"Introduction to Metabolism and Glycolysis"

I. METABOLISM OVERVIEW

- In cells, enzyme reactions reactions rarely occur in isolation.
- Instead, they are organized into multistep sequences called pathways, such as that of glycolysis.
- In a pathway, the product of one reaction serves as the substrate of the subsequent reaction.
- Most pathways can be classified as either:
 - · Catabolic (degradative)
 - Anabolic (synthetic)
- Catabolic pathways:
 - · Break down complex molecules, such as:
 - Proteins
 - Polysaccharides
 - Lipids
 - o To a few simple molecules, e.g.:
 - Carbon dioxide
 - Ammonia
 - Water

- Anabolic pathways:
 - Form complex end products from simple precursors.
 - Example: Synthesis of the polysaccharide glycogen from glucose.
- Different pathways can intersect, forming an integrated and purposeful network of chemical reactions.
- Metabolism is the sum of all the chemical changes occurring in a cell, a tissue, or the body.
- · Metabolites are intermediate products of metabolism.
- · Central metabolic pathways are involved in:
 - Synthesizing and degrading:
 - Carbohydrates
 - Lipids
 - Amino acids

A. Metabolic Map

- Metabolism is best understood by examining its component pathways.
- · Each pathway is composed of multienzyme sequences.
- Each enzyme, in turn, may exhibit:
 - · Important catalytic features
 - · Important regulatory features

B. Catabolic Pathways

- Catabolic reactions serve to capture chemical energy in the form of ATP from the degradation of energy-rich fuel molecules.
- ATP generation by degradation of complex molecules occurs in three stages.
- Note: Catabolic pathways are typically oxidative and require oxidized coenzymes such as:
 - Nicotinamide adenine dinucleotide [NAD+]

- · Catabolism also allows:
 - o Molecules in the diet
 - · Or nutrient molecules stored in cells
 - To be converted into basic building blocks needed for the synthesis of complex molecules.
- Catabolism is described as a convergent process in which:
 - A wide variety of molecules are transformed into a few common end products.

Stages of Catabolism

- 1. Hydrolysis of Complex Molecules
 - In the first stage, complex molecules are broken down into their component building blocks.
 - Examples:
 - Proteins → Amino acids
 - Polysaccharides → Monosaccharides
 - Fats (triacylglycerols) → Free fatty acids and glycerol

- 2. Conversion of Building Blocks to Simple Intermediates
 - In the second stage, these diverse building blocks are further degraded to:
 - · Acetyl coenzyme A (CoA)
 - · And a few other simple molecules
 - Some energy is captured as ATP, but:
 - The amount is small compared with the energy produced during the third stage of catabolism.

3. Oxidation of Acetyl CoA

- The tricarboxylic acid (TCA) cycle (see Chapter 4) is the final common pathway in the oxidation of fuel molecules that produce acetyl CoA.
- Oxidation of acetyl CoA generates large amounts of ATP via:
 - · Oxidative phosphorylation

- This occurs as electrons flow from:
 - · NADH and
 - Flavin adenine dinucleotide (FADH₂)
 - o To oxygen (O2)

C. Anabolic Pathways

Definition and Characteristics

- In contrast to catabolism, anabolism is a divergent process in which:
 - A few biosynthetic precursors (such as amino acids)
 - Form a wide variety of polymeric, or complex, products (such as proteins)

Energy Requirement

· Anabolic reactions require energy (are endergonic).

- Energy is generally provided by:
 - · Hydrolysis of ATP to:
 - Adenosine diphosphate (ADP)
 - Inorganic phosphate (Pi)

Note: Catabolic reactions generate energy (are exergonic).

Reducing Power in Anabolism

- · Anabolic reactions often involve chemical reductions.
- The reducing power is most frequently provided by the electron donor:
 - NADPH (phosphorylated NADH)

II. METABOLISM REGULATION

Overview

- The pathways of metabolism must be coordinated so that:
 - · Production of energy or
 - · Synthesis of end products
 - · Meets the needs of the cell

- Individual cells function as part of a community of interacting tissues, not in isolation.
- A sophisticated communication system has evolved to coordinate the functions of the body.

