"Protein Synthesis (Translation) Notes"

I. Overview

· Genetic information flow:

DNA (replication) \rightarrow RNA (transcription) \rightarrow Protein (translation).

- Proteome: Complete set of proteins expressed in a cell.
- Translation:
 - \circ "Language" of nucleotides \rightarrow converted into "language" of amino acids.
 - · Requires the genetic code.
- Errors:
 - \circ Mutation in nucleotide sequence \to wrong amino acid \to defective protein \to disease or death.

• Nascent proteins:

- Must fold properly.
- \circ Misfolding \rightarrow aggregation or degradation.
- Many undergo covalent modifications (e.g., phosphorylation, glycosylation).
- Targeted to final destinations via signal sequences.

II. The Genetic Code

Definition

 A "dictionary" that relates nucleotide triplets (codons) in mRNA to amino acids.

A. Codons

- Written in $5' \rightarrow 3'$ direction.
- Total combinations: 4 bases (A, U, G, C) taken 3 at a time \rightarrow 64 codons.
- Start codon: AUG \rightarrow codes for Methionine (Met) \rightarrow also the initiation codon.
- Sense codons: 61 codons specify the 20 standard amino acids.

• Stop codons (nonsense): UAA, UAG, UGA \rightarrow terminate translation.

 \mathbb{Q} Flow (codon \rightarrow amino acid):

mRNA codon \rightarrow read by ribosome \rightarrow corresponding amino acid added to growing polypeptide.

- B. Characteristics of the Genetic Code
 - 1. Specificity (Unambiguous):
 - A particular codon always codes for the same amino acid.
 - \circ Example: AUG \rightarrow always Met.

2. Universality:

- Same codon meaning in almost all organisms.
- ☆ Exception: In mitochondria, some codons differ.
 - ullet e.g., UGA ightarrow codes for Tryptophan (Trp) instead of stop.
- 3. Degeneracy (Redundancy):

- O Multiple codons can code for the same amino acid.
- \circ Example: Arginine (Arg) \rightarrow 6 codons.
- Only Met & Trp have a single codon.
- Usually, difference lies in the 3rd base (wobble position).

4. Nonoverlapping & Commaless:

- \circ Codons read continuously from start point \to no overlap, no "commas."
- \circ Example: mRNA AGCUGGAUACAU \rightarrow read as AGC I UGG I AUA I CAU.
- \circ Reading frame: Correct grouping of codons \to determines correct protein sequence.

S Exam Points

- ullet AUG o universal start codon, codes for Met.
- Stop codons: UAA, UAG, UGA (mnemonic: "U Are Annoying, U Are Gone, U Go Away").
- Degeneracy protects against mutations (silent mutations).
- ullet Universality o used in recombinant DNA tech (bacteria

can express human proteins).

• Mitochondrial genetic code is slightly different \rightarrow high-yield viva question.

Mini Table: Start vs Stop Codons

Codon	Function	Codes for
AUG	Start	Methionine (Met)
UAA	Stop	
UAG	Stop	_
UGA	Stop (in cytoplasm) / Trp (in mitochondria)	— / Trp

C. Consequences of Altering the Nucleotide Sequence

Point mutations \rightarrow change of a single nucleotide in coding region \rightarrow outcomes:

1. Silent mutation

- Base change does not alter amino acid (due to degeneracy of code).
- Example: UCA \rightarrow UCU (both code for Serine).

2. Missense mutation

- ullet Base change o different amino acid.
- Example: UCA (Ser) \rightarrow CCA (Proline).
- Can be conservative (similar AA) or non-conservative (different properties).

3. Nonsense mutation

- Base change \rightarrow stop codon introduced.
- Example: UCA (Ser) \rightarrow UAA (stop).
- Results in premature termination \rightarrow truncated, usually nonfunctional protein.
- Nonsense-mediated decay may degrade such mRNAs.

