# "Spinal Cord (Part 4/4)"

# General Anatomical Features of Clinical Importance:

- » Structure and Composition
- Spinal cord: Columns of motor and sensory nerve cells (gray matter)
  - Surrounded by ascending and descending tracts (white matter)
    - Located within the vertebral canal
      - » Protection and Support:
  - Protected by three fibrous membranes: meninges
    - Cushioned by cerebrospinal fluid (CSF)
  - Held in position by denticulate ligaments (sides) and filum terminale (inferiorly)

# » Nerve Root Pathway

- Lumbar and sacral nerve roots take an oblique downward course
- Forms the cauda equina due to the short spinal cord relative to the vertebral column length

# » Clinical Procedure

- Spinal tap needle insertion:
- Safe below the level of the second lumbar vertebra
  - Avoids damage to the spinal cord

### "Anterior and Posterior Nerve Root Lesions"

- » Covering and Formation
- Nerve roots covered by pia, arachnoid, and dura mater
- Anterior and posterior roots unite in intervertebral foramina to form spinal nerves
  Meninges fuse with the epineurium of spinal nerves
  - » Involvement in Conditions
  - 1) Syphilitic spinal meningitis or pyogenic meningitis
- May involve either or both spinal nerve roots
  - 2) Tabes dorsalis and herpes zoster May involve posterior roots

- » Compression and Irritation
  - > Compression Sources:
- Tumors of the vertebral column
  - Herniated intervertebral disc
- Primary or secondary vertebral tumors
- Vertebral destruction by tumor or infection
  - Fracture dislocation
    - Severe scoliosis
  - > Irritation Sources:
  - Abnormal constituents of CSF (e.g., blood from subarachnoid hemorrhage)
- » Symptoms of Posterior Nerve Root Lesions
  - Pain in the area of skin and muscles innervated by the affected root
  - Pain worsens with vertebral column movement, coughing, and sneezing
  - Possible hyperalgesia and hyperesthesia before loss of sensation

- >> Symptoms of Anterior Nerve Root Lesions
- Paralysis of muscles supplied exclusively by the affected root
  - Partial paralysis of muscles supplied partially by the affected root
- Fasciculation and muscle atrophy in affected muscles

# "Clinical Significance of Ascending Tract Lamination"

Anterolateral White Column (Spinothalamic Tracts)

### > Axonal Pathways:

- Axons from sacral and lumbar segments deflected laterally
- Deflection occurs due to axons crossing the midline (decussation) at successively higher levels
  - This deflection causes lamination

#### > Lamination:

- Cervical to sacral segments are arranged from medial to lateral
- Posterior White Column (Medial Lemniscus System)

### > Axonal Pathways:

- Axons from sacral and lumbar segments
   are pushed medially
  - This occurs due to axons from higher segments

#### > Lamination:

- Sacral to cervical segments are arranged from medial to lateral

[Lamination: Lamination in the context of the spinal cord refers to the organization or arrangement of nerve fibers in specific tracts]

### - Side Note -

- DCML pathway decussates in medulla
- Spinothalamic pathway decussates soon after entering spinal cord
- · Descending Pathways: Corticospinal Tract:
  - -> Descending Fibers:
    - » Decussation

Most corticospinal fibers cross at the medullary pyramids (pyramidal decussation).

- » Post-Decussation
- 1) Lateral Corticospinal Tract:
- After decussation, these fibers descend in the lateral columns of the spinal cord.
- 2) Anterior Corticospinal Tract: Some fibers do not decussate at the medulla but descend ipsilaterally and decussate at the spinal cord level where they terminate III

# "Ascending Tract Injury"

- >> External Pressure on Spinal Cord
  - Region: Spinothalamic tracts
- Initial Effects: Loss of pain and temperature sensations in sacral dermatomes
- Increased Pressure: Affects higher segmental dermatomes (a dermatome is an area of skin that is mainly supplied by a single spinal nerve)
  - 1) Lateral Spinothalamic Tract
    - Destruction Effects
  - Contralateral loss of pain and thermal sensibilities below lesion
    - No response to pinprick
  - Inability to recognize hot and cold objects on skin

