"Bioenergetics and Oxidative Phosphorylation"

I. Overview

Bioenergetics

- Describes the transfer and utilization of energy in biologic systems.
- Concerns the initial and final energy states of the reaction components.

Relation to Thermodynamics

- Makes use of a few basic ideas from the field of thermodynamics.
- Particularly involves the concept of free energy.

· Function of Free Energy

- Changes in free energy provide a measure of the energetic feasibility of a chemical reaction.
- Allows prediction of whether a reaction or process can take place.

• Important Distinction

- O Bioenergetics predicts if a process is possible.
- · Kinetics measures the reaction rate.

II. Free Energy

- Determinants of Reaction Direction and Extent
 - Determined by the degree to which two factors change during the reaction:
 - Enthalpy (ΔH): A measure of the change (Δ) in heat content of the reactants and products.
 - Entropy (ΔS): A measure of the change in randomness or disorder of the reactants and products.
- · Limitations of Individual Quantities
 - Neither enthalpy (ΔΗ) nor entropy (Δ5) alone is sufficient to determine whether a chemical reaction will proceed spontaneously in the direction it is written.
- Definition of Free Energy (G)
 - When enthalpy and entropy are combined mathematically, they define a third quantity:
 - Free energy (G)
 - Predicts the direction in which a reaction will spontaneously proceed.

III. Free Energy Change

- Forms of Free Energy Change
 - · Represented in two ways:
 - AG
 - ΔG^0 (with the superscript "0")
- ΔG (without superscript "0")
 - · Represents the change in free energy.
 - Indicates the direction of a reaction at any specified concentration of products and reactants.
 - \circ ΔG is a variable.
- ΔG^0 (standard free energy change)
 - The energy change when reactants and products are at 1 mol/1 concentration.
 - Note: Proton concentration [H+][H+][H+] is assumed to be 10^{-7} mol/l \rightarrow pH = 7.
 - This may be shown using a prime sign [1], e.g., ΔG^{0} .

- \circ ΔG^0 is a constant and applies to nonphysiologic concentrations.
- Still useful for comparing energy changes of different reactions.
- \circ ΔG^0 can be determined from measurement of the equilibrium constant.

A. ΔG and Reaction Direction

- \bullet ΔG sign indicates reaction direction at constant temperature and pressure.
- Example Reaction: $A \rightleftharpoons B$
 - \circ If ΔG is negative:
 - The reaction is exergonic.
 - There is a net loss of energy.
 - The reaction proceeds spontaneously as written, with A converted to B.
 - If ΔG is positive:
 - The reaction is endergonic.
 - There is a net gain of energy.
 - Energy must be added for the reaction from B to A to take place.

- \circ If $\Delta G = 0$:
 - The reaction is in equilibrium.
- Spontaneous Reactions and Equilibrium
 - \circ When ΔG is negative and the reaction proceeds spontaneously, it continues until:
 - △G reaches zero
 - Equilibrium is established

B. DG of the Forward and Reverse Reactions

- The free energy of the forward reaction (A \rightarrow B):
 - \circ Is equal in magnitude but opposite in sign to that of the reverse reaction (B \rightarrow A).
- Example:
 - \circ If ΔG (forward) = -5 kcal/mol, then:
 - ΔG (reverse) = +5 kcal/mol

- · Units:
 - ΔG can be expressed in:
 - kcal/mol
 - kJ/mol
 - 1 kcal = 4.2 kJ

C. DG and Reactant and Product Concentrations

- ΔG of the reaction $A \rightarrow B$ depends on:
 - · The concentrations of the reactant and
 - · The concentration of the product.
- At constant temperature and pressure, the following relationship can be derived:
 - - ullet ΔG^0 : Standard free energy change (see section D)
 - R: Gas constant = 1.987 cal/mol·K
 - T: Absolute temperature (in Kelvin)
 - [A] and [B]: Actual concentrations of the reactant and product
 - In: Natural logarithm