4. Other important mutations

- a. Trinucleotide repeat expansions
 - Abnormal amplification of triplet sequences.
 - ullet In coding region ullet abnormal protein with multiple repeats.
 - \circ Example: CAG repeat in *huntingtin* gene \to extra glutamines \to Huntington disease.
 - ullet In UTR o altered regulation, \downarrow protein production.
 - Example: Fragile X syndrome, Myotonic dystrophy.
 - \$\frac{1}{20}\$ Over 20 such disorders known.

b. Splice-site mutations

- Affect intron removal \rightarrow aberrant proteins.
- Example: Myotonic dystrophy (triplet expansion + splicing defects).

c. Frameshift mutations

- Addition/deletion of 1 or 2 nucleotides \rightarrow alters reading frame.
 - $\circ \to abnormal protein or premature stop.$
- Addition/deletion of 3 nucleotides → reading frame intact, but:
 - \circ Addition \rightarrow extra amino acid or premature stop.
 - \circ Deletion \rightarrow loss of one amino acid.
- Example: Cystic Fibrosis (ΔFS08 mutation)
 - Loss of phenylalanine at position 508 in CFTR.
 - \circ Misfolded \rightarrow destroyed by proteasome.
 - CFTR normally = chloride channel.
 - \circ Defect \to thick secretions in lungs/pancreas \to lung damage, pancreatic insufficiency.
 - O Common in Northern Europeans (1 in 3300).
 - 70% of CF cases due to △FS08.

\$\frac{1}{2} \text{ Exam Points on Mutations}\$

- Silent vs Missense vs Nonsense: classic MCQ.
- Trinucleotide expansions \rightarrow Huntington (CAG), Fragile X,

Myotonic dystrophy.

• Frameshift \rightarrow Cystic fibrosis Δ FS08 (loss of Phe).

Nonsense codons = UAA, UAG, UGA.

Mini Table: Mutation Types

Mutation type Effect Example

Silent Same amino acid $UCA \rightarrow UCU$ (Ser)

Missense Different amino acid UCA (Ser) \rightarrow CCA

(Pro)

Nonsense Stop codon formed UCA (Ser) \rightarrow UAA

(stop)

Trinucleotide Abnormal repeats Huntington (CAG)

repeat

Frameshift Altered reading Cystic Fibrosis frame (AFS08)

III. Components Required for Translation

A. Amino acids

- All 20 amino acids must be present.
- If even one is missing, translation halts at its codon.
- 🗬 Explains importance of dietary essential AAs.

B. Transfer RNA (+RNA)

- At least one tRNA per amino acid (\geq 50 in humans; \geq 30 in bacteria).
- ullet Some AAs o multiple tRNAs (isoacceptors).
- Key features:
 - 1. Amino acid attachment site:
 - At 3' end (CCA sequence).
 - Amino acid attached to ribose's 3'-OH (ester linkage).
 - Charged tRNA = with AA; uncharged tRNA = without AA.

2. Anticodon:

- 3-base sequence complementary to mRNA codon.
- Ensures correct AA insertion into growing chain.

C. Aminoacyl-tRNA synthetases

- Family of 20 enzymes (one per amino acid).
- Functions:
 - Recognize amino acid + corresponding tRNAs (isoacceptors).
 - Catalyze charging of tRNA (AA + tRNA binding at 3'
 CCA).
 - \circ Reaction requires ATP \rightarrow AMP + PPi.
- Proofreading function: Removes incorrectly attached amino acids.
- \Leftrightarrow Ensures fidelity of translation.

D. Messenger RNA (mRNA)

- Provides the template encoding protein sequence.
- Must be present to direct translation.

E. Functionally Competent Ribosomes

- Ribosomes = large complexes of rRNA + proteins (rRNA predominates).
- Composed of two subunits (large + small).

Sedimentation coefficients (Svedberg values):

- Prokaryotes: 505 + 305 = 705 ribosome
- Eukaryotes: 605 + 405 = 805 ribosome

(Note: 5 values are not strictly additive — depend on shape + size.)

Functions of subunits:

- Small subunit: binds mRNA; ensures correct codonanticodon pairing.
- Large subunit: catalyzes peptide bond formation.

