Ch 31: RNA Structure, Synthesis, and Processing

Wednesday, September 3, 2025

6:23 AM

I. Overview

- Central role of RNA
 - O DNA = genetic master plan.
 - RNA = "working copies" used to express genetic information.
- Transcription
 - O DNA strand serves as template for RNA synthesis.
 - · Produces:
 - \blacksquare mRNA \rightarrow translated into protein.
 - rRNA, tRNA, and other ncRNAs \rightarrow structural, catalytic, regulatory roles (not translated).
- Gene expression products
 - Final product may be RNA or protein depending on gene.
 - Only ~2% of genome encodes proteins.
- Key features of transcription

- Highly selective (unlike replication, which is "all-or-none").
- Selectivity guided by:
 - DNA-embedded signals \rightarrow define start/stop points & transcription frequency.
 - lacktriangleright Regulatory proteins ightarrow modulate transcription.
- O Basis of biochemical differentiation of tissues.

RNA modifications

- Primary transcripts often altered post-synthesis:
 - Terminal additions, base modifications, trimming, internal segment removal.
- Convert inactive precursors → functional RNA molecules.

Transcriptome

 The complete set of RNA transcripts expressed by a genome.

II. RNA Structure

General properties (vs DNA)

- \circ RNA = unbranched polymer of nucleoside monophosphates (3' \rightarrow 5' phosphodiester bonds).
- O Key differences from DNA:
 - Smaller.
 - Ribose instead of deoxyribose.
 - Uracil (U) instead of thymine (T).
 - Single-stranded, capable of folding into complex structures.
- Major types of RNA (for protein synthesis)
 - o rRNA
 - o HRNA
 - o mRNA
- Other small ncRNAs (eukaryotic)
 - \circ snoRNA \rightarrow nucleolus.
 - \circ snRNA \rightarrow nucleus.
 - \circ miRNA \rightarrow cytoplasm.

A. Ribosomal RNA (rRNA)

 Function: structural + catalytic component of ribosomes (sites of protein synthesis).

- Species:
 - Prokaryotes: 235, 165, 55.
 - Eukaryotes (nuclear): 285, 185, 5.85, 55.
 - Mitochondrial (mtDNA): 125, 165.
- Abundance: ~80% of total cellular RNA.
- Note: Some rRNA act as ribozymes (catalytic RNA).

B. Transfer RNA (+RNA)

- Smallest RNA species (45).
- Function: adaptor between amino acid & mRNA codon.
 - Each tRNA carries its specific amino acid covalently linked at 3' end.
 - Recognizes codon on mRNA to ensure correct amino acid incorporation.
- Abundance: ~15% of total RNA.
- Structural features:
 - O High % of unusual bases (e.g., dihydrouracil).

 \circ Extensive intrachain base pairing \to cloverleaf secondary structure \to folded tertiary structure.

· Genetics:

- Encoded in both nuclear & mitochondrial DNA.
- Human mitochondrial genome encodes 22 tRNAs.

Clinical relevance:

- Mutations in mitochondrial tRNA genes cause diseases:
 - tRNALys mutation → MERRF (myoclonic epilepsy with ragged red fibers), mitochondrial encephalomyopathy.
 - tRNALeu mutation → MELAS (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes).

C. Messenger RNA (mRNA)

- Smallest fraction by mass (~5% of total RNA) but most heterogeneous in sequence & size.
- Function: coding RNA \rightarrow carries genetic info from DNA to ribosomes.

• Organization:

- Prokaryotes, mitochondria, chloroplasts, some viruses: polycistronic mRNA (multiple genes per transcript).
- Eukaryotes: monocistronic mRNA (one gene per transcript).

• Structure:

- \circ Protein-coding regions \to translated.
- \circ Untranslated regions (UTRs) \to at both 5' and 3' ends (regulatory).
- Special features in eukaryotes (not in prokaryotes):
 - S' cap: 7-methylguanosine linked via unusual S'to-S' triphosphate bond.
 - 3' poly-A tail: long stretch of adenines.