Regulatory Signals

- Regulatory signals that inform a cell of the metabolic state of the body as a whole include:
 - · Hormones
 - · Neurotransmitters
 - Availability of nutrients
- These signals, in turn, influence signals generated within the cell

A. Intracellular Communication

Regulation Within the Cell

 The rate of a metabolic pathway can respond to regulatory signals arising from within the cell.

- Influencing factors include:
 - · Availability of substrates
 - · Product inhibition
 - Alterations in levels of allosteric activators or inhibitors
- These intracellular signals typically:
 - · Elicit rapid responses
 - Are important for moment-to-moment regulation of metabolism

B. Intercellular Communication

Essential Role

 The ability to respond to intercellular signals is essential for the development and survival of organisms.

Long-Range Integration

 Signaling between cells provides for long-range integration of metabolism

- Usually results in a response such as a change in gene expression
 - Slower than responses seen with intracellular signals

Mechanisms of Cell-to-Cell Communication

- · Communication between cells can be mediated by:
 - Surface-to-surface contact
 - In some tissues, formation of gap junctions, allowing:
 - Direct communication between the cytoplasms of adjacent cells

Chemical Signaling (Main Mechanism for Energy Metabolism)

- For energy metabolism, the most important communication route is:
 - Chemical signaling between cells via:
 - Bloodborne hormones
 - Neurotransmitters

C. G Protein-Linked Receptors and Second Messenger Systems

Hormones and Neurotransmitters as Signals

- · Hormones and neurotransmitters act as signals
- Receptors act as signal detectors
- Receptors are proteins embedded in the plasma membranes of their target cells

Receptor Activation

- Receptors respond to a ligand bound to them by:
 - Initiating a series of reactions
 - · Resulting in specific intracellular responses

G Protein-Coupled Receptors (GPCRs)

- Many receptors that regulate metabolism are:
 - Linked to intracellular GTP-binding proteins called G proteins
 - Known as G protein-coupled receptors (GPCRs)

Second Messengers

- · GPCRs regulate production of second messengers
 - o So named because they intervene between:
 - The original extracellular messenger (hormone or neurotransmitter)
 - The ultimate intracellular effect
- Second messengers are part of the cascade of events that:
 - Converts (transduces) ligand binding into a response

Key Second Messenger Systems Regulated by G Proteins

- 1. Phospholipase C system
 - Involves calcium and the phosphatidylinositol system
- 2. Adenylyl cyclase (adenylate cyclase) system
 - Particularly important in regulating pathways of intermediary metabolism

Initiation of Second Messenger Systems

- Both systems are initiated by hormone ligands (e.g., epinephrine, glucagon) binding to:
 - Specific GPCRs embedded in the plasma membrane of the target cell
 - · These cells will then respond to the hormone

Structural Features of GPCRs

- GPCRs are characterized by:
 - · An extracellular ligand-binding domain
 - o Seven transmembrane a helices
 - An intracellular domain that interacts with heterotrimeric G proteins composed of:
 - a subunit
 - B subunit
 - y subunit

Note on Insulin Signaling

 Insulin, another key regulator of metabolism, does not signal via GPCRs

- Instead, insulin acts via a receptor with tyrosine kinase activity
- D. Adenylyl Cyclase
- I. Hormone Binding to GPCR and Activation of Adenylyl Cyclase
 - Hormone ligands bind to GPCRs (e.g., β -adrenergic and α_2 -adrenergic receptors)
 - This triggers either:
 - An increase or decrease in the activity of adenylyl cyclase
 - Adenylyl cyclase:
 - · A membrane-bound enzyme
 - \circ Converts ATP \rightarrow cyclic AMP (cAMP), also called 3',5'-adenosine monophosphate, when activated

GTP-Dependent Regulatory Proteins (G Proteins)

Structure and Inactive Form

- Heterotrimeric G proteins:
 - \circ Composed of α , β , and γ subunits
 - · Located on the inner face of the plasma membrane
- Named because a subunit binds GTP when active
- In inactive form, the a subunit is bound to GDP

Activation Mechanism

- · Ligand binding to GPCR causes:
 - · A conformational change in the receptor
 - o GDP is replaced with GTP on the a subunit
- The GTP-bound a subunit:
 - o Dissociates from the By dimer
 - · Moves to adenylyl cyclase, modulating its activity
- Amplification: One activated GPCR can activate many Ga subunits