# » Anterior Spinothalamic Tract

### > Destruction Effects

- Contralateral loss of light touch and pressure sensibilities below lesion
- Discriminative touch remains (conducted through fasciculus gracilis and fasciculus cuneatus)
- No sensation of light touch (e.g., cotton) or pressure (e.g., blunt object) on skin
- » Fasciculus Gracilis and Fasciculus Cuneatus

#### > Destruction Effects

- Cuts off muscle and joint information to consciousness
- Unawareness of ipsilateral limb position and movements below lesion (muscle joint sense)
- Example: Cannot tell position of dorsiflexed big toe with eyes closed
- Impaired muscular control: Jerky or ataxic movements
  - Loss of vibration sense below lesion on same side

- Tested with vibrating tuning fork on bony prominence (e.g., lateral radius, malleolus of fibula, stylus)
  - Loss of tactile discrimination on side of lesion
    - Tested by separating two points of a compass until recognized as separate
- Normal: 3-4 mm separation on fingertips, 65 mm or more on back
  - > General Light Touch
  - Unaffected: Impulses ascend in anterior spinothalamic tracts
    - > Spinal Cord Lesions
- Localized lesions affecting only one sensory
   tract are rare
  - Typically involve multiple ascending and descending tracts

### "Somatic and Visceral Pain"

- » Somatic Pain
- > Sense Organs: Naked nerve endings.
  - > Transmission:
- Initial sharp pain: Transmitted by fast-conducting fibers.
- Prolonged burning pain: Travels in slow-conducting nerve fibers (see p. 143).
  - Travel via somatic nervous system
    - » Visceral Pain
      - > Receptors:
    - Chemoreceptors
      - Baroreceptors
    - Osmoreceptors (BOCS)
      - Stretch receptors
- > Stimuli Sensitivity: Ischemia, stretching, chemical damage.

### > Afferent Fibers:

- Travel via sympathetic and parasympathetic parts of the autonomic nervous system to the CNS via visceral afferent fibers

### > Pain Impulse Pathway:

- Once in CNS, travel by same ascending tracts as somatic pain.
  - Ultimately reach the postcentral gyrus.
    - > Characteristics of Visceral Pain
      - Poor localization.
  - Associated symptoms: Salivation, nausea,
     vomiting, tachycardia, sweating.

#### > Referred Pain:

- Pain may be referred from the organ involved to a distant area of the body.

### "Tabes Dorsalis"

» Cause: A bacteria called "syphilis"

### » Mechanism:

- Organism causes selective destruction of nerve fibers at the point of entrance of the posterior root into the spinal cord, especially in the lower thoracic and lumbosacral regions.

[Posterior nerve root damaged -> hyperalgesia + hyperesthesia followed by pain in the effected dermatomes]

- » Symptoms and Signs
- 1) Stabbing Pains (hyperalgesia):
  - Location: Lower limbs.
- Severity: May be very severe.
  - 2) Paresthesia:
- Numbress in the lower limbs.
  - 3) Hypersensitivity:
- Skin sensitivity to touch, heat, and cold (hyperesthesia)

### 4) Loss of Skin Sensation:

- Areas: Skin of parts of the trunk and lower limbs.
- Effects: Loss of awareness that the urinary bladder is full.

# 5) Loss of Proprioception:

- Posture appreciation.
- Passive movements of the limbs, especially the legs.

