### "Fibrous Proteins"

#### I. Overview

- Fibrous proteins are usually folded into either extended filaments or sheet-like structures, with repeated amino acid sequences.
- They are relatively insoluble.
- They provide structural or protective function in our tissues, such as in:
  - · Connective tissues
  - · Tendons
  - o Bone
  - · Muscle fibers
- Collagen and elastin are examples of commonly occurring, well-characterized fibrous proteins of the extracellular matrix (ECM).
- Collagen and elastin serve structural functions in the body.

- They are components of the:
  - · Skin
  - · Connective tissue
  - · Blood vessel walls
  - · Sclera of the eye
  - · Cornea of the eye
- Each fibrous protein exhibits special mechanical properties, resulting from its unique structure.
- This unique structure is obtained by combining specific amino acids into repeated, secondary structural elements.
- This structural organization is in contrast to globular proteins, whose shapes result from:
  - · Complex interactions between:
    - Secondary
    - Tertiary
    - Sometimes quaternary structural elements.

# II. Collagen

# A. General Description

- Collagen is the most abundant protein in the human body.
- A typical collagen molecule is a long, rigid structure in which:
  - Three polypeptides (referred to as α chains) are wound around one another in a rope-like triple helix.
- Although this triple helix is found in all collagen molecules throughout the body, the many subtypes of collagen are further organized and dictated by the structural role collagen plays in a particular organ.

# B. Tissue-specific Organization

- In some tissues, collagen may be dispersed as a gel that gives support to the structure, such as in:
  - Extracellular matrix (ECM)
  - · Vitreous humor of the eye

- In other tissues, collagen may be bundled in tight, parallel fibers that provide great strength, as in:
  - · Tendons
- In the cornea of the eye, collagen is stacked so as to transmit light with a minimum of scattering.
- Collagen of bone occurs as fibers arranged at an angle to each other so as to resist mechanical shear from any direction.

## C. Types

- The collagen superfamily of proteins includes:
  - More than 25 collagen types
  - · Additional proteins that have collagen-like domains
- The three polypeptide a chains are held together by:
  - Interchain hydrogen bonds

- Variations in the amino acid sequence of the a chains result in:
  - Structural components that are about the same size (~1,000 amino acids long) but with slightly different properties
- These a chains are combined to form the various types of collagen found in tissues.

# D. Examples of Collagen Types

- The most common collagen, type I, contains:
  - · Two chains called al
  - o One chain called a2
  - Structure: al₂a2
- Type II collagen contains:
  - · Three al chains
  - · Structure: al3

# E. Classification of Collagens by Function and Location

 The collagens can be organized into three groups, based on their location and functions in the body.

# 1. Fibril-forming Collagens

- Types: I, II, and III
- These are the fibrillar collagens, with a rope-like structure as described for a typical collagen molecule.
- Under the electron microscope, these linear polymers of fibrils show:
  - Characteristic banding patterns, reflecting the regular staggered packing of individual collagen molecules in the fibril.
- Type I collagen fibers (composed of collagen fibrils):
  - Found in supporting elements of high tensile strength
  - · Examples: Tendons and Corneas

- Type II collagen fibers:
  - · Restricted to cartilaginous structures
- Type III collagen fibers:
  - · Prevalent in more distensible tissues
  - · Example: Blood vessels

# 2. Network-forming Collagens

- Types: IV and VIII
- These form a three-dimensional mesh, rather than distinct fibrils.
- Example: Type IV molecules assemble into a sheet or meshwork that:
  - Constitutes a major part of basement membranes

#### Basement Membranes

- · Are thin, sheet-like structures
- · Provide:
  - · Mechanical support for adjacent cells
  - Function as a semipermeable filtration barrier to macromolecules in organs such as the:
    - Kidney
    - Lung

Fibril-Associated Collagens and Structure of Collagen

# A. 3. Fibril-Associated Collagens

- Types IX and XII bind to the surface of collagen fibrils.
- These collagens link the fibrils to one another.

#### B. Structure

- Unlike most globular proteins, which are folded into compact structures, collagen (a fibrous protein) has:
  - · An elongated, triple-helix structure
  - The structure is stabilized by interchain hydrogen bonds.