Types of Ga Subunits and Their Effects

- Gas ("s" for stimulatory):
 - Stimulates adenylyl cyclase → ↑ cAMP
- Gai ("i" for inhibitory):
 - \circ Inhibits adenylyl cyclase $\rightarrow \downarrow$ cAMP

Formation and Role of cAMP

- Activated adenylyl cyclase converts:
 - \circ ATP \rightarrow cAMP (cyclic adenosine monophosphate)
- cAMP acts as a second messenger
- It activates:
 - \circ Protein kinase A (PKA) \rightarrow a serine/threonine kinase

Inactivation of the G Protein Signal

- Ga subunit has inherent GTPase activity
- This causes:
 - \circ Hydrolysis of GTP \rightarrow GDP
 - o Inactivation of Ga
 - · Dissociation from adenylyl cyclase
 - \circ Reassociation with By subunit \rightarrow G protein returns to inactive state

Clinical Relevance: Toxins Affecting G Proteins

Cholera Toxin (Vibrio cholerae)

- Causes ADP-ribosylation of Gas
- Inhibits GTPase activity of Gas in intestinal cells
- Result: Persistent activation of adenylyl cyclase \rightarrow \uparrow \uparrow cAMP

Pertussis Toxin (Bordetella pertussis)

- Causes ADP-ribosylation of Gai
- Inactivates Gai in respiratory tract cells
- ullet Result: Loss of inhibition on adenylyl cyclase $\to\uparrow\uparrow$ cAMP

2. Protein Kinases

A. Activation of cAMP-Dependent Protein Kinases

- cAMP activates a family of enzymes:
 - Called cAMP-dependent protein kinases, including Protein Kinase A (PKA)
- Mechanism of PKA activation:
 - PKA structure: 2 regulatory subunits + 2 catalytic subunits
 - o cAMP binds to the regulatory subunits
 - This causes release of the catalytic subunits, activating PKA

B. Function of Active PKA

- PKA is a serine/threonine kinase
 - \circ Transfers phosphate from ATP \rightarrow specific serine or threonine residues of target proteins
- Effect of phosphorylation:
 - \circ If the substrate is an ion channel protein \to may directly alter cell function
 - If the substrate is an enzyme → may become activated or inhibited

Note: Not all protein kinases are cAMP-dependent

- Example: Protein Kinase C (PKC)
- Activated via phospholipase C signaling
- Calcium-dependent, not cAMP-dependent

3. Protein Phosphatases

- Phosphorylated proteins are reversed by phosphoprotein phosphatases
 - These enzymes hydrolytically cleave phosphate esters
- Function: Ensure that phosphorylation effects are not permanent

4. cAMP Hydrolysis

- · cAMP is rapidly degraded by:
 - o cAMP phosphodiesterase
 - This enzyme cleaves the cyclic 3',5'-phosphodiester bond
- · Product: 5'-AMP
 - Not an intracellular signaling molecule
- Effect: Ensures that cAMP signaling ends rapidly when the extracellular signal (hormone/neurotransmitter) is gone

Note:

- Caffeine (a methylxanthine derivative) inhibits cAMP phosphodiesterase
- Result: Prolonged cAMP activity

III. GLYCOLYSIS OVERVIEW

A. Universal Importance of Glycolysis

- Used by all tissues for:
 - o Oxidation of glucose
 - · ATP production (energy)
 - Generating intermediates for other metabolic pathways
- · Central role in carbohydrate metabolism:
 - Virtually all dietary or endogenous sugars can be converted to glucose
 - Glucose is then funneled into the glycolytic pathway

B. End Product and Oxygen Availability

- In aerobic conditions (O2 available):
 - End product = Pyruvate
 - Pyruvate undergoes oxidative decarboxylation → Acetyl CoA
 - Acetyl CoA enters TCA cycle (major fuel)
 - Requires NADH reoxidation via electron transport chain
 - This 10-reaction sequence is called aerobic glycolysis
- In anaerobic conditions (O2 limited or absent):
 - Pyruvate → Lactate
 - NADH is oxidized to NAD+ (needed to continue glycolysis)
 - This pathway is called anaerobic glycolysis

