Regulation of Gene Expression

Friday, September 5, 2025 6:11

I. Overview

- Gene expression: Multistep process producing functional RNA or protein.
- Primary regulation: Transcription (DNA \rightarrow RNA) in both prokaryotes & eukaryotes.
- Eukaryotes: Additional regulation via posttranscriptional, posttranslational processes, and DNA accessibility.
- Types of genes:
 - Constitutive/housekeeping genes: Constant expression; needed for basic cellular functions.
 - Regulated genes: Expressed under specific conditions; may be cell-type specific (e.g., fibrinogen alpha chain in hepatocytes).
- Importance: Allows cellular differentiation, morphogenesis, and adaptability.

 Prokaryotes vs eukaryotes: Control mechanisms best understood in prokaryotes; many principles repeat in eukaryotes.

II. Regulatory Sequences and Molecules

- Cis-acting elements: DNA sequences on the same chromosome influencing gene expression (e.g., promoters, operators).
- Trans-acting factors: Proteins or molecules that can diffuse and regulate genes on any chromosome (e.g., transcription factors).
- Mechanism: Regulatory proteins bind DNA via structural motifs:
 - Zinc finger
 - Leucine zipper
 - · Helix-turn-helix

III. Regulation of Prokaryotic Gene Expression

- Primary control: At transcription level.
- Efficiency: Regulating the first step prevents waste of

energy.

 Methods: Initiation control or premature transcription termination.

A. mRNA Transcription from Operons

- Operon: Cluster of structural genes + regulatory sequences controlling proteins in a metabolic pathway.
- Polycistronic mRNA: Single mRNA encodes multiple proteins; allows coordinated regulation.

B. Operators in Operons

- Operator: DNA segment where a repressor protein binds to block transcription.
 - \circ Repressor bound: RNA polymerase cannot transcribe \rightarrow no mRNA/protein produced.
 - \circ Inducer present: Binds repressor \to repressor releases operator \to RNA polymerase initiates transcription.
- Example: Lactose (lac) operon demonstrates both negative and positive regulation.

C. Lac Operon

- Structural genes:
 - \circ lacZ: β -galactosidase \rightarrow lactose \rightarrow glucose + galactose.
 - \circ lacY: Permease \rightarrow lactose transport into cell.
 - \circ lacA: Thiogalactoside transacetylase \rightarrow acetylates lactose (function unclear).
- Regulation: Maximally expressed only when lactose is present & glucose absent.
- Regulatory elements:
 - O Promoter: RNA polymerase binds.
 - Operator (0): Repressor binds here.
 - \circ CAP site: Activated by cAMP-CAP complex \rightarrow enhances transcription.
- Repressor: LacI gene (trans-acting factor) binds operator with high affinity; LacI has its own promoter and is separate from the operon.
- Exam Points:

- Prokaryotic operons = polycistronic mRNA + cisregulatory sequences + trans-acting factors.
- Lac operon: classic negative (repressor) + positive (CAP-cAMP) regulation example.
- Glucose preference \to low cAMP \to CAP inactive \to lac operon not expressed.

C. Lac Operon Regulation

- 1. Only glucose available
 - · Lac operon repressed (turned off).
 - Mechanism:
 - Repressor protein binds operator (O site) via helix-turn-helix motif.
 - \circ RNA polymerase cannot bind promoter \to transcription inhibited.
 - Type of regulation: Negative regulation.
- 2. Only lactose available
 - Lac operon induced (maximally expressed).

· Mechanism:

- \circ Lactose \rightarrow small amount converted to allolactose (inducer).
- \circ Allolactose binds repressor \to repressor releases operator \to RNA pol can transcribe.
- cAMP-CAP complex binds CAP site (active adenylyl cyclase since glucose absent) → transcription initiation enhanced.
- Type of regulation: Positive regulation.
- Outcome: Single polycistronic mRNA \rightarrow lacZ, lacY, lacA proteins synthesized.
- Note: lacI gene (repressor) is constitutive, always expressed.
- 3. Both glucose and lactose available
 - Lac operon uninduced, transcription negligible.
 - Mechanism:
 - \circ Glucose inhibits adenylyl cyclase \to no cAMP \to

- CAP site empty.
- RNA pol cannot initiate efficiently even though operator is free.
- Term: Catabolite repression.
- Expression level: Basal (very low).

D. Tryptophan (trp) Operon

- ullet Contains 5 structural genes \to enzymes for Trp synthesis.
- Regulation: Negative control by Trp as corepressor + attenuation.

Mechanisms

- Negative control:
 - \circ Trp binds repressor \rightarrow repressor binds operator \rightarrow transcription blocked.

2. Attenuation:

Transcription starts but terminates prematurely if

Trp abundant.

- \circ Attenuator = hairpin (stem-loop) structure in mRNA \rightarrow stops transcription.
- \circ If Trp scarce \to ribosomes stall at Trp codons \to hairpin does not form \to transcription continues.

Key difference vs eukaryotes:

- Attenuation possible in prokaryotes because transcription & translation occur simultaneously.
- ullet Eukaryotes have spatial separation ightarrow no attenuation.