I. Ribosomal RNA (rRNA)

- Prokaryotes: 3 species of rRNA.
- Eukaryotes: 4 species of rRNA.
- Derived from single pre-rRNA, processed by ribonucleases + base modifications.

2. Ribosomal proteins

- More numerous in eukaryotes.
- Stabilize structure + facilitate interactions during translation.

3. A, P, and E sites

- A site: (Aminoacyl-tRNA) binds incoming charged tRNA.
- P site: (Peptidyl-tRNA) holds growing polypeptide chain.
- E site: (Exit site) holds empty tRNA before leaving ribosome.

4. Cellular location

• Eukaryotes:

- \circ Free ribosomes (cytosol) \rightarrow proteins for cytosol, nucleus, mitochondria, peroxisomes.
- \circ RER-bound ribosomes \rightarrow proteins for secretion, membranes, lysosomes.
- Mitochondria: contain own 555 ribosomes + circular DNA (but most mitochondrial proteins are nuclearencoded).

III-F. Protein Factors

- Required for initiation, elongation, termination.
- Some are catalytic, others stabilize translation machinery.
- Many are small GTP-binding proteins:
 - Active = GTP-bound
 - Inactive = GDP-bound

III-G. Energy Sources

- Translation = energy-intensive.
- Adding I amino acid requires cleavage of 4 high-energy

bonds:

- 1. 2 ATP equivalents: charging tRNA (aminoacyl-tRNA synthetase).
- 2. I GTP: binding aminoacyl-tRNA to A site.
- 3. I GTP: ribosomal translocation step.
- Extra ATP/GTP used in initiation + termination.

IV. Codon Recognition by tRNA

A. Antiparallel binding

- Codon (mRNA) read $5' \rightarrow 3'$.
- Anticodon (tRNA) binds $3' \rightarrow 5'$ (complementary + antiparallel).

B. Wobble Hypothesis

- Explains how fewer tRNAs recognize all codons.
- Pairing rules:
 - First 2 codon bases = strict Watson-Crick pairing.

- \circ 3rd base = "wobble" position \rightarrow flexible pairing.
- Allows I tRNA to recognize multiple codons.
- Example: Inosine (I) in anticodon can pair with U, C, or A.
- Result: <61 tRNAs needed for 61 sense codons.

S Exam Points

- Prokaryotic ribosomes = 705; eukaryotic = 805.
- Ribosomal A, P, E sites = core to elongation mechanism.
- Translation uses 4 high-energy bonds per AA (big exam favorite).
- Wobble hypothesis = explains genetic code degeneracy (esp. 3rd codon base).
- Steps in Translation

Definition:

Translation = Process of protein synthesis where the nucleotide sequence of mRNA (3-letter codons) is decoded into the amino acid sequence of a polypeptide chain.

- Direction of reading mRNA: $5' \rightarrow 3'$
- ullet Direction of protein synthesis: N-terminal o C-terminal
- Prokaryotic mRNA: Polycistronic (multiple coding regions → multiple proteins)
- ullet Eukaryotic mRNA: Monocistronic (one coding region ullet one protein)
- Prokaryotes: Translation + transcription occur simultaneously (no nuclear membrane).
- Eukaryotes: Transcription (nucleus) and translation (cytosol/RER) are separate.

I. Initiation

Goal: Assembly of complete ribosomal initiation complex before peptide bond formation.

Components required:

- Small + large ribosomal subunits
- · mRNA
- Initiator aminoacyl-tRNA
- · GTP
- Initiation factors (IFs in prokaryotes, eIFs in eukaryotes)
- ATP (extra requirement in eukaryotes)

Recognition of Start Codon (AUG):

- 1. Prokaryotes (Shine-Dalgarno sequence):
 - Purine-rich sequence ~6-10 bases upstream of AUG.
 - \circ 165 rRNA of 305 subunit base-pairs with 5D sequence \rightarrow correct alignment.
- 2. Eukaryotes (S' Cap scanning):
 - 405 subunit binds 5' cap (with help of eIF-4 proteins).
 - \circ Scans S' \rightarrow 3' until AUG encountered.
 - · Requires ATP.
 - Cap-independent initiation: 405 binds IRES (internal

ribosome entry site).