# 6) Loss of Deep Pain Sensation:

- Examples: When muscles are forcibly compressed or the Achilles tendon is compressed between the finger and thumb.
  - 7) Loss of Superficial Pain Sensation:
- Areas: Skin in certain areas of the body such as the side of the nose, medial border of the forearm, thoracic wall between the nipples, or lateral border of the leg

### 8) Ataxia:

- Affects: Lower limbs.
- Cause: Loss of proprioceptive sensibility.
- Note: Unsteadiness in gait is compensated by vision; worsens in the dark or when eyes are closed, leading to falls.

### 4) Hypotonia:

- Cause: Loss of proprioceptive information from muscles and joints.

### 10) Loss of Tendon Reflexes:

- Cause: Degeneration of the afferent fiber component of the reflex arc.
- Early signs: Loss of knee and ankle tendon jerks.

"Muscle Activity"

### » Muscle Tone

- > Definition: Continuous partial contraction of a muscle.
  - > Dependency: Integrity of a monosynaptic reflex arc.
    - > Receptor Organs: Muscle spindles

### > Pathway:

- Afferent neuron enters spinal cord through the posterior root.
- Synapses with the effector neuron (lower motor neuron) in the anterior gray column.
- Lower motor neuron supplies muscle fibers through anterior roots, spinal nerves, and peripheral nerves.
  - » Characteristics of Muscle Tone
- > Abolishment: Muscle tone is lost if any part of the reflex arc is destroyed.
  - Atonic muscle: Feels soft and flabby, atrophies rapidly.
    - > Normal Muscle Tone:
    - Exhibits resilience or elasticity.
  - Resistance felt when muscle is passively stretched.
    - · Dependent on:
  - Integrity of the monosynaptic reflex arc.
- Control by impulses from descending tracts from supraspinal levels.

### > Influence:

- Muscle spindles: Excitatory to muscle tone.
  - Neurotendinous receptors: Inhibitory to muscle tone.
    - » Voluntary Movement
- > Initiation: By the individual, involving multiple muscle contractions to achieve a goal.
- > Influence: Descending tracts affecting lower motor neurons driven by sensory information (eyes, ears, muscles) and past afferent information stored in memory.
- > Emotional Input: Limbic structures influence initiation of voluntary movement via projections to the cerebral cortex.

# » Pathways and Tracts

# > Descending Pathways:

- From cerebral cortex and brainstem (upper motor neurons) influence lower motor neurons directly or through internuncial neurons.
  - Brainstem tracts receive input from the cerebral cortex.

# > Corticospinal Tracts:

- Control prime mover muscles, especially for highly skilled movements of distal limbs.
  - > Other Supraspinal Descending Tracts:
  - Major role in basic voluntary movements.
- Adjust muscle tone for easy and rapid joint movements.
- » Influence of Basal Ganglia and Cerebellum
  - Do not give rise to descending tracts affecting lower motor neurons.
- Influence voluntary movements indirectly via projections to cerebral cortex and brainstem nuclei.

- » Pyramidal and Extrapyramidal Tracts
  - > Pyramidal Tract:
  - Refers to corticospinal tracts.
- Named for concentration in the anterior part of the medulla oblongata (pyramids)
  - > Extrapyramidal Tracts:
- Refers to all descending tracts other than the corticospinal tracts.

"Upper Motor Neuron Lesions"

Corticospinal Tract (Pyramidal Tract)
Lesions

# 1) Babinski Sign

- Great toe dorsally flexes, other toes fan outward when the skin along the lateral aspect of the sole is scratched.
  - Normal response: Plantar flexion of all toes.
- Normally present during the first year of life (corticospinal tract not myelinated until end of the first year).

# 2) Explanation for Babinski Sign

- Normally: Corticospinal tracts produce plantar flexion of toes in response to sensory stimulation of the sole.
- When nonfunctional: Influence of other descending tracts leads to withdrawal reflex, with great toe dorsally flexed and other toes fanning out.
  - 3) Superficial Abdominal Reflexes Absent
  - Abdominal muscles fail to contract when skin of the abdomen is scratched.
    - Dependent on integrity of corticospinal tracts (tonic excitatory influence on internuncial neurons).