E. Coordination of Transcription and Translation

- 1. Stringent Response
 - Triggered by amino acid starvation in E. coli.
 - · Mechanism:
 - \circ Uncharged tRNA binds ribosome \rightarrow activates RelA enzyme \rightarrow synthesizes ppGpp (alarmone).
 - \circ ppGpp binds RNA pol \rightarrow inhibits rRNA & tRNA synthesis.

- mRNA for ribosomal proteins also partially inhibited.
- mRNA for amino acid biosynthesis enzymes not inhibited.
- Purpose: Prevents wasteful ribosome production; prioritizes amino acid synthesis.

2. Regulatory r-proteins

- Excess ribosomal proteins (r-proteins) inhibit their own operons.
- Mechanism:
 - Specific r-protein binds Shine-Dalgarno (SD)
 sequence → blocks small ribosomal subunit →
 translation inhibited.
 - o r-protein also binds rRNA (higher affinity).
 - \circ Balances rRNA and r-protein synthesis \to ensures proper ribosome assembly.

Exam Points

• Lac operon: Negative (repressor) + Positive (CAP-cAMP).

- Catabolite repression: Glucose inhibits lac operon via low cAMP.
- Trp operon: Repressible, negative control + attenuation.
- ullet Stringent response: ppGpp ullet inhibits rRNA synthesis during amino acid scarcity.
- r-protein feedback: Prevents overproduction; coordinates with rRNA.

IV. Regulation of Eukaryotic Gene Expression

Eukaryotes have complex genomes and a nuclear membrane, requiring multiple regulatory mechanisms.

- Transcription is still the primary site of regulation.
- ullet No operons in eukaryotes o use alternate strategies for coordinated regulation.
- Regulation occurs at multiple levels:
 - Transcriptional → transcription factors + ciselements
 - Posttranscriptional → mRNA processing & stability

 \circ Translational / Posttranslational \to protein stability, processing, targeting

A. Coordinate Regulation

- Needed for simultaneous expression of functionally related genes, often on different chromosomes.
- Mechanism:
 - Specific transcription factor (STF) = trans-acting protein
 - O Binds cis-acting regulatory sequences on each gene
 - o STF has:
 - DNA-binding domain (DBD) → binds DNA
 - Transcription—activation domain (TAD) → recruits coactivators (e.g., histone acetyltransferases) + general transcription factors → RNA pol binds promoter → transcription
- Combinatorial control: Effect depends on protein composition of the complex

Examples of Coordinate Regulation

1. Galactose circuit (yeast)

- Genes for galactose metabolism are on different chromosomes.
- Gal4 (STF) binds UASGal (upstream activating sequence).
- Gal80 inhibits Gal4 in absence of galactose.
- \circ Gal3 binds Gal80 when galactose present \rightarrow Gal4 activates transcription.
- \circ Glucose inhibits Gal4 expression \rightarrow prevents galactose use.

2. Hormone response system

- Hormone response elements (HREs) = DNA sequences that bind trans-acting proteins
- Hormones: bind intracellular receptors (steroids)
 or cell-surface receptors (peptides)

a. Intracellular (nuclear) receptors

- Examples: steroid hormones, vitamin D, thyroid hormone, retinoic acid
- Domains: DNA-binding, transcriptional activation, ligand-binding
- \circ Mechanism: hormone binds receptor \rightarrow

conformational change \to dimerization \to binds HRE (e.g., GRE) \to recruits coactivators \to transcription

 Can activate or repress target genes; allows coordinate expression across chromosomes

b. Cell-surface receptors

- O Examples: insulin, glucagon, epinephrine
- Mechanism: hormone binds G-protein-coupled receptor → cAMP → protein kinase A → phosphorylates CREB (STF) → binds CRE (ciselement) → transcription of target genes (e.g., gluconeogenesis enzymes like PEPCK, glucose-6phosphatase)

B. Messenger RNA Processing and Use

Eukaryotic mRNA undergoes processing before translation:

- 1. S' capping \rightarrow stability & ribosome recognition
- 2. 3' polyadenylation \rightarrow stability, translation regulation
- 3. Splicing \rightarrow remove introns

I. Alternative Splicing

- Generates tissue-specific protein isoforms from same pre-mRNA
- Mechanisms: exon skipping, intron retention, alternative splice donor/acceptor sites
- Example: Tropomyosin (TM) → tissue-specific isoforms
- Fact: >90% of human genes undergo alternative splicing

2. Alternative Polyadenylation (APA)

- Pre-mRNAs may have multiple cleavage/polyadenylation sites
- APA \rightarrow different 3' UTRs or coding sequences \rightarrow affects translation & localization
- ullet Example: IgM o secreted vs membrane-bound forms

Note: Alternative splicing + APA + alternative transcription start sites \rightarrow ~20,000-25,000 genes \rightarrow >100,000 proteins