C. Significance of Anaerobic Glycolysis

- · Occurs in:
 - · Tissues lacking mitochondria
 - e.g., Red Blood Cells (RBCs), parts of the eye
 - Tissues with insufficient oxygen supply (e.g., during hypoxia)
- Allows ATP generation even without oxygen

IV. GLUCOSE TRANSPORT INTO CELLS

A. Glucose Cannot Passively Diffuse

· Requires transport systems for entry into cells

B. Two Main Glucose Transport Mechanisms

1. Na+- and ATP-independent transport system:

- · Facilitated diffusion
- Involves GLUT transporters
- · Found in most tissues

2. Na+- and ATP-dependent cotransport system:

- Known as SGLT (sodium-glucose linked transporters)
- Actively transports glucose against concentration gradient
- o Found in intestinal epithelial cells and renal tubules

A. Sodium- and ATP-Independent Transport System (Facilitated Diffusion)

1. Mediated by GLUT Transporters

- GLUT = Glucose Transporters (Family of 14 isoforms: GLUT-1 to GLUT-14)
- Passive transport system: Does not require sodium or ATP
- Transport mechanism:
 - Monomeric transmembrane proteins
 - Exist in two conformational states
 - \circ Glucose binds extracellularly \rightarrow conformational shift \rightarrow glucose enters cell
 - o Transport is via facilitated diffusion

• GLUTs are uniporters:

- o Transport only one molecule at a time
- · Movement is down concentration gradient
- · Energy-independent

2. Tissue-Specific Expression of GLUT Isoforms

GLUT Isoform	Primary Tissue Distribution	Key Function	
GLUT-I	Most tissues	Basal glucose uptake	
GLUT-2	Liver, kidney, pancreatic B cells	Bidirectional glucose transport	
GLUT-3	Neurons, placenta	High-affinity glucose uptake	
GLUT-4	Muscle and adipose tissue	Insulin-regulated glucose uptake	
GLUT-S	Small intestine, testes	Fructose transport (not glucose)	

B. Recommended Name

- GLUT-4 is insulin-dependent:
 - Insulin increases the number of active GLUT-4 transporters
 - · Important for postprandial glucose uptake

3. Specialized Transport Functions

- · Facilitated diffusion:
 - · Occurs down glucose concentration gradient
 - · No ATP required
- a. Glucose Uptake Transporters
 - GLUT-1, GLUT-3, and GLUT-4:
 - Primarily responsible for glucose uptake from blood

b. Bidirectional Glucose Transporters

- GLUT-2:
 - o In liver and kidneys
 - · Can import glucose (when blood glucose is high)
 - Can export glucose (when blood glucose is low, e.g., fasting)
- c. Fructose-Specific Transporter
 - · GLUT-S:
 - · Located in small intestine and testes
 - o Transports fructose, not glucose

Tissue Distribution of Selected GLUT Isoforms

GLUT Isoform	Location	Key Function	Km (mM)
GLUT-I	Most tissues	Basal glucose uptake	
GLUT-2	Liver, kidney, pancreatic B cells	Bidirectional glucose transport	IS-20
GLUT-3	Neurons, placenta	High-affinity glucose uptake	
GLUT-4	Muscle and adipose tissue	Insulin- regulated glucose uptake	5
GLUT-S	Small intestine, testes	Fructose transport (not glucose)	10

- Km indicates affinity:
 - -> Lower Km = higher affinity for glucose
 - -> Higher Km = lower affinity (responds at higher glucose concentrations)
- B. Sodium- and ATP-Dependent Cotransport of Glucose
- 1. Location of Na+-Glucose Cotransport
 - · Present in:
 - o Intestinal epithelial cells
 - · Renal tubules
 - Choroid plexus (part of blood-brain barrier)
- 2. Mechanism of Sodium-Dependent Glucose Cotransport
 - Type of transport: Secondary active transport
 - Symport system: Glucose and Na+ transported together
 - Glucose moves against its concentration gradient (low \rightarrow high)

• Na+ moves down its electrochemical gradient (high \rightarrow low)

Energy Source

- · ATP hydrolysis is indirect:
 - · Powers Na+/K+ ATPase, which:
 - Pumps 3 Na+ out, 2 K+ into the cell
 - Maintains high extracellular Na+ concentration
- The Na+ gradient provides the driving force for glucose uptake