# 1. Amino Acid Sequence

 Collagen is rich in proline and glycine, both of which are important in the formation of the triple-stranded helix.

#### · Proline:

- Facilitates the formation of the helical conformation of each α chain.
- Its ring structure causes "kinks" in the peptide chain.
- $\circ$  Note: The presence of proline dictates that the helical conformation of the  $\alpha$  chain cannot be an  $\alpha$  helix.

# Glycine:

- · Is the smallest amino acid.
- Is found in every third position of each polypeptide chain.
- Fits into the restricted spaces where the three chains of the helix come together.

- The glycine residues are part of a repeating sequence:
  - -Gly-X-Y-, where:
    - X is frequently proline
    - Y is often hydroxyproline, but can be hydroxylysine
- Thus, most of the α chain can be regarded as a polytripeptide whose sequence can be represented as:
  (-Gly-Pro-Hyp-)<sub>333</sub>

Collagen: Posttranslational Modifications and Biosynthesis

- 2. Hydroxyproline and Hydroxylysine
  - Collagen contains hydroxyproline and hydroxylysine, which are nonstandard amino acids not present in most other proteins.
  - These unique amino acids result from the hydroxylation of some of the proline and lysine residues after their incorporation into polypeptide chains.

- Therefore, hydroxylation is a posttranslational modification.
- Note: The presence of hydroxyproline maximizes formation of interchain hydrogen bonds that stabilize the triple-helical structure.

# 3. Glycosylation

- The hydroxyl group of the hydroxylysine residues of collagen may be enzymatically glycosylated.
- Most commonly, glucose and galactose are sequentially attached to the polypeptide chain prior to triple-helix formation.

## C. Biosynthesis

- The polypeptide precursors of the collagen molecule are synthesized in:
  - · Fibroblasts
  - o Or in the related:
    - Osteoblasts of bone
    - Chondroblasts of cartilage

- These precursors are enzymically modified and form the triple helix, which is secreted into the ECM.
- After additional enzymic modification, the mature extracellular collagen fibrils:
  - Aggregate
  - · Become cross-linked to form collagen fibers.

### 1. Pro-a Chain Formation

- Collagen is one of many proteins that normally function outside of cells.
- Like most proteins produced for export, the newly synthesized polypeptide precursors of α chains (prepro-α chains) contain a special amino acid sequence at their amino (N)-terminal ends.
- This sequence:
  - Acts as a signal
  - In the absence of additional signals, targets the polypeptide being synthesized for secretion from the cell.

- The signal sequence:
  - Facilitates the binding of ribosomes to the rough endoplasmic reticulum (RER)
  - Directs the passage of the prepro-α chain into the lumen of the RER.
- The signal sequence is rapidly cleaved in the lumen to yield a precursor of collagen called a pro- $\alpha$  chain.

# 2. Hydroxylation

- The pro-a chains are processed by multiple enzymes within the lumen of the rough endoplasmic reticulum (RER) while the polypeptides are still being synthesized.
- Proline and lysine residues in the Y-position of the -Gly-X-Y- sequence can be hydroxylated to form:
  - · Hydroxyproline
  - Hydroxylysine
- These hydroxylation reactions require:
  - Molecular oxygen (O<sub>2</sub>)
  - o Ferrous iron (Fe2+)
  - · The reducing agent vitamin C (ascorbic acid)

- · Without vitamin C, the hydroxylating enzymes:
  - · Prolyl hydroxylase
  - · Lysyl hydroxylase
  - · Cannot function
- Deficiency of ascorbic acid leads to:
  - o Impaired formation of interchain hydrogen bonds
  - o Impaired formation of a stable triple helix
  - o Inability to cross-link collagen fibrils
  - Itensile strength of collagen fibers
- The resulting disease is known as scurvy:
  - Characterized by ecchymoses (bruise-like discolorations)
  - Petechiae on the limbs due to subcutaneous extravasation of blood (from capillary fragility)
  - · Other symptoms:
    - Gum disease
    - Loosening of teeth
    - Poor wound healing

## 3. Glycosylation

- · Some hydroxylysine residues are glycosylated with:
  - · Glucose
  - · Or glucosyl-galactose