3. mRNA Editing

- ullet Base changes after mRNA processing ullet alters protein sequence
- Example: Apolipoprotein B (apo B)
 - \circ Liver \rightarrow full-length apo B-100 \rightarrow VLDL
 - \circ Intestine \rightarrow cytosine (C) \rightarrow uracil (V) \rightarrow stop codon \rightarrow shorter apo B-48 \rightarrow chylomicrons

Exam Points

- ullet Coordinate regulation: STFs + cis-elements ullet multiple genes on different chromosomes
- Galactose circuit: Gal4 (activator) + Gal80/Gal3 regulation
- ullet Hormone responses: intracellular (steroids) vs cell-surface (peptides o cAMP o CREB)
- ullet mRNA regulation: alternative splicing, APA, editing ullet protein diversity
- 4. Messenger RNA (mRNA) Stability

- The lifespan of an mRNA in the cytosol determines how much protein can be produced.
- Key examples: iron metabolism and RNA interference (RNAi).

a. Iron Metabolism

- Transferrin (Tf): plasma protein transporting iron.
- Tf binds transferrin receptors (TfR) \rightarrow internalization \rightarrow iron delivery.
- TFR mRNA: contains iron-responsive elements (IREs) in $3'-UTR \rightarrow stem-loop structures$.
- Iron regulatory proteins (IRPs) bind IREs:
 - \circ Low iron: IRPs bind 3'-IRE \rightarrow stabilize TfR mRNA \rightarrow more TfR made.
 - \circ High iron: IRPs dissociate \to mRNA degraded \to TfR decreased.
- Ferritin mRNA: has a S'-IRE
 - \circ Low iron: IRPs bind \to block translation \to less ferritin

- \circ High iron: IRPs dissociate \rightarrow ferritin synthesized to store excess iron
- Heme synthesis enzyme (ALA synthase 2) also contains S'-IRE \rightarrow regulated similarly.

b. RNA Interference (RNAi)

- Gene silencing by mRNA degradation or translation repression.
- Mediated by microRNAs (miRNAs) (~22 nt, noncoding).
- Processing steps:
 - I. $pri-miRNA \rightarrow pre-miRNA$ by Drosha (nucleus)
 - 2. Export to cytoplasm \rightarrow Dicer \rightarrow short double-stranded miRNA
 - 3. Guide strand associates with RISC \rightarrow hybridizes to 3'-UTR of target mRNA
 - 4. Outcome: translation repression or degradation (via Argonaute/Slicer)
- ullet siRNA (short interfering RNA) can also trigger RNAi ightarrow

therapeutic potential

Example of RNAi therapy:

- Patisiran (2018) \rightarrow treats hATTR amyloidosis
- ullet siRNA inhibits abnormal TTR protein ullet prevents amyloid deposition

S. mRNA Translation Regulation

- Phosphorylation of eukaryotic initiation factor eIF-2
 → inhibits translation initiation
- ullet Prevents GDPoGTP exchange o blocks translation
- Kinases activated by:
 - Amino acid starvation
 - O Heme deficiency in erythroblasts
 - Viral double-stranded RNA
 - Misfolded proteins in rough ER

C. Regulation through DNA Variation

Eukaryotic gene expression is influenced by DNA accessibility, gene copy number, and arrangement.

1. Access to DNA

- DNA + histone & nonhistone proteins \rightarrow chromatin
- Euchromatin: transcriptionally active, decondensed
- · Heterochromatin: transcriptionally inactive, condensed
- Historie modifications (acetylation, methylation, phosphorylation)
 - \circ Reduce positive charge \to loosen DNA \to allow transcription factor access
- DNA methylation (CpG islands in promoters)
 - \circ Hypomethylation \to active genes
 - \circ Hypermethylation \rightarrow silenced genes
- ullet These are epigenetic changes ullet heritable, no DNA sequence change
- 2. Gene Copy Number
 - ullet More gene copies o more protein product

- Example: Methotrexate resistance
 - \circ DHFR gene amplification \to more enzyme \to survival despite drug

3. DNA Arrangement

- Immunoglobulin production in B cells:
 - Heavy/light chains = variable + constant regions
 - \circ Variable region = somatic recombination of V, D, J segments \rightarrow antibody diversity
- Pathologic rearrangements: chromosome translocations \rightarrow disease

4. Mobile DNA Elements

- Transposons (Tn): mobile DNA segments
 - Move via transposase:
 - Direct transposition: cut & paste
 - Replicative transposition: copy inserted elsewhere
 - \circ Retrotransposons: RNA intermediate \to reverse transcription \to new DNA copy

- Significance:
 - o Contributes to genome variation
 - \circ Can alter gene expression \rightarrow cause disease (e.g., hemophilia A, Duchenne muscular dystrophy)
 - \circ In bacteria: Tn on plasmids ightarrow antibiotic resistance

Exam Points

- mRNA stability: iron metabolism (TfR/ferritin), RNAi (miRNA, siRNA)
- ullet Translation regulation: eIF-2 phosphorylation ullet environmental stress response
- DNA-level regulation: chromatin accessibility, gene copy number, rearrangement, mobile DNA elements
- Epigenetics: histone modifications + DNA methylation
 → heritable gene expression control

<---->