### 4) Cremasteric Reflex Absent

- Cremaster muscle fails to contract when skin on the medial side of the thigh is stroked.
  - Reflex arc passes through the first lumbar segment of the spinal cord.
    - Dependent on integrity of corticospinal tracts (tonic excitatory influence on internuncial neurons).

- 5) Loss of Fine-Skilled Voluntary Movements
  - Especially at the distal end of the limbs.
    - Lesions of Other Descending Tracts (Extrapyramidal Tracts) [PH-EC]
      - 1) Severe Paralysis (spastic)
      - Little or no muscle atrophy (except secondary to disuse).
  - 2) Spasticity or Hypertonicity of Muscles
    - Lower limb maintained in extension.
      - Upper limb maintained in flexion.
  - 3) Exaggerated Deep Muscle Reflexes and Clonus
    - May be present in flexors of fingers, quadriceps femoris, and calf muscles.

# 4) Clasp-Knife Reaction

- Muscle spasticity produces resistance during passive movement of a joint.
- Muscles suddenly give way due to neurotendinous organ-mediated inhibition.

### >> Clinical Practice

- Organic lesions restricted only to pyramidal or extrapyramidal tracts are rare.
- Usually, both sets of tracts are affected to varying extents, producing both groups of clinical signs.
  - Pyramidal tracts increase muscle tone.
- Extrapyramidal tracts inhibit muscle tone.
- Balance between these effects alters muscle tone to varying degrees.

### "Lower Motor Neuron Lesions"

- » Causes
- Trauma
- Infection (e.g., poliomyelitis)
  - Vascular disorders
  - Degenerative diseases
    - Neoplasms
    - » Clinical Signs
- 1) Muscles exhibit flaccid paralysis
  - 2) Muscles atrophy
  - 3) Muscles lose reflexes
- 4) Muscular fasciculation (muscle twitching): Seen only with slow destruction of the lower motor neuron cell

- 5) Muscular contracture: Occurs more often in antagonist muscles whose action is no longer opposed by the paralyzed muscles.

  (Definition: A condition when your muscles, tendons, joints, or other tissues tighten or shorten causing a deformity)
  - 6) Muscle response to stimulation:
  - Normally innervated muscles respond to faradic (interrupted) current (contraction continues as long as current passes).
  - Galvanic (direct) current causes contraction only when turned on or off.
- After lower motor neuron cut, muscle stops responding to interrupted current after 7 days and direct current after 10 days.
  - This change is known as the reaction of degeneration.

# "Types of Paralysis"

- -> Hemiplegia: Paralysis of one side of the body (upper limb, one side of trunk, lower limb)
- -> Monoplegia: Paralysis of one limb only.
- -> Diplegia: Paralysis of two corresponding limbs (e.g., arms or legs).
  - -> Paraplegia: Paralysis of the two lower limbs.
- -> Quadriplegia: Paralysis of all four limbs.
- "Relationship of Muscular Signs and Symptoms to Nervous System Lesions"

# » Hypotonia

> Definition: Diminished or absent muscle tone.

#### > Causes:

- Interruption of any part of the monosynaptic stretch reflex arc.
- Cerebellar disease (diminished influence on Y-motor neurons from cerebellum).

- LMNLs

# » Hypertonia

> Definition: Increased muscle tone (spasticity, rigidity)

#### > Causes:

- Lesions involving supraspinal centers or their descending tracts (excluding corticospinal tract).
  - Local spinal segmental level (e.g., back muscle spasm from prolapsed intervertebral disc, abdominal muscle spasm from peritonitis).

- UMNLs (EP tracts)

#### Tremors

> Definition: Rhythmic involuntary movements from contraction of opposing muscle groups.

### > Types:

- Slow (e.g., parkinsonism)
- Fast (e.g., toxic tremors from thyrotoxicosis).
- Resting tremor (e.g., parkinsonism).
- Intention tremor (e.g., cerebellar disease).