# 4. Assembly and Secretion

- After hydroxylation and glycosylation, three pro-a chains assemble to form procollagen.
- Procollagen:
  - o Is a precursor of collagen
  - · Has a central triple-helical region
  - Flanked by nonhelical N- and C-terminal extensions called propeptides
- Formation of procollagen begins with:
  - $\circ$  Interchain disulfide bonds between the C-terminal extensions of the pro- $\alpha$  chains
  - This aligns the three α chains to allow triple helix formation

- The procollagen molecules pass through the Golgi apparatus, where they are:
  - · Packaged into secretory vesicles
- These vesicles fuse with the cell membrane, releasing procollagen into the extracellular space
- 5. Extracellular Cleavage of Procollagen Molecules
  - Once procollagen is secreted into the extracellular space, it undergoes enzymatic cleavage.
  - Enzymes involved:
    - N-procollagen peptidase
    - C-procollagen peptidase
  - These enzymes remove the terminal propeptides, converting procollagen into:
    - Tropocollagen molecules (fully triple-helical)

# 6. Collagen Fibril Formation

- Tropocollagen molecules:
  - Spontaneously associate to form collagen fibrils
- Fibrils align in an ordered, parallel array:
  - o Molecules are arranged in a staggered pattern
  - Each collagen molecule overlaps its neighbor by about three-quarters of its length
- This staggered array contributes to the banding pattern seen under electron microscopy

### 7. Cross-Link Formation

- The collagen fibrils serve as a substrate for the enzyme lysyl oxidase
- · Lysyl oxidase:
  - A copper-containing extracellular enzyme
  - · Performs oxidative deamination of:
    - Some lysine
    - Some hydroxylysine residues

- This reaction produces reactive aldehydes:
  - Allysine
  - · Hydroxyallysine
- · These aldehydes:
  - Can spontaneously condense with lysine or hydroxylysine residues of adjacent tropocollagen molecules
  - · Form covalent cross-links
  - Result in mature collagen fibers with increased tensile strength
- Note: Cross-links can also form between two allysine residues

# Copper-containing Enzymes (Lysyl Oxidase and Others)

- Lysyl oxidase is one of several enzymes that require copper as a cofactor.
- Other copper-containing enzymes include:
  - -> Ceruloplasmin -> Cytochrome c oxidase
  - -> Dopamine hydroxylase -> Superoxide dismutase
  - -> Tyrosinase

- Disruption of copper homeostasis leads to:
  - Copper deficiency → X-linked Menkes syndrome
  - Copper overload → Wilson disease

# D. Degradation of Collagen

# Collagen Fiber Stability

- Normal collagen fibers are highly stable
- Half-life: Can be several years
- Despite stability, connective tissue is dynamic and continuously remodeled
  - · Remodeling occurs in response to:
    - Tissue growth
    - Injury

# Mechanism of Collagen Degradation

- · Primary enzymes: Collagenases
  - Belong to the matrix metalloproteinase (MMP) family

- For Type I collagen:
  - Collagenase cleaves at a specific site
  - · Produces:
    - A three-quarter length fragment
    - A one-quarter length fragment
- These fragments are further degraded by:
  - Other matrix proteinases

# E. Collagenopathies

### Definition and Cause

- Collagenopathies: Genetic diseases due to defective collagen synthesis
- Caused by mutations affecting any step in collagen fiber formation
- · Result in:
  - o Improper collagen fiber assembly
  - · Reduced tensile strength of tissues

### Genetic Basis

- · Over 1,000 mutations have been identified
- Affect 23 genes
- These genes code for:
  - 13 different types of collagen

### Consequences

- Defective collagen leads to:
  - · Weak connective tissue
  - Clinical manifestations depending on the type of collagen affected
- Examples of collagenopathies are given below

# 1. Ehlers-Danlos Syndrome (EDS)

## Definition

- A heterogeneous group of heritable connective tissue disorders
- · Caused by defects in fibrillar collagen metabolism

### Causes

- Deficiency of collagen-processing enzymes, such as:
  - · Lysyl hydroxylase
  - N-procollagen peptidase
- Mutations in collagen genes:
  - o Type I, III, and V