- A reaction with a positive ΔG^0 can still proceed in the forward direction if:
 - The ratio of products to reactants ([B]/[A]) is sufficiently small
 - That is, the ratio of reactants to products is large
 - \circ This condition makes ΔG negative, allowing the reaction to proceed

• Example:

- - When the concentration of glucose 6phosphate is high
 - And the concentration of fructose 6phosphate is low
 - The ratio of product to reactant is small
 - As a result, the term RT In([fructose 6phosphate]/[glucose 6-phosphate]) becomes large and negative
 - This makes ΔG negative even though ΔG^0 is positive
 - Thus, the reaction can still proceed in the forward direction

D. Standard Free Energy Change

- Standard free energy change (ΔG^0) is:
 - · The free energy change under standard conditions
 - Standard conditions: Concentrations of reactants and products are 1 mol/1
- · Under standard conditions:
 - \circ The ratio [B]/[A] = 1
 - \circ The natural logarithm of I = 0
 - \circ ln(1) = 0
- Therefore, the equation becomes:

$$\circ \ \Delta G = \Delta G^0 + 0$$

1. ΔG^0 and Reaction Direction

- Under standard conditions, ΔG^0 can be used to predict the direction a reaction proceeds.
 - \circ This is because under standard conditions, ΔG^0 is equal to $\Delta G.$

- However, ΔG^0 cannot predict the reaction direction under physiologic conditions because:
 - · It is composed solely of constants:
 - R (gas constant)
 - T (temperature)
 - Keq (equilibrium constant)
 - It is not altered by changes in product or substrate concentrations.
- 2. Relationship Between ΔG^0 and Keq
 - In a reaction: $A \rightleftharpoons B$
 - A point of equilibrium is reached at which no further net chemical change takes place.
 - At equilibrium, the ratio of [B] to [A] is constant, regardless of their actual concentrations:

$$Keq = [B]eq / [A]eq$$

- · Where:
 - Keq = equilibrium constant
 - [A]eq and [B]eq = concentrations of A and B at equilibrium

- If the reaction $A \rightleftharpoons B$ is allowed to reach equilibrium at constant temperature and pressure, then:
 - \circ At equilibrium, $\Delta G = 0$.
- Therefore, when [A] and [B] are at equilibrium concentrations:

$$\Delta G^0 = -RT \ln Keq$$

- This equation allows simple predictions:
 - \circ If Keq = 1, then $\Delta G^0 = 0$
 - \circ If Keq > 1, then $\Delta G^0 < 0$
 - \circ If Keq < 1, then $\Delta G^0 > 0$
- 3. ΔG^0 of Two Consecutive Reactions
 - The ΔG^0 values are additive for any sequence of consecutive reactions, just like ΔG values.

- For example:
 - o If:

Reaction 1: A
$$\rightarrow$$
 B, ΔG^{0}_{1}
Reaction 2: B \rightarrow C, ΔG^{0}_{2}

o Then total:

$$A \rightarrow C$$
, $\Delta G^0 = \Delta G^0_1 + \Delta G^0_2$

4. ΔG of a Pathway

ullet The additive property of ΔG is crucial in biochemical pathways such as:

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow ...$$

- \bullet As long as the sum of the individual ΔGs is negative, the overall pathway proceeds in that direction.
- Even if some steps have a positive ΔG , the overall pathway can proceed if the total ΔG is negative.

- · However, the actual rate of each reaction depends on:
 - Lowering of activation energy (Ea)
 - This is achieved by enzymes that catalyze the reactions.

IV. ATP: An Energy Carrier

- Reactions with a large positive ΔG can occur if coupled with a spontaneous (exergonic) reaction having a large negative ΔG .
 - Example: Coupling with the hydrolysis of ATP.

A. Common Intermediates

- Two reactions share a common intermediate when:
 - The product of the first reaction becomes the substrate for the second.

• Example:

$$\circ$$
 A + B \rightarrow C + D

$$\circ$$
 D + X \rightarrow Y + Z

- · Here, D is the common intermediate.
- D acts as a carrier of chemical energy between the two reactions.
 - (Note: The intermediate may be linked to an enzyme.)
- Many coupled reactions use ATP to create a common intermediate:
 - · These may involve:
 - Transfer of phosphate from ATP to another molecule.
 - Or transfer of phosphate from an energy-rich intermediate to ADP, forming ATP.