3. Transporters Involved

- Sodium-Dependent Glucose Transporters = SGLTs
 - SGLT = Sodium-Glucose Linked Transporter
 - Require Na+ for function (Na+ is co-transported with glucose)

SGLT2

- Location: Proximal tubules of kidney
- Function: Major glucose reabsorption transporter from filtrate back into blood

4. Clinical Correlation: SGLT2 Inhibitors (Gliflozins)

- · Mechanism:
 - o Inhibit SGLT2 in kidneys
 - · Reduce glucose reabsorption
 - Increase urinary glucose excretion
 - · Lower blood glucose levels
- · Used to treat:
 - o Type II Diabetes Mellitus
 - · Particularly helpful in hyperglycemia

V. GLYCOLYSIS REACTIONS

Overview of Glycolysis

- Glycolysis = Metabolic pathway converting glucose (6C)
 to pyruvate (3C)
- · Occurs in cytosol
- Does not require oxygen (anaerobic)

- Divided into two phases:
- 1. Energy-Investment Phase (First 5 reactions)
 - · ATP is consumed to phosphorylate intermediates
 - Prepares glucose for cleavage and further metabolism
- 2. Energy-Generation Phase (Last 5 reactions)
 - ATP is produced via substrate-level phosphorylation
 - Net gain:
 - +2 ATP per glucose (4 ATP made 2 ATP used)
 - +2 NADH formed
 - 2 Pyruvate produced

A. Glucose Phosphorylation

Purpose of Phosphorylation

- Glucose → Glucose-6-phosphate (G6P)
- Catalyzed by: Hexokinase or Glucokinase (Hexokinase IV)

Why phosphorylation?

- Prevents glucose from leaving the cell:
 - Phosphorylated sugars cannot cross cell membranes
 - Too polar
 - No transporters for phosphorylated sugars
- Irreversible step → commits glucose to intracellular metabolism
- G6P is a branch point for glycolysis, glycogenesis, pentose phosphate pathway

Hexokinase Isozymes (I-IV)

I. Hexokinases I-III

- · Found in most tissues
- Regulatory enzyme of glycolysis
- Km: Low \rightarrow High affinity for glucose
- · Efficient even at low glucose concentrations

- Vmax: Low \rightarrow Prevents excessive trapping of phosphate as G6P
- Inhibited by GBP (product inhibition)
- · Broad substrate specificity:
 - Can phosphorylate other hexoses (e.g., fructose, mannose)
- · Hexokinase is one of three key regulatory enzymes:
 - Hexokinase (Glucose → G6P)
 - · Phosphofructokinase-1 (PFK-1)
 - Pyruvate kinase (PK)
- 2. Hexokinase IV (Glucokinase)
- A. Location & Function
 - · Present in:
 - · Liver parenchymal cells
 - · Pancreatic β-cells
 - · Hypothalamic neurons

· Functions:

- o In β-cells:
 - Acts as a glucose sensor
 - Helps set the threshold for insulin secretion
- O In liver:
 - Facilitates glucose phosphorylation during hyperglycemia
 - Prevents postprandial hyperglycemia
- · In hypothalamus:
 - Participates in glucose sensing during hypoglycemia
 - Affects adrenergic response to low blood sugar
- Despite the misleading name "glucokinase":
 - It has broad sugar specificity, like other hexokinases

B. Kinetics of Glucokinase

- Km: High (~10 mM)
 - → Low affinity for glucose
 - → Only active when glucose concentration is high (e.g., after a carb-rich meal)
- Vmax: High
 - → Allows liver to quickly phosphorylate large amounts of glucose
 - → Prevents glucose spillover into systemic circulation
 - → Minimizes postprandial hyperglycemia
- GLUT-2:
 - · Bidirectional transporter
 - Ensures rapid equilibration of glucose across hepatocyte membrane