### Forms of EDS

- · Classic Form:
  - · Caused by defects in type V collagen
  - · Characterized by:
    - Skin extensibility
    - Skin fragility
    - Joint hypermobility
- · Vascular Form:
  - Caused by defects in type III collagen
  - o Most serious and potentially lethal
  - Associated with arterial rupture

#### Inheritance

Both classic and vascular forms are autosomal dominant

# Pathophysiology

- Mutant collagen chains may:
  - · Have altered structure, secretion, or distribution
  - · Be degraded more easily

- Dominant-negative effect:
  - · Incorporation of just one mutant chain can:
    - Disrupt the entire triple helix
    - Lead to degradation of the molecule

# 2. Osteogenesis Imperfecta (OI)

### Definition

- · Also called "brittle bone disease"
- · A genetic disorder of bone fragility

### Clinical Features

- Bones fracture easily
- · Fractures may occur with minor or no trauma

#### Cause

- · Caused by dominant mutations in genes coding for:
  - o alor a2 chains of Type I collagen
- · Accounts for over 80% of OI cases

# Molecular Pathology

- Most common mutations involve replacement of glycine (in -Gly-X-Y- sequence) with bulky amino acids
- $\bullet$  This disrupts triple-helix formation in  $\alpha$ -chains
- Leads to abnormal collagen structure

# Phenotypic Severity

Severity ranges from mild to lethal

# Types of OI

- Type I (Most common, Mild)
  - · Mild bone fragility
  - Hearing loss
  - · Blue sclerae
- Type II (Most severe)
  - · Perinatal lethal
  - · Death due to pulmonary complications
  - o In utero fractures visible

- Type III (Severe, Non-lethal)
  - · Multiple fractures at birth
  - · Short stature
  - Spinal curvature (kyphosis)
  - · Blue sclerae

### Other Features

- Dentinogenesis imperfecta:
  - · Defective tooth development
  - Common in OI patients

#### Treatment

- Treated with bisphosphonates:
  - o Inactivate osteoclasts (bone resorbing cells)
  - o Increase osteoclast apoptosis
  - Decrease osteoblast apoptosis
  - Result: Inhibition of bone resorption and promotion of bone formation

# 3. Alport Syndrome

## Definition

- A group of inherited disorders of basement membranes
- · Affects:
  - Kidney (mainly)
  - Cochlea (inner ear)
  - Eye

## Clinical Features

- · Glomerulonephritis
- Hematuria
- · Proteinuria
- Hypertension
- Progression to End-Stage Renal Disease (ESRD)
- Hearing loss (typically occurs between 2nd-4th decades)

## Genetics

- Caused by mutations in Type IV collagen genes
- Genetic frequency: ~1 in 5,000
- · Most common form:
  - · X-linked dominant inheritance
- Inheritance patterns and symptoms vary depending on specific gene involved

### III. Elastin

#### Overview

- Unlike collagen, elastin has rubber-like properties
- · Found in:
  - · Lungs
  - · Walls of large arteries
  - Elastic ligaments
- Elastic fibers can stretch several times their original length and recoil upon relaxation

# A. Structure of Elastin

# Tropoelastin

- Precursor to elastin
- Soluble polypeptide (~700 amino acids)
- Composed primarily of small, nonpolar AAs:
  - Glycine
  - Alanine
  - Valine
- · Also rich in:
  - · Proline
  - · Lysine
- Contains very little:
  - Hydroxyproline
  - · Hydroxylysine

# Extracellular Processing

- Tropoelastin is secreted into the extracellular matrix (ECM)
- Interacts with glycoprotein microfibrils, especially:
  - o Fibrillin
  - Acts as scaffold for elastin deposition

# Cross-linking

- Lysyl oxidase deaminates lysyl residues → forms allysine
- · Desmosine cross-link forms from:
  - o 3 allysine residues + 1 lysine residue
  - From same or neighboring tropoelastin molecules
- Result: Insoluble elastin with:
  - · Extensive cross-linking
  - High elasticity and flexibility

# Clinical Correlation: Marfan Syndrome

#### Cause

- Mutation in FBNI gene  $\rightarrow$  abnormal fibrillin-I
- · Leads to:
  - o Impaired microfibril formation
  - Abnormal fibrillin disrupts normal microfibril function