B. Energy Carried by ATP

- ATP (Adenosine Triphosphate) consists of:
 - Adenosine (adenine + ribose sugar)
 - · Three phosphate groups
- Phosphate removal:
 - Loss of one phosphate → ADP (Adenosine Diphosphate)
 - Loss of two phosphates → AMP (Adenosine Monophosphate)
- ΔG^0 of ATP hydrolysis:
 - $\circ \approx -7.3$ kcal/mol for each of the two terminal phosphate bonds
 - This large negative free energy makes ATP a highenergy phosphate compound
- Adenylate kinase interconverts adenine nucleotides:
 - 2 ADP = ATP + AMP

II. Free Energy

V. Electron Transport Chain (ETC)

 Energy-rich molecules like glucose are oxidized stepwise to yield:

 Metabolic intermediates donate electrons to coenzymes:

$$\circ$$
 NAD+ \rightarrow NADH

- FAD → FADH₂
- These reduced coenzymes donate pairs of electrons to:
 - A specialized set of electron carriers called the Electron Transport Chain (ETC)

ETC Function and Energy Use

- As electrons pass through ETC, they:
 - Lose free energy gradually
 - This energy is used to pump H+ across the inner mitochondrial membrane

- This creates a proton (H+) gradient, which:
 - o Drives ATP synthesis from ADP + Pi
 - This process is called oxidative phosphorylation (OXPHOS)
- · OXPHOS occurs:
 - Continuously in all tissues that contain mitochondria
- Unused free energy is not wasted:
 - O Drives other reactions like:
 - Calcium ion transport into mitochondria
 - Heat generation

A. Mitochondrial Electron Transport Chain (ETC)

- The ETC (except cytochrome c) is located in the inner mitochondrial membrane
- It is the final common pathway for electrons from various fuels of the body
- Electrons ultimately flow to oxygen (O_2), reducing it to H_2O

1. Mitochondrial Membranes

- Two membranes:
 - · Outer membrane
 - Contains porin proteins → form specialized channels
 - Freely permeable to most ions and small molecules
 - · Inner membrane
 - Impermeable to:
 - Most small ions (including H+)
 - Small molecules (ATP, ADP, pyruvate, metabolites)
 - Transport proteins are required for movement across it
 - Protein-rich: Over half of the proteins are involved in oxidative phosphorylation
 - Contains cristae:
 - Folded structures that increase surface area

2. Mitochondrial Matrix

- The gel-like interior of mitochondria is called the matrix
- · Rich in proteins and enzymes, including those for:
 - · Pyruvate oxidation
 - · Amino acid oxidation
 - Fatty acid β-oxidation
 - TCA (Krebs) cycle
- Partially occurs in the matrix:
 - · Glucose synthesis
 - Urea synthesis
 - · Heme synthesis
- Other matrix components:
 - \circ NAD+ and FAD \rightarrow oxidized electron acceptors
 - \circ ADP and Pi \rightarrow required for ATP production
 - o mtDNA, mtRNA, and ribosomes

B. Organization of the Electron Transport Chain (ETC)

- The inner mitochondrial membrane contains four protein complexes:
 - · Complex I
 - · Complex II
 - · Complex III
 - · Complex IV
- These complexes participate in the electron transport chain (ETC)
- Electrons are transferred between complexes by mobile electron carriers:
 - \circ Coenzyme Q (CoQ) \rightarrow lipid-soluble
 - Cytochrome c → protein-based
- Each carrier in the ETC:
 - · Receives electrons from a donor
 - o Donates electrons to the next acceptor
 - \circ Final electron acceptor: O_2 which combines with H⁺ to form H_2O

- The requirement of oxygen (O_2) makes this process the respiratory chain
- The ETC accounts for the majority of oxygen consumption in the body