# » Spasms

> Definition: Sudden, involuntary contractions of large muscle groups.

### > Examples:

- Seen in paraplegia (due to lesions involving descending tracts - UMNLs - but not corticospinal tract).

### » Athetosis

> Definition: Continuous, slow, involuntary, dysrhythmic movements.

### > Characteristics:

- Movements are the same in the same patient.
  - Disappear during sleep.
  - Impede voluntary movement.
- > Cause: Lesions of the corpus striatum.

### Chorea

- > Definition: Series of continuous, rapid, involuntary, jerky, coarse, purposeless movements.
  - > Characteristics:
  - May occur during sleep.
- > Cause: Lesions of the corpus striatum.

### » Dystonia

- > Definition: Frequent, maintained contractions of hypertonic muscles, leading to bizarre postures.
  - > Cause: Lesions of the lentiform nucleus.

### » Myoclonus

- > Definition: Sudden contraction of an isolated muscle or part of a muscle.
  - > Characteristics:
  - Irregular occurrence.
  - Commonly involves a limb muscle.

#### > Causes:

- Diseases involving the reticular formation and cerebellum.
- Normal myoclonic jerks during sleep onset (sudden temporary reactivation of the reticular formation).

### » Hemiballismus

> Definition: Rare form of involuntary movement confined to one side of the body.

#### > Characteristics:

- Usually involves proximal extremity musculature.
- Limb moves erratically in all directions.
- > Cause: Lesion in the opposite subthalamic nucleus.

# Acute Spinal Cord Injury

#### » Incidence

- Approximately 10,000 cases per year in the United States.

### » Consequences

- Catastrophic injury with little or no nerve tract regeneration.
  - Permanent disability.

### » Treatment

- Anatomical realignment and stabilization of the vertebral column.
  - Decompression of the spinal cord.
  - Intensive rehabilitation to optimize remaining neurologic function.
    - Improved management of medical complications.
- Use of certain drugs (GM, ganglioside, and methylprednisolone) soon after injury shows some improvement in neurologic deficit.
  - Animal experiments suggest these drugs enhance functional recovery of damaged neurons.

# "Chronic Compression of the Spinal Cord"

#### » Causes

### i) Extradural:

- Herniation of an intervertebral disc.
- Infection of vertebrae (e.g., tuberculosis).
- Primary and secondary tumors of vertebrae.
  - Leukemic deposits.
  - Extradural abscesses.

### ii) Intradural:

- > Extramedullary:
  - Meningiomas.
- Nerve fibromas.
- > Intramedullary:
- Primary tumors of the spinal cord (e.g., gliomas).

# » Pathophysiology

- > Pressure on spinal arteries:
- Ischemia of the spinal cord, degeneration of nerve cells and fibers.
  - > Pressure on spinal veins:
  - Edema of the spinal cord, interference in neuron function.
  - > Direct pressure on white and gray matter:
    - Interference with nerve conduction.
      - > Obstructed CSF circulation:
    - Changes in fluid composition below the obstruction level
      - » Clinical Signs

#### > Pain

- Local pain in the involved vertebra.
- Radiating pain along spinal nerve roots.
- Worsens with coughing, sneezing, and at night when recumbent.

### > Motor Function Interference

- Early involvement of anterior gray column motor cells: Partial or complete muscle paralysis, loss of tone, muscle wasting.
- Early involvement of corticospinal and other descending tracts: Muscular weakness, increased muscle tone (spasticity), increased tendon reflexes below the lesion, extensor plantar response.

### > Sensory Loss

- Posterior white columns lesion: Loss of proprioception, vibration sense, tactile discrimination below the lesion on the same side.
- Lateral spinal thalamic tracts lesion: Loss of pain, heat, and cold sensations on the opposite side of the body below the lesion.
  - Diagnosis and Investigation
     Early accurate diagnosis is essential for successful removal of benign spinal tumors.