III. Prokaryotic Gene Transcription

General Features

• RNA Polymerase (RNA pol) in prokaryotes:

- Single enzyme synthesizes all RNAs (mRNA, tRNA, rRNA).
- Exception: Short RNA primers for DNA replication are made by primase (specialized monomeric enzyme).

· Basic mechanism:

- \circ Recognizes promoter region \to binds \to makes complementary RNA \to stops at termination region.
- \circ RNA synthesized 5' \to 3', antiparallel to DNA template.
- O Base-pairing rules:
 - \blacksquare G \rightarrow C, C \rightarrow G, T \rightarrow A, A \rightarrow U.
- RNA is complementary to template (antisense strand) and identical to coding (sense strand) except U replaces T.

Template strand choice:

- o For each gene, only one strand serves as template.
- O Determined by promoter location.

A. Prokaryotic RNA Polymerase

1. Core Enzyme

- Subunits: 2α , 1β , $1\beta'$, 1Ω .
- Functions:
 - \circ α , Ω \to assembly of enzyme.
 - \circ $\beta' \rightarrow$ template binding.
 - \circ $\beta \rightarrow$ polymerase activity (5' \rightarrow 3').
- Called core enzyme, but lacks specificity (cannot recognize promoter).

2. Holoenzyme

- Core enzyme + σ (sigma) factor.
- Function: σ factor provides specificity \to allows recognition of promoter regions.
- \bullet Types: Different σ factors recognize different sets of genes.
 - \circ Example: σ^{70} = predominant sigma factor.

B. Steps in RNA Synthesis

1. Initiation

- Promoter binding: RNA pol holoenzyme binds to promoter (non-transcribed region).
- Consensus sequences in promoter:
 - \circ -35 sequence (5'-TTGACA-3'): Initial contact point for holoenzyme \rightarrow forms closed complex.
 - \circ −10 sequence (Pribnow box) (S'-TATAAT-3'): Site of DNA unwinding (~14 bp) \rightarrow forms open complex (transcription bubble).
- Clinical note: Mutations in -35 or -10 reduce transcription efficiency.

2. Elongation

- Unwinding: RNA pol unwinds DNA helix (supercoils relieved by topoisomerases).
- Transcript formation:
 - O Begins with short RNAs (discarded).
 - True elongation starts once transcript >10 nucleotides.
 - \circ σ factor released \rightarrow core enzyme continues

processively.

• Mechanism:

- Uses NTPs as substrates.
- · Releases pyrophosphate for each nucleotide added.
- \circ Always 5' \rightarrow 3' direction.

• Differences from DNA pol:

- O No primer needed.
- \circ No 3' \rightarrow 5' proofreading exonuclease.
- Higher error rate, but can backtrack, cleave, and restart.

3. Termination

- a. Rho-Independent Termination
 - Requires formation of hairpin loop:
 - Self-complementary GC-rich sequence in RNA folds back.
 - \circ Stabilized by H-bonds \rightarrow forms stem-loop structure.
 - Followed by poly-U sequence at RNA 3' end.

• Weak A-U pairing \rightarrow destabilizes RNA-DNA hybrid \rightarrow RNA released.

b. Rho-Dependent Termination

- Requires ρ (rho) factor:
 - · Hexameric ATPase with helicase activity.
 - Binds rut (rho utilization) site (C-rich) on RNA near
 5' end.
 - Moves along RNA using ATP.
 - \circ When it reaches RNA pol (paused at termination site), helicase separates RNA-DNA hybrid \rightarrow transcript released.
- 4. Antibiotics Affecting Prokaryotic Transcription
 - Rifampin (rifampicin):
 - \circ Binds β subunit of RNA pol.
 - Blocks initiation → prevents chain growth beyond
 3 nucleotides.
 - · Used in tuberculosis treatment.
 - Dactinomycin (Actinomycin D):

- o Intercalates between DNA bases.
- o Inhibits both initiation and elongation.
- First antibiotic used in tumor chemotherapy.