C. Reactions in the ETC

- All ETC members (except CoQ) are proteins
- · Components may include:
 - Enzymes (e.g., flavin-containing dehydrogenases)
 - o Iron-sulfur (Fe-5) centers
 - Heme groups (in cytochromes with iron in a porphyrin ring)
 - Copper (Cu) (in cytochrome a + a3 complex)

1. NADH Formation

NAD+ is reduced to NADH by dehydrogenases

- · Dehydrogenases:
 - · Remove 2 hydrogen atoms from a substrate
 - · Transfer:
 - 2 electrons
 - Only I H+ (as a hydride ion [:H-]) to NAD+
 - Result: NADH + free H+

2. NADH Dehydrogenase (Complex I)

- NADH transfers its electrons to Complex I (NADH dehydrogenase)
- · Complex I:
 - o Embedded in the inner mitochondrial membrane
 - · Contains:
 - Flavin mononucleotide (FMN) \rightarrow accepts 2 H atoms to form FMNH₂
 - Fe-S peptide subunits
- Electron flow within Complex I:
 - NADH → FMN → Fe-5 centers → CoQ
 - · As electrons move, they lose energy

- This energy is used to pump 4 H+ from the matrix to the intermembrane space
- 3. Succinate Dehydrogenase (Complex II)
 - Catalyzes the reaction:

Succinate → Fumarate (via oxidation)

- Electron transfer path at Complex II:
 - FADH₂ → Fe-S protein → Coenzyme Q (CoQ)
- · No energy is lost in this process
- \rightarrow No H+ are pumped at Complex II
- 4. Coenzyme Q (CoQ / Ubiquinone)
 - Structure:
 - Quinone derivative with a long hydrophobic isoprenoid tail
 - Synthesized from an intermediate of cholesterol synthesis

- Functions as a mobile electron carrier
- Accepts electrons from:
 - NADH dehydrogenase (Complex I)
 - · Succinate dehydrogenase (Complex II)
 - Other mitochondrial dehydrogenases:
 - Glycerol 3-phosphate dehydrogenase
 - Acyl-CoA dehydrogenases
- Transfers electrons to:
 - · Complex III (Cytochrome bc1 complex)
- Function summary: Links flavoprotein dehydrogenases to cytochromes

5. Cytochromes

- Remaining ETC components are cytochrome proteins
- · Each cytochrome contains a heme group:
 - Porphyrin ring + Iron (Fe)
 - Iron cycles between Fe³+ (ferric) and Fe²+ (ferrous)
 as it accepts and donates electrons

- · Electron flow:
 - Complex III (cytochrome bc_1) → Cytochrome c → Complex IV (cytochromes $a + a_3$)
- H+ pumping associated with cytochromes:
 - 4 H+ pumped at Complex III
 - 2 H+ pumped at Complex IV
- · Cytochrome c:
 - · Located in intermembrane space
 - Loosely associated with outer face of inner membrane
 - Functions as a mobile electron carrier (like CoQ)
- 6. Cytochrome a + a3 (Complex IV / Cytochrome c Oxidase)
 - Only electron carrier whose heme iron has a free coordination site for direct reaction with O_2
- → Hence called cytochrome c oxidase

- Final step in ETC:
 - Electrons + O₂ + free H+ combine
 - · O2 is reduced to H2O
- · Reduction stoichiometry:
 - · 4 electrons reduce 1 molecule of 02 to 2 H20
- · Structure and flow:
 - · Contains copper (Cu) atoms essential for reaction
 - · Electron transfer:
 - CuA \rightarrow cytochrome a \rightarrow cytochrome a₃ (with CuB) \rightarrow O₂
- 7. Site-Specific Inhibitors of the Electron Transport Chain (ETC)
 - Certain respiratory inhibitors bind to specific components of the ETC
- \rightarrow Block electron flow by halting redox reactions