# > Investigations:

- Radiography of the vertebral column.
  - Computed tomography (CT).
  - Magnetic resonance imaging (MRI).
    - Spinal tap.
- Myelography when the diagnosis is difficult.

"Clinical Syndromes Affecting the Spinal Cord"

- » Myelopathy Causes:
  - Trauma
- Developmental abnormality
  - Infection
  - Autoimmune destruction
    - Genetic disease
  - » Spinal Shock Syndrome

#### > Definition:

- Clinical condition following acute severe damage to the spinal cord
- All cord functions below the lesion are depressed or lost
- Sensory impairment and flaccid paralysis occur

### > Mechanism:

- Depression of segmental spinal reflexes due to removal of influences from higher centers
  - Mediated through:
  - Corticospinal tracts
  - Reticulospinal tracts
    - Tectospinal tracts
    - Rubrospinal tracts
  - Vestibulospinal tracts

### > Symptoms:

- Severe hypotension from loss of sympathetic vasomotor tone (especially with high-level lesions)
- 1) Acute phase: All of LMNLs' symptoms + loss of sensation + bladder control (autonomic fiber lesion)
  - 2) Recovery phase: Symptoms of UMNLs-EP: PHEC

#### > Duration:

- Shock persists for less than 24 hours in most patients
  - Can persist for up to 4 weeks in some cases

## > Recovery:

- Neurons regain excitability as shock diminishes
- Effects of upper motor neuron loss appear in segments below the lesion:
  - Spasticity
  - Exaggerated reflexes

## > Diagnosis:

- Test for anal sphincter reflex activity:
  - Place gloved finger in anal canal
- Stimulate anal sphincter contraction by:
  - Squeezing glans penis or clitoris
- Gently tugging on an inserted Foley catheter
- Absence of anal reflex indicates spinal shock

#### > Limitations of Test:

- Ineffective if sacral segments of the cord (52-54) are involved
- Neurons giving rise to inferior hemorrhoidal nerve to anal sphincter would be nonfunctioning

"Destructive Spinal Cord Syndromes"

# Types

- Complete cord transection syndrome
  - Anterior cord syndrome
    - Central cord syndrome
- Brown-Séquard syndrome (cord hemisection)
  [- Their symptoms occur after Spinal Shock has ended]

# » General Findings

- Combination of lower motor neuron injury (at lesion level) and upper motor neuron injury (below lesion level)

# Hack: Write following

- UMNLs symptoms
- LMNLs symptoms
- Spinothalamic tracts' sensation loss
- DCML tracts' sensation loss (if involved)

# "Complete Cord Transection Syndrome

#### Causes

- Fracture dislocation of vertebral column
  - Bullet or stab wound
    - Expanding tumor

#### > Clinical Features

- 1) Bilateral lower motor neuron paralysis and muscular atrophy at lesion level
- Damage to anterior gray columns neurons and possibly nerve roots
  - 2) Pyramidal + Extrapyramidal Effects

#### » EP tract lesion:

Bilateral spastic paralysis below lesion level
PHEC

#### » P tract lesion:

- Bilateral Babinski sign
- Bilateral loss of superficial abdominal and cremaster reflexes
- Interruption of corticospinal tracts on both sides
- 3) Bilateral loss of all sensations below lesion level
- Loss of tactile discrimination, vibratory, and proprioceptive sensations (posterior white columns destruction)
  - Loss of pain, temperature, light touch (lateral and anterior spinothalamic tracts section)
- Sensory loss two or three segments below lesion
  - 4) Bladder and bowel functions
  - No voluntary control (destruction of descending autonomic fibers)

# [ Special Case: L2-L3 Vertebral Level Fracture Dislocation

- No cord injury
- Neural damage confined to cauda equina (lower motor neuron, autonomic, and sensory fibers involved)]