### Clinical Features

- Skeletal abnormalities:
  - · Tall stature
  - Long, slender limbs and digits (arachnodactyly)
  - · Flexible joints
  - · Scoliosis
- · Ocular:
  - Lens dislocation (ectopia lentis)

- · Cardiovascular:
  - · Mitral valve prolapse
  - · Aortic aneurysm (risk of dissection)
- Skin may show signs of laxity
- · Blue sclerae may be present
  - · Also seen in EDS and OI
  - Due to thin connective tissue allowing deeper pigment to be visible

B.  $\alpha_1$ -Antitrypsin in Elastin Degradation

### Overview of AAT

- a1-Antitrypsin (AAT) is a protease inhibitor
- · Found in blood and body fluids
- Inhibits various proteolytic enzymes (also called:
  - · Peptidases
  - · Proteases
  - · Proteinases)

 Originally named for inhibiting trypsin (from pancreatic trypsinogen)

# Primary Function of AAT

- Inhibits neutrophil elastase:
  - · A powerful protease
  - · Released from activated/degenerating neutrophils
  - Degrades:
    - Elastin in alveolar walls
    - Other structural proteins in multiple tissues

# Synthesis of AAT

- Major site: Liver
- · Minor sites: Extrahepatic synthesis also occurs
- 1. Role of AAT in the Lungs
  - Alveoli are chronically exposed to low levels of neutrophil elastase

- Elastase, if uncontrolled, can:
  - O Destroy elastin in alveolar walls
  - Cause irreversible lung damage (lung tissue can't regenerate)
- AAT is the main inhibitor that prevents this elastin destruction
- Imbalance between elastase and AAT  $\rightarrow$  pulmonary disease
- 2. a1-Antitrypsin Deficiency & Emphysema

# Epidemiology

 In the U.S., 2-5% of emphysema cases are linked to inherited AAT deficiency

### Molecular Defect

Caused by mutations in the AAT gene

- · Most severe and common mutation:
  - $\circ$  Single base mutation: GAG  $\rightarrow$  AAG
  - Results in lysine replacing glutamic acid at position
    342
  - · This variant is called the Z variant

# Pathogenesis of the Z Variant

- · Misfolding of AAT protein
- Leads to polymerization and aggregation in the RER of hepatocytes
- Causes:
  - · Reduced secretion of AAT into circulation
  - Deficiency of functional AAT
- · Classified as a misfolded protein disease

# Clinical Consequences

- Unopposed neutrophil elastase damages alveolar walls
  - $\circ \to \text{Results}$  in early-onset emphysema
- Polymer accumulation in hepatocytes may lead to:
  - · Hepatic cirrhosis

# Hepatic Consequences of AAT Deficiency

- Misfolded AAT polymer accumulation in hepatocytes leads to:
  - · Hepatocellular injury
  - Pediatric end-stage liver failure
- · Liver transplantation may be required in severe cases

### Effect on Blood AAT Levels

- Due to reduced secretion from liver:
  - · Serum AAT levels are decreased
  - Resulting in insufficient AAT reaching lung tissues

# Epidemiology & Genetic Inheritance

- · AAT mutations most common in:
  - · Caucasians of Northern European descent
- · Genetic pattern: Autosomal codominant
  - Homozygotes (two abnormal alleles): At risk of emphysema
  - Heterozygotes (one normal, one mutant allele):
    Usually have:
    - Sufficient AAT levels
    - No lung damage

Biochemical Note - Role of Methionine 358

- Methionine 358 in AAT:
  - · Essential for binding to target proteases

- Smoking effect:
  - Causes oxidation of Met-358
  - → Inactivates AAT
  - $\circ \rightarrow$  Renders AAT unable to neutralize elastase
  - · Result:
    - Accelerated lung destruction
    - Worse prognosis in smokers with AAT deficiency

# Treatment - Augmentation Therapy

- Weekly intravenous AAT infusion
- AAT diffuses from blood to lungs
  - · Achieves therapeutic levels in epithelial lining fluid
- Aims to restore protease-antiprotease balance and slow disease progression