C. Regulation of Glucokinase Activity

- Not directly inhibited by glucose-6-phosphate
 - → Unlike Hexokinase I-III

C. Regulation of Glucokinase Activity

- Not directly inhibited by glucose-6-phosphate
 - → Unlike Hexokinase I-III
- Regulated indirectly by:
 - Inhibitor: Fructose 6-phosphate
 - Promotes binding to GKRP → glucokinase becomes inactive
 - Enzyme is translocated to nucleus
 - · Stimulator: Glucose
 - Promotes release from GKRP
 - Glucokinase returns to cytosol → becomes active
- GKRP (Glucokinase Regulatory Protein):
 - Mediates reversible nuclear-cytoplasmic shuttling
 - Acts as competitive inhibitor of glucose usage by glucokinase
 - Acts only in hepatocytes

Glucokinase and Glycolytic Reactions

A. Glucokinase as a Glucose Sensor

- · Role: Maintains blood glucose homeostasis
- · Acts as glucose sensor in:
 - \circ Pancreatic β -cells \rightarrow regulates insulin secretion
- · Clinical correlation:
 - Inactivating mutations in glucokinase → cause Maturity-Onset Diabetes of the Young Type 2 (MODY 2)
 - Characterized by:
 - Impaired insulin secretion
 - Persistent hyperglycemia

B. Glucose 6-Phosphate Isomerization

- Enzyme: Phosphoglucose isomerase
- · Reaction:

Glucose 6-phosphate

⇒ Fructose 6-phosphate

- · Nature of Reaction:
 - · Readily reversible
 - · Not rate-limiting
 - Not regulated
- Purpose: Rearrangement allows next phosphorylation step at CI of fructose

C. Fructose 6-Phosphate Phosphorylation

- Enzyme: Phosphofructokinase-1 (PFK-1)
- Reaction:

Fructose 6-phosphate + ATP → Fructose 1,6-bisphosphate + ADP

• Type of reaction:

- · Irreversible
- Highly regulated
- Rate-limiting step of glycolysis
- Committed step: Once passed, glucose is committed to glycolysis

1. Regulation of PFK-1 by Intracellular Energy Status

· Inhibitors:

- · ATP (allosteric inhibition)
 - Signals high energy state
 - Prevents excess breakdown of glucose

· Citrate

- TCA cycle intermediate
- Signals abundance of biosynthetic precursors
- Promotes glycogen synthesis instead of glycolysis

Activators:

- AMP (allosteric activation)
 - Signals low energy state
 - Stimulates glycolysis to generate more ATP

Regulation of PFK-1 by Fructose 2,6-Bisphosphate

- 1. Fructose 2,6-Bisphosphate (F-2,6-BP)
 - Most potent activator of PFK-I—can override ATP inhibition.
 - Formed from fructose 6-phosphate by PFK-2.

2. PFK-2: A Bifunctional Enzyme

Domain	Reaction	Product
Kinase	Fructose 6-P \rightarrow F-2,6-BP	Activates PFK-I
Phosphatase	F-2,6-BP → Fructose 6-P	Removes activator

- PFK-2 isozyme-specific regulation
 - Liver PFK-2: Phosphorylation → kinase OFF / phosphatase ON.
 - \circ Cardiac PFK-2: Phosphorylation → kinase ON / phosphatase OFF.
 - Skeletal-muscle PFK-2: Not covalently regulated.

- 3. Reciprocal Control of Pathways
 - F-2,6-BP activates glycolysis (\tau PFK-1).
 - F-2,6-BP inhibits fructose 1,6-bisphosphatase (key gluconeogenic enzyme).
 - Ensures glycolysis and gluconeogenesis are not maximally active simultaneously—prevents a futile cycle.
- 4. Hormonal / Nutritional States
- a. Well-fed (High insulin, Low glucagon)
 - PFK-2 is dephosphorylated in liver.
 - Kinase domain active \to ↑ F-2,6-BP \to ↑ PFK-I \to ↑ Glycolysis.
 - F-2,6-BP acts as an intracellular signal of glucose abundance.