"Anterior Cord Syndrome"

#### Causes

- Cord contusion during vertebral fracture/dislocation
- Injury to anterior spinal artery or feeder arteries
  - Herniated intervertebral disc

#### » Clinical Features

- 1) Bilateral lower motor neuron paralysis and muscular atrophy at lesion level
  - Damage to anterior gray columns neurons and possibly anterior nerve roots
- 2) Bilateral spastic paralysis below lesion level - Interruption of EP tracts

- 3) Bilateral loss of pain, temperature, and light touch sensations below lesion level
  - Interruption of anterior and lateral spinothalamic tracts
  - 4) Preserved tactile discrimination, vibratory, and proprioceptive sensations
    - Posterior white columns undamaged
      - Side Note -Paralysis
    - LMNL -> At the level of lesion -> Flaccid paralysis
    - UMNL -> 2-3 segments below lesion -> Spastic paralysis

"Central Cord Syndrome"

- Causes
- Hyperextension of cervical region
  - » Mechanism
- Cord pressed anteriorly by vertebral bodies and posteriorly by bulging ligamentum flavum
  - Damage to central region of spinal cord

#### >> Clinical Features

- 1) Bilateral lower motor neuron paralysis and muscular atrophy at lesion level
  - Damage to anterior gray columns neurons and possibly nerve roots
- 2) Bilateral spastic paralysis below lesion level with sacral "sparing"
  - Lower limb fibers less affected than upper limb fibers
  - Upper limb fibers -> located medially in laminated EP tracts -> more susceptible to damage than lower limb fibers
  - 3) Bilateral loss of pain, temperature, light touch, and pressure sensations below lesion level with sacral "sparing"
  - Upper limb fibers -> located medially in laminated ascending tracts -> more susceptible to damage than lower limb fibers
    - 4) Sparing of lower body evidenced by:
      - Presence of perianal sensation
        - Good anal sphincter tone
        - Ability to move toes slightly

# » Prognosis

- Often good if caused by spinal cord edema alone
- Mild syndrome may include upper arm paresthesias and mild arm and hand weakness

# » Paralysis

- LMNL -> At the level of lesion -> Flaccid paralysis
- UMNL -> 2-3 segments below lesion -> Spastic paralysis

"Brown-Séquard Syndrome (Cord Hemisection)"

#### Causes

- Fracture dislocation of vertebral column
  - Bullet or stab wound
    - Expanding tumor

#### >> Clinical Features

- 1) Ipsilateral lower motor neuron paralysis and muscular atrophy at lesion level
- Damage to anterior gray column neurons and possibly nerve roots

- 2) Ipsilateral spastic paralysis below lesion level
  - Ipsilateral Babinski sign
- Ipsilateral loss of superficial abdominal and cremasteric reflexes
- Loss of corticospinal tracts (P + EP) on the lesion side
- P + EP tracts decussate in pyramids -> hence in spinal cord they remain ipsilateral
- 3) Ipsilateral band of cutaneous anesthesia at lesion level
  - Destruction of posterior root and its entrance into spinal cord
- 4) Ipsilateral loss of tactile discrimination and of vibratory and proprioceptive sensations below lesion level
- Destruction of ascending tracts in posterior white column
- S) Contralateral loss of pain and temperature sensations below lesion level
  - Destruction of crossed lateral spinothalamic tracts
  - Sensory loss two or three segments below lesion

- 6) Contralateral but incomplete loss of tactile sensation below lesion level
  - Destruction of crossed anterior spinothalamic tracts
  - Sensory impairment two or three segments below lesion
- Incomplete loss due to intact discriminative touch in contralateral posterior white column

# "Syringomyelia"

#### » Cause

- Developmental abnormality in central canal formation

#### » Affected Areas

- Brainstem and cervical region
- Cavitation and gliosis in central neuroaxis

#### > Clinical Features

- 1) Loss of pain and temperature sensations in dermatomes related to affected segments
  - Shawllike distribution
- Interruption of lateral spinothalamic tracts
  - Accidental burning injuries to fingers common