3. Initiator tRNA:

- \circ Prokaryotes \to tRNAi carrying N-formylmethionine (fMet) (formyl group added by transformylase).
- \circ Eukaryotes \rightarrow tRNAi carrying Met (not formylated).
- Only initiator tRNA goes directly to P site.

Final initiation event:

- Large ribosomal subunit joins.
- Initiator tRNA positioned in P site.
- A site remains empty, ready for next aminoacyl-tRNA.
- \bullet GTP on IF-2/eIF-2 hydrolyzed \rightarrow complex stabilized.

II. Elongation

Goal: Add amino acids sequentially to the C-terminal end.

Steps:

1. Decoding (A site entry):

- Aminoacyl-tRNA enters A site.
- \circ Requires elongation factors (EF-Tu-GTP in prokaryotes, EF-I α -GTP in eukaryotes).
- o GTP hydrolyzed.

2. Peptide bond formation (Transpeptidation):

- \circ Catalyzed by peptidyl transferase (rRNA of large subunit \rightarrow ribozyme).
- \circ Peptide chain transferred from P site tRNA \rightarrow amino acid at A site.

3. Translocation:

- Ribosome shifts 3 nucleotides toward 3' end of mRNA.
- Requires EF-G-GTP (prokaryotes) or EF-2-GTP (eukaryotes).
- · Result:
 - Empty $+RNA \rightarrow E$ site (exits).
 - lacktriangledown Peptidyl-tRNA ightarrow moves A ightarrow P site.
 - A site becomes free again.

Note: Multiple ribosomes can translate simultaneously = polyribosome (polysome).

III. Termination

Trigger: Stop codon (UAA, UAG, UGA) enters A site.

• Prokaryotes:

- \circ RF-I \rightarrow recognizes UAA, UAG
- \circ RF-2 \rightarrow recognizes UAA, UGA
- \circ RF-3-GTP \rightarrow releases RF-1/2 after peptide release

• Eukaryotes:

- \circ Single release factor (eRF) \rightarrow recognizes all stop codons
- \circ eRF-3 (GTPase) \rightarrow helps release

Event: Hydrolysis of bond between peptide + tRNA at P site \rightarrow polypeptide released.

 Ribosomal subunits + mRNA + tRNA recycled (ribosome recycling factors in prokaryotes; ATP + eRF in eukaryotes).

IV. Regulation of Translation

- Most gene regulation occurs at transcription.
- Translation regulation also possible:
 - \circ Eukaryotes: Phosphorylation of eIF-2 \rightarrow inactivation \rightarrow inhibits initiation.
 - \circ mRNA-binding proteins \rightarrow block translation of specific mRNAs.

Flowchart: Steps of Translation

mRNA + small subunit + initiator tRNA + IFs \rightarrow Initiation complex

1

Large subunit joins \rightarrow tRNAi in P site \rightarrow A site empty

 \downarrow

Elongation cycle:

A site entry (aminoacyl-tRNA + EF-GTP) \rightarrow Peptide bond formation (peptidyl transferase) \rightarrow Translocation (ribosome moves, EF-GTP hydrolyzed)

Stop codon enters A site ightarrow Release factor binding ightarrow Peptide released

 \downarrow

Ribosome recycled

S Exam Points

- Start codon = AUG (Met/fMet).
- Prokaryotic initiation \rightarrow Shine-Dalgarno sequence + 165 rRNA.
- Eukaryotic initiation \rightarrow 5' cap scanning.
- Initiator $tRNA \rightarrow only tRNA$ that goes to P site first.
- Peptidyl transferase \rightarrow rRNA (ribozyme).
- Multiple ribosomes on one mRNA = polysome.
- Termination codons (UAA, UAG, UGA) \rightarrow no tRNA corresponds.