- b. Fasting (High glucagon, Low insulin)
 - PFK-2 is phosphorylated in liver.
 - Phosphatase domain active $\rightarrow \downarrow$ F-2,6-BP $\rightarrow \downarrow$ PFK-I $\rightarrow \downarrow$ Glycolysis, \uparrow Gluconeogenesis.
- D. Fructose 1,6-Bisphosphate Cleavage
 - Enzyme: Aldolase
 - · Reaction:

Fructose 1,6-bisphosphate → DHAP + Glyceraldehyde 3phosphate (G3P)

- Features:
 - · Reversible
 - Not regulated
 - Aldolase B (liver isoform) also cleaves fructose Iphosphate in dietary fructose metabolism

E. DHAP Isomerization

- Enzyme: Triose phosphate isomerase
- · Reaction:

- Significance:
 - o Only G3P continues in glycolysis
 - · Net yield: 2 G3P molecules per glucose
 - o DHAP can also be used in triacylglycerol synthesis

F. G3P Oxidation to 1,3-Bisphosphoglycerate

- Enzyme: Glyceraldehyde 3-phosphate dehydrogenase
- · Reaction:

$$G3P + Pi + NAD^+ \rightarrow I,3-BPG + NADH + H^+$$

· Key point: First oxidation-reduction step in glycolysis

1. 1,3-BPG Synthesis

- High-energy compound
- Energy conservation:
 - \circ Oxidation of aldehyde \rightarrow carboxylic acid
 - Coupled with Pi addition to form high-energy 1,3-BPG
- Purpose: High-energy phosphate of 1,3-BPG used in ATP generation in next glycolytic step

Clinical Insight: Arsenic Poisoning

Trivalent Arsenic (Arsenite)

- Inhibits enzymes requiring lipoic acid (e.g., pyruvate dehydrogenase complex)
- · Interferes with aerobic energy metabolism

Pentavalent Arsenic (Arsenate)

 Competes with Pi at glyceraldehyde 3-phosphate dehydrogenase

- Forms 3-phosphoglycerate without forming 1,3-BPG
- Bypasses ATP + NADH production
- · Glycolysis continues, but no net energy gain

Additional Effect:

- Arsenate interferes with ATP synthase (F₁ domain)
 - ightarrow Forms ADP-arsenate, rapidly hydrolyzed ightarrow further energy loss
- 2. 2,3-Bisphosphoglycerate (2,3-BPG) Synthesis in RBCs
 - Enzyme: Bisphosphoglycerate mutase
 - · Reaction:

$$1,3-BPG \rightarrow 2,3-BPG$$
 (in red blood cells)

- Significance of 2,3-BPG:
 - · Present in high concentrations only in RBCs
 - Increases O₂ delivery by decreasing hemoglobin's affinity for oxygen

- Fate:
 - 2,3-BPG is hydrolyzed to 3-phosphoglycerate by a phosphatase
 - o 3-phosphoglycerate re-enters glycolysis
- · Shunt pathway:
 - This RBC-specific detour reduces net ATP gain but enhances oxygen delivery
- G. 3-Phosphoglycerate Synthesis & ATP Production
 - Enzyme: Phosphoglycerate kinase
 - Reaction:

- Features:
 - · Reversible kinase reaction (unlike most kinases)
 - Substrate-level phosphorylation (ATP generated without ETC involvement)

- · ATP Yield:
 - 2 molecules of ATP (I per 1,3-BPG), compensating for the 2 ATP consumed earlier
 - Net ATP at this point: 0 (break-even)

H. Phosphate Group Shift

- Enzyme: Phosphoglycerate mutase
- Reaction: 3-phosphoglycerate → 2-phosphoglycerate
- Features:
 - · Freely reversible isomerization
 - · Prepares substrate for dehydration

I. 2-Phosphoglycerate Dehydration

- Enzyme: Enolase
- Reaction: 2-phosphoglycerate → Phosphoenolpyruvate (PEP) + H₂O
- · Product:
 - · PEP: High-energy enol phosphate compound

• Features:

- · Reversible despite high-energy product
- Energy redistribution makes PEP suitable for ATP production in next step
- · Clinical Note:
 - · Fluoride inhibits enclase
 - \circ Used in water fluoridation to reduce lactate production by oral bacteria $\to \downarrow$ dental caries
- J. Pyruvate Synthesis and ATP Production
- 1. Final Step of Glycolysis
 - Enzyme: Pyruvate kinase (PK)
 - Reaction: Phosphoenolpyruvate (PEP) + ADP → Pyruvate
 + ATP
 - Type of Reaction:
 - · Irreversible (third irreversible step of glycolysis)
 - · Substrate-level phosphorylation

1. Final Step of Glycolysis

- Enzyme: Pyruvate kinase