- 2) Preserved tactile discrimination, vibratory, and proprioceptive sense
- Ascending tracts in posterior white column unaffected
  - 3) Lower motor neuron weakness in small muscles of hand
    - Bilateral or one hand affected first
- Lesion expansion in lower cervical and upper thoracic region destroys anterior horn cells
  - 4) Bilateral spastic paralysis of both legs
    - Exaggerated deep tendon reflexes
      - Positive Babinski response
- Caused by expansion of lesion laterally into white column, involving descending tracts
  - 5) Possible Horner syndrome
- Interruption of descending autonomic fibers in reticulospinal tracts in lateral white column by expanding lesion

# "Poliomyelitis"

## » Description:

- Acute viral infection of neurons in anterior gray columns of spinal cord and cranial nerve motor nuclei.
- Immunization has greatly reduced incidence.

#### » Effects:

- Paralysis and muscle wasting follow motor nerve cell death.
- Lower limb muscles are more often affected than upper limbs.
  - Severe cases: paralysis may spread to intercostal muscles and diaphragm.
- Muscles of face, pharynx, larynx, and tongue may also be paralyzed.

## Recovery:

- Improvement begins at the end of the first week as edema subsides.
- Function returns to neurons not destroyed.

# "Multiple Sclerosis"

## Description:

- Common disease causing demyelination in CNS (ascending and descending tracts).
  - Affects young adults; cause is unknown.
- Possible factors: autoimmunity, infection, heredity.

# » Pathophysiology:

- Breach in blood-brain barrier allows leukocytes into CNS.
- Inflammation and demyelination result in breakdown of axon insulation.
  - Reduced and blocked action potential velocity.
    - Myelin is rich in lipids and contains important proteins.
  - Basic myelin proteins can cause strong immune response and demyelination.
- Mutations in myelin protein structure may cause inherited demyelination.

# » Symptoms:

- Chronic course with exacerbations and remissions.
- Widespread involvement of different tracts.
  - Weakness of limbs is common.
- Ataxia due to cerebellum tract involvement.
  - Spastic paralysis may be present.

#### » Remissions:

- Remodeled demyelinated axonal plasma membrane with more sodium channels may explain remissions.
  - Progressive form involves substantial axonal and myelin damage.

"Amyotrophic Lateral Sclerosis (ALS)"

## Description:

- Disease affecting corticospinal tracts and motor neurons of anterior gray columns.
- Rarely familial; inherited in about 10% of patients.
- Chronic progressive disease of unknown etiology.

# » Demographics:

- Typically occurs in late middle age.
   Fatal within 2 to 6 years.
  - » Symptoms:
- Lower motor neuron signs: progressive muscular atrophy, paresis, fasciculations.
- Upper motor neuron disease signs: paresis, spasticity, Babinski response.
- Involvement of motor nuclei of some cranial nerves.

"Parkinson Disease"

# » Description:

- Associated with neuronal degeneration in substantia nigra, globus pallidus, putamen, and caudate nucleus.
  - Degeneration of inhibitory nigrostriate fibers reduces dopamine release in corpus striatum.

#### » Effects:

- Hypersensitivity of dopamine receptors in postsynaptic neurons in corpus striatum, leading to overactivity.
  - Tremor, cogwheel rigidity (hyperkinetic activity).
  - Difficulty initiating voluntary movements (hypokinetic activity).

"Pernicious Anemia"

# Description:

- Form of megaloblastic anemia caused by vitamin B12 deficiency.

#### > Effects:

- Extensive damage to tracts in posterior and lateral white columns of spinal cord.
  - Peripheral nerve degeneration.
  - Widespread sensory and motor losses due to involvement of ascending and descending tracts.