repair Process

- i. Endonuclease makes nick in daughter strand.
- ii. Exonuclease removes mismatch and surrounding nucleotides.
- iii. Gap filled by DNA polymerase (e.g., pol δ in humans; pol III in prokaryotes).
- iv. Sealed by DNA ligase.

4. Clinical Significance

- Defective MMR in humans \rightarrow Lynch syndrome (HNPCC).
 - Mutations in MSH2 and MLHI (human homologs of Mut proteins).
 - Accounts for ~90% of Lynch syndrome cases.
- Cancer risk: ↑ risk of colorectal cancer (and others).
- Epidemiology: ~5% of all colon cancers are due to defective MMR.

B. Nucleotide Excision Repair (NER)

Cause of damage

- \circ UV radiation \rightarrow covalent joining of two adjacent pyrimidines (usually thymine).
- Forms pyrimidine dimers → bulky intrastrand cross-links.
- \circ Block DNA polymerase \rightarrow prevents replication beyond lesion.
- Recognition and excision of UV-induced dimers
 - O In bacteria:
 - uvrABC excinuclease recognizes dimer.
 - Cuts on both 5' and 3' sides of lesion.
 - Short oligonucleotide (with dimer) excised \rightarrow leaves a gap.
 - Gap filled by DNA polymerase I + sealed by DNA ligase.

O In humans:

- Pathway more complex → removes pyrimidine dimers + other bulky lesions (e.g., G adducts from benzo[a]pyrene in cigarette smoke).
- NER active throughout cell cycle.

- · Damage recognition mechanisms in humans
 - \circ Global genomic repair \rightarrow scans entire genome.
 - Transcription-coupled repair → fixes lesions encountered by RNA polymerase during transcription.
- · Clinical correlation
 - O Xeroderma pigmentosum (XP):
 - Defect in NER proteins (mutations in 7 possible XP genes).
 - UV-induced dimers not repaired → mutation accumulation.
 - Results in early and multiple skin cancers.

C. Base Excision Repair (BER)

- Cause of damage
 - Spontaneous base alterations:
 - C deamination \rightarrow U.
 - A deamination \rightarrow hypoxanthine.
 - G deamination \rightarrow xanthine.
 - \circ Alkylation damage: e.g., dimethyl sulfate \to methylates adenine.

- \circ Spontaneous base loss (hydrolysis) \rightarrow ~10,000 purines lost per cell per day.
- Step 1: Abnormal base removal
 - Recognized by DNA glycosylases.
 - \circ Enzyme hydrolytically cleaves altered base \rightarrow leaves AP site (apyrimidinic/apurinic).
- Step 2: AP site recognition and repair
 - \circ AP endonucleases \rightarrow cut 5' side of AP site.
 - \circ Deoxyribose phosphate lyase \rightarrow removes sugarphosphate residue.
 - Gap filled by DNA polymerase I.
 - Sealed by DNA ligase.

D. Double-Strand Break Repair

- Causes
 - Ionizing radiation.
 - O Chemotherapy drugs (e.g., doxorubicin).
 - O Dxidative free radicals.
 - Physiologic: during recombination.

Challenge

 \circ dsDNA breaks cannot be repaired by single-strand excision repair \to both strands are broken.

Repair systems

- 1. Nonhomologous End Joining (NHEJ):
 - Proteins recognize, process, and ligate broken ends.
 - DNA loss occurs \rightarrow error-prone and mutagenic.
 - Defects → predisposition to cancer + immunodeficiency syndromes.

2. Homologous Recombination (HR):

- Uses enzymes of meiotic recombination.
- ullet Requires homologous DNA as a template ightharpoonup accurate ("error-free").
- Occurs in late 5 and G2 phases (when a sister chromatid is present).
- NHEJ can occur at any time in cell cycle.
- Mutations in BRCA1 and BRCA2 (HR proteins) \rightarrow ↑ risk of breast & ovarian cancers.