Translation: Protein Folding, Targeting & Post-Translational

Modifications

E. Protein Folding

- Proteins must fold into their native 3D conformation to be functional.
- Folding can be:
 - \circ Spontaneous \rightarrow driven by amino acid sequence.
 - \circ Chaperone-mediated \to specialized proteins assist folding.
 - Example: Heat shock proteins (HSPs).
 - Prevent misfolding & aggregation.

F. Protein Targeting

- Although most proteins begin synthesis in the cytoplasm, many must be directed to other organelles or outside the cell.
- Signal sequences (short amino acid motifs) \rightarrow direct proteins to final location.

Examples:

- I. Secreted proteins \rightarrow have N-terminal hydrophobic signal sequence.
 - o Recognized by Signal Recognition Particle (SRP).
 - \circ SRP halts elongation \rightarrow brings ribosome-peptide complex to RER.
 - O Delivered to translocon channel in RER membrane.
 - \circ Translation resumes inside RER lumen \to signal peptide cleaved.
 - \circ Protein processed \to Golgi \to secreted.
 - (Process = cotranslational targeting).

2. Post-translational targeting:

- Nucleus → short, basic Nuclear Localization Signal (NLS).
- \circ Mitochondria \rightarrow N-terminal, amphipathic α -helix.
- \circ Peroxisome \to C-terminal tripeptide (PTSI).

VI. Co- & Posttranslational Modifications

A. Trimming

 Many proteins made as inactive precursors (zymogens/pro-proteins).

- ullet Cleavage by endoproteases ullet active protein.
- Sites: RER, Golgi, secretory vesicles, or extracellular.
 - O Example: Insulin (from proinsulin).
 - Example: Collagen trimming after secretion.

B. Covalent Modifications

1. Phosphorylation

- On Ser, Thr, Tyr residues.
- Catalyzed by kinases; reversed by phosphatases.
- \circ Alters activity (\uparrow or \downarrow).
- O Example: Regulation of glycogen metabolism.

2. Glycosylation

- \circ N-linked (to Asn) \rightarrow in RER.
- \circ O-linked (to Ser/Thr/Hyp) \rightarrow in Golgi.
- \circ Special case: Mannose-6-P tagging \rightarrow lysosomal enzymes.

3. Hydroxylation

Proline & lysine residues of collagen.

- · Requires Vitamin C.
- \circ Defect \rightarrow Scurvy.

4. Other modifications

- \circ γ -Carboxylation of Glu residues \rightarrow Vitamin K dependent \rightarrow clotting factors (II, VII, IX, X).
- \circ Biotinylation \rightarrow lysine residues of biotin-dependent enzymes (e.g., pyruvate carboxylase).
- \circ Lipid anchoring (e.g., farnesylation) \rightarrow membrane targeting.
- \circ Acetylation (N-terminal) \rightarrow stability; histone acetylation regulates gene expression.

C. Protein Degradation

- ullet Ubiquitination o marks proteins for destruction.
 - Ubiquitin = small, conserved protein.
 - o Proteins degraded in proteasome (ATP-dependent).

• Examples:

- \circ Misfolded CFTR \rightarrow degraded \rightarrow Cystic Fibrosis.
- \circ Misfolded/unfolded proteins \to accumulate in RER \to ER stress \to Unfolded Protein Response (UPR).

- ↑ Chaperones.
- ↓ Global translation (via eIF-2 phosphorylation).
- Misfolded proteins exported to cytosol \rightarrow ubiquitinated \rightarrow proteasome degradation (ERAD: ER-associated degradation).

& Exam Points

- Chaperones = assist folding, prevent aggregation.
- SRP halts translation until ribosome docks on RER.
- Nuclear proteins \rightarrow NLS; Mitochondrial proteins \rightarrow N-terminal amphipathic helix.
- ullet Insulin & collagen o classic examples of trimming.
- Phosphorylation = reversible ON/OFF switch.
- Vitamin $C \rightarrow hydroxylation of collagen.$
- Vitamin $K \rightarrow \gamma$ -carboxylation of clotting factors.
- Ubiquitin-proteasome pathway = main protein degradation route.

ullet ER stress $ o$ triggers Unfolded Protein Response.	
<	>