IV. Eukaryotic Gene Transcription

General Features

- More complex than prokaryotic transcription.
- Uses three separate RNA polymerases (I, II, III) for different RNAs.
- Requires numerous transcription factors (TFs):
 - Bind to core promoter, proximal elements, or distal elements (enhancers/silencers).
 - Essential for assembling the transcription initiation complex and deciding which genes are transcribed.
- Chromatin accessibility is critical:
 - DNA must be decondensed for TFs and RNA pol to access promoter regions.

A. Chromatin Structure and Gene Expression

- Euchromatin: Loosely packed, transcriptionally active.
- Heterochromatin: Highly condensed, transcriptionally inactive.
- Chromatin remodeling: Reversible conversion between euchromatin and heterochromatin.
- · Histone modifications:
 - \circ Histone acetylation (via HATs) \rightarrow removes + charge from lysine \rightarrow weakens histone-DNA interaction \rightarrow transcription \uparrow .
 - \circ Histone deacetylation (via HDACs) \rightarrow restores + charge \rightarrow tighter DNA-histone binding \rightarrow transcription \downarrow .
- ATP-dependent nucleosome repositioning also required for DNA access.
- B. Nuclear RNA Polymerases
- 1. RNA Polymerase I
 - Location: Nucleolus.

 Function: Synthesizes precursor of 285, 185, 5.85 rRNAs.

2. RNA Polymerase II

- Location: Nucleoplasm.
- Function: Synthesizes:
 - \circ Pre-mRNA (hnRNA) \rightarrow processed into mature mRNA.
 - · Certain small ncRNAs: snoRNA, snRNA, miRNA.

a. Promoters for RNA Pol II

- TATA (Hogness) box: Consensus TATAAA, ~25 bp upstream of transcription start.
- Alternative elements: Initiator (Inr), DPE (if TATA box absent).
- All are cis-acting elements (same DNA molecule as gene).
- Function: Binding sites for general transcription factors (GTFs).

- Minimum requirements for promoter recognition, RNA pol II recruitment, preinitiation complex formation, and basal transcription.
- Encoded by separate genes → trans-acting.
- Key players:
 - TFIID = contains TATA-binding protein (TBP) + TATAassociated factors (binds TATA box).
 - o TFIIF = recruits RNA pol II to promoter.
 - TFIIH = helicase activity (unwinds DNA) + kinase activity (phosphorylates RNA pol II, enabling promoter clearance).
- Note: Unlike prokaryotes, RNA pol II does not directly recognize promoter.
- c. Regulatory Elements and Specific Transcription Factors (STFs)
 - Proximal elements (~200 bp upstream): e.g., CAAT box,
 GC box.
 - Distal elements: enhancers or silencers, can act thousands of bp away.

• STFs:

- Bind regulatory elements.
- Control transcription frequency and gene expression timing (e.g., hormone response).
- Have two domains: DNA-binding domain + activation domain.
- Recruit GTFs and coactivators (e.g., HATs for chromatin remodeling).
- Mediator complex: multisubunit coactivator linking RNA pol II, GTFs, and STFs.

d. Enhancers and Silencers

Enhancers:

- o Increase transcription initiation.
- Location flexible: upstream, downstream, near, or far from promoter; can act in either DNA strand.
- o Contain response elements (binding sites for STFs).
- Work by DNA looping, bringing STFs into contact with Mediator + promoter TFs.
- Silencers: Similar to enhancers, but reduce gene expression.

e. Inhibition of RNA Pol II

- α -Amanitin (toxin from *Amanita phalloides*, "death cap" mushroom):
 - O Binds RNA pol II tightly.
 - \circ Blocks mRNA synthesis \rightarrow lethal.

3. RNA Polymerase III

 Function: Synthesizes tRNA, 55 rRNA, some snRNA and snoRNA.

V. Posttranscriptional Modification of RNA

- Primary transcript
 - Initial, linear RNA copy of a transcription unit (DNA region between initiation and termination sequences).
 - Modified differently depending on RNA type (tRNA, rRNA, mRNA).

A. Ribosomal RNA (rRNA)

· Source: Generated from long precursor molecules

(pre-rRNA).

- ullet Prokaryotes: Single pre-rRNA \to 235, 165, and 55 rRNA.
- \bullet Eukaryotes: Single pre-rRNA ightarrow 285, 185, and 5.85 rRNA.
 - Exception: SS rRNA synthesized separately by RNA polymerase III.

• Processing:

- \circ Cleavage by ribonucleases \rightarrow intermediate rRNA pieces.
- Further trimming by exonucleases.
- O Base & ribose modifications.
- Location in eukaryotes:
 - o rRNA genes found in tandem arrays.
 - Synthesis & processing occur in the nucleolus.
 - snoRNA (small nucleolar RNA) facilitates base/sugar modifications.

B. Transfer RNA (+RNA)

· Produced from precursor molecules (both prokaryotic

& eukaryotic).

- Posttranscriptional modifications:
 - o Removal of sequences at both ends.
 - Removal of introns (if present) from anticodon loop by nucleases.
 - Addition of -CCA sequence at 3' end by nucleotidyltransferase.
 - Modification of bases at specific positions → generates unusual bases (unique identity for each tRNA).

C. Eukaryotic Messenger RNA (mRNA)

- Primary transcripts synthesized by RNA polymerase
 II = heterogeneous nuclear RNA (hnRNA).
- Undergoes co- and posttranscriptional modifications
 mature mRNA.
- Key modifications:

1. Addition of 5' cap

Structure: 7-methylguanosine attached to 5' end via

$5' \rightarrow 5'$ triphosphate linkage (resistant to nucleases).

• Process:

- \circ γ -phosphoryl group removed from 5' triphosphate.
- Guanylyltransferase adds GMP.
- Methylation by guanine-7-methyltransferase (cytosol).
- Methyl donor: S-adenosylmethionine (SAM).

• Functions:

- O Stabilizes mRNA.
- · Permits efficient initiation of translation.

2. Addition of 3' poly-A tail

Structure: 40-250 adenylates added to 3' end.

• Process:

- Pre-mRNA cleaved downstream of AAUAAA consensus sequence (polyadenylation signal).
- Poly-A tail added by polyadenylate polymerase using ATP.

· Functions:

- o Terminates transcription.
- · Stabilizes mRNA.
- Facilitates nuclear export.
- Aids in translation.
- Gradually shortened in cytosol.
- Exception: Histone mRNAs lack poly-A tails.

3. Splicing

- Definition: Removal of noncoding sequences (introns) & joining of coding sequences (exons).
- Spliceosome: Large complex carrying out splicing.
- a. Role of small nuclear RNA (snRNA)
 - snRNA + proteins = snRNP ("snurp") \rightarrow UI, U2, U4, U5, U6.
 - Recognize intron boundaries via base pairing with consensus sequences.
 - Clinical note: SLE patients produce antibodies against

SNRNP.

b. Mechanism of splicing

- Branch site adenine (A) within intron initiates reaction.
- Steps:
 - 1. 2'-OH of branch A attacks 5' splice donor site \rightarrow unusual 2' \rightarrow 5' bond forms \rightarrow lariat structure.
 - 2. 3'-OH of exon I attacks 5' phosphate of exon 2 \rightarrow phosphodiester bond \rightarrow exons joined.
 - 3. Lariat intron excised \rightarrow degraded or used as precursor for ncRNA (e.g., snoRNA).
- Invariant sequences: GU at 5' end, AG at 3' end of introns.
- c. Effect of splice site mutations
 - Consequences:
 - Skipping of exons.
 - · Retention of introns.
 - Activation of cryptic splice sites.

- Clinical example: β -thalassemia \rightarrow defective β -globin due to abnormal splicing.
- General: ~20% of genetic diseases linked to splicing errors.

4. Alternative splicing

- 90% of human pre-mRNAs undergo alternative splicing.
- ullet Produces multiple mRNA variants ullet multiple protein isoforms from single gene.
- ullet Example: Tropomyosin (TM) \to tissue-specific isoforms via alternative splicing.