- · Result of inhibition:
 - \circ Electron carriers before the block \rightarrow Fully reduced
 - Electron carriers after the block → Remain oxidized
- Inhibition of ETC also inhibits ATP synthesis
- \rightarrow Because ETC and ATP synthesis are tightly coupled
 - Electron leakage from ETC can generate Reactive Oxygen
 Species (ROS):
 - Examples of ROS:
 - Superoxide (0₂-)
 - Hydrogen peroxide (H2O2)
 - Hydroxyl radical (·OH)
 - ROS effects:
 - Damages DNA, proteins, and lipids (lipid peroxidation)

- Cellular defense against ROS includes:
 - Superoxide dismutase (SOD)
 - · Catalase
 - Glutathione peroxidase

D. Free Energy Release During Electron Transport

- As electrons move along the ETC from electron donor (reductant) to electron acceptor (oxidant):
- → Free energy is released
 - This energy is used to pump H+ across the inner mitochondrial membrane at:
 - · Complex I
 - · Complex III
 - · Complex IV
 - Electron donation types:
 - · As hydride ions (H-) to NAD+
 - As hydrogen atoms (H.) to FMN, CoQ, FAD
 - · As electrons (e-) to cytochromes

1. Redox Pairs

- · Oxidation = Loss of electrons
- · Reduction = Gain of electrons
- → Always occur together in redox reactions
 - Example at Complex I:
 - · NADH is oxidized to NAD+
 - FMN (prosthetic group) is reduced to FMNH2
 - Each redox reaction can be written as:
 - o Two half-reactions: One oxidation + One reduction
 - Examples of redox pairs:
 - · NAD+ / NADH
 - o FMN / FMNH₂
 - Redox pairs differ in their tendency to lose or gain electrons

- This tendency is measured as:
 - · Eo (Standard Reduction Potential)
 - → Units: Volts

2. Standard Reduction Potential (Eo)

- \bullet Redox pairs can be ranked from most negative to most positive E_0
- Interpretation:
 - \circ More negative $E_0 \rightarrow$ Greater tendency to lose electrons (strong reductant)
 - \circ More positive $E_0 \rightarrow$ Greater tendency to accept electrons (strong oxidant)
- · Electron flow direction:
 - From redox pairs with more negative E₀
 - $\circ \to To \text{ redox pairs with more positive } E_0$
- \bullet ETC components are arranged in order of increasing E_0 values
- → Ensures unidirectional electron flow

3. Relationship of ΔG° to ΔE°

• ΔG° (standard free energy change) is directly related to the change in standard reduction potential (ΔE°) by the equation:

$$\Delta Go = -nF\Delta Eo$$

- · Where:
 - on = number of electrons transferred
 - I for cytochromes
 - 2 for NADH, FADH₂ and CoQ
 - F = Faraday constant = 23.1 kcal/volt·mol
 - ΔE° = Eo(acceptor)-Eo(donor)E^\circ
 \text{(acceptor)} E^\circ
 \text{(donor)}Eo(acceptor)-Eo(donor)
 - \circ ΔG° = Change in standard free energy (in kcal/mol)

4. ΔG° of ATP Synthesis

- ΔG° for phosphorylation of ADP + Pi \rightarrow ATP = +7.3 kcal/mol
- Energy released from the transfer of electrons from NADH to O_2 through the ETC = S2.6 kcal/mol

- Therefore:
 - Energy available is more than enough to synthesize 3 ATP molecules
 - \circ Energy required = $3 \times 7.3 = 21.4 \text{ kcal/mol}$
- This is sometimes expressed as the P/O ratio:
 - \circ NADH: P/O = 3:1
 - \circ FADH₂: P/O = 2:1 (because Complex I is bypassed)
- Remaining energy is:
 - · Used in ancillary reactions
 - · Released as heat

VI. Phosphorylation of ADP to ATP

- Electron flow through ETC is energetically favorable:
 - · Because NADH is a strong electron donor
 - And O2 is a strong electron acceptor
- However, this electron flow does not directly produce ATP

A. Chemiosmotic Hypothesis (Mitchell Hypothesis)

- Explains how free energy from electron transport is used for ATP synthesis
- · Mechanism:
 - · Electrons moving through ETC release energy
 - This energy is used to pump H+ ions across the inner mitochondrial membrane
 - This creates a proton gradient (electrochemical gradient)
 - ATP synthase uses the energy of H+ flow back into the matrix (down its gradient) to convert:

$$ADP + Pi \rightarrow ATP$$

1. Proton Pump

- Electron transport is coupled to ADP phosphorylation via proton pumping across the inner mitochondrial membrane.
- H+ is pumped from:
 - Mitochondrial matrix → Intermembrane space
 - At Complexes I, III, and IV

- For every 2 electrons transferred from NADH to 02:
 - 0 10 H+ ions are pumped
- This generates two gradients:
 - · Electrical gradient:
 - More positive charges on cytosolic (intermembrane space) side
 - Matrix side becomes more negative
 - o pH (chemical) gradient:
 - Cytosolic side becomes more acidic (lower pH)
 - Matrix remains alkaline (higher pH)
- Combined gradient = Proton-motive force
 - Drives ATP synthesis
 - H+ gradient acts as the common intermediate coupling oxidation to phosphorylation

2. ATP Synthase (Complex V)

- ATP synthase = Multisubunit enzyme responsible for synthesizing ATP
 - Also called F₁F₀-ATPase

• Structure:

- · Fo domain:
 - Embedded in inner mitochondrial membrane
 - Contains H+ channel and c ring
- · F₁ domain:
 - Projects into the mitochondrial matrix
 - Contains three B subunits involved in ATP synthesis
- Mechanism (Chemiosmotic Hypothesis):
 - \circ H+ ions reenter the matrix through the H+ channel in Fo
 - o This drives rotation of the cring in Fo
 - \circ Rotation causes conformational changes in the three β subunits of F_1 , enabling:
 - i. Binding of ADP + Pi
 - ii. Phosphorylation of ADP -> ATP
 - iii. Release of ATP

- · Yield:
 - One complete rotation of the c ring = Three ATP molecules synthesized
- · Additional Note:
 - ATP synthase can also catalyze the reverse reaction:
 - ATP hydrolysis → ADP + Pi
 - Hence called ATPase

A. Coupling in Oxidative Phosphorylation

- In normal mitochondria, there is tight coupling between:
 - Electron transport (ETC)
 - · ATP synthesis via ATP synthase
- This coupling occurs through the H+ gradient:
 - Any increase or decrease in one process affects the other equally.

· Example of coupling:

- When ATP is hydrolyzed to ADP + Pi in energyrequiring reactions:
 - More ADP and Pi become available for ATP synthase
 - This increases H+ flow through ATP synthase
 - As a result, ETC activity increases to pump more H+ and maintain the proton gradient

B. Oligomycin (Inhibitor of ATP Synthase)

· Oligomycin:

- \circ Binds to the Fo domain (membrane portion) of ATP synthase
- · Closes the H+ channel in Fo

· Effect of binding:

- Prevents reentry of H+ into the mitochondrial matrix
- o Inhibits phosphorylation of ADP to ATP

- Consequences:
 - H+ gradient builds up (cannot be dissipated)
 - Electron transport halts:
 - Because pumping more H+ becomes energetically unfavorable
 - Due to the steep gradient already present
- Key concept: Respiratory Control:
 - The dependency of cellular respiration on the ability to phosphorylate ADP to ATP is known as respiratory control
 - Reflects the tight coupling between oxidation and phosphorylation

C. Uncoupling Proteins (UCPs)

- Location: Inner mitochondrial membrane of mammals (including humans)
- · Function:
 - Form H+ channels allowing protons to reenter the matrix
 - Bypass ATP synthase, so no ATP is produced

- Energy from H+ gradient is instead released as heat
- · Process name:
 - Nonshivering thermogenesis
- Key protein:
 - · UCPI (thermogenin):
 - Present in brown adipose tissue
 - Responsible for heat production
 - Activated by cold exposure via catecholamine signaling
- Brown vs White Fat:
 - · Brown fat:
 - Rich in mitochondria
 - ~90% of respiratory energy used for heat (thermogenesis)
 - Especially important in infants
 - · White fat:
 - Specialized for energy storage
 - (Note: Brown fat depots also exist in adults, though less abundant)

D. Synthetic Uncouplers

- Mechanism:
 - Disrupt the H+ gradient by shuttling protons across the inner mitochondrial membrane
 - Allow electron transport to continue, but no ATP is made
 - Energy is released as heat
- Classic example:
 - 2,4-Dinitrophenol (DNP):
 - Lipophilic H+ carrier (ionophore)
 - Easily diffuses through the mitochondrial membrane
 - Uncouples ETC from phosphorylation, just like
 UCPs
- · Clinical note:
 - High doses of aspirin and other salicylates:
 - Act as uncouplers
 - Cause fever due to heat release instead of ATP synthesis

B. Membrane Transport Systems

- Barrier:
 - Inner mitochondrial membrane is impermeable to most charged/hydrophilic molecules
- · Solution:
 - Specialized transport proteins facilitate selective transport of essential molecules

1. ATP and ADP Transport

- Adenine nucleotide antiporter:
 - · Imports ADP into the mitochondrial matrix
 - · Exports ATP into the cytosol (1:1 exchange)
- Pi-H+ symporter:
 - Cotransports inorganic phosphate (Pi) and H+ from cytosol into matrix
 - · Supplies Pi for ATP synthesis

2. Reducing Equivalent Transport

- · Problem:
 - Cytosolic NADH (e.g., from glycolysis) cannot cross the inner mitochondrial membrane directly
- · Solution:
 - Use substrate shuttles to transfer reducing equivalents indirectly

A. Glycerol 3-Phosphate Shuttle

- Steps:
 - NADH reduces dihydroxyacetone phosphate (DHAP)
 to glycerol 3-phosphate (cytosolic enzyme)
 - Glycerol 3-phosphate is oxidized by mitochondrial glycerol 3-phosphate dehydrogenase
 - This reduces FAD → FADH₂
 - · CoQ of ETC oxidizes FADH2
- ATP yield:
 - o 2 ATP per cytosolic NADH

B. Malate-Aspartate Shuttle

Steps:

- NADH reduces oxaloacetate → malate (in cytosol)
- Malate is transported into matrix by a transport portein
- In matrix, malate is oxidized back to oxaloacetate, regenerating NADH

· ATP yield:

o 3 ATP per cytosolic NADH

C. Inherited Defects in Oxidative Phosphorylation

- Protein origin:
 - ~90 proteins required for oxidative phosphorylation
 - 13 polypeptides encoded by mtDNA, synthesized within mitochondria
 - Remaining proteins encoded by nuclear DNA, synthesized in cytosol, then imported into mitochondria

- · Mutation risk:
 - \circ mtDNA has 10× higher mutation rate than nuclear DNA \rightarrow more likely cause of defects
- · Affected tissues:
 - · Tissues with high ATP demand are most vulnerable:
 - Brain, nerves, retina, skeletal muscle, heart, liver
- · Clinical features:
 - Lactic acidosis, especially in muscles, CNS, and retina
 - · Symptoms may include:
 - Seizures
 - Ophthalmoplegia
 - Muscle weakness
 - Cardiomyopathy

· Medication caution:

 Some drugs impair mitochondrial function and should be avoided in mitochondrial disorders

• Inheritance:

- o mtDNA is maternally inherited
 - Sperm mitochondria do not survive fertilization
 - Only oocyte mitochondria persist in embryo and adult

D. Mitochondria and Apoptosis

• Trigger:

- Apoptosis initiated via intrinsic (mitochondrial) pathway
- o In response to irreparable cell damage

Key steps:

- Bax or Bak proteins inserted into outer mitochondrial membrane
- Cytochrome c released from intermembrane space into cytosol

Apoptosome formation:

- Cytochrome c + proapoptotic factors → apoptosome
- Caspase activation:
 - Apoptosome activates caspases (proteolytic enzymes)
 - Caspases cleave key cellular proteins → leads to morphologic & biochemical signs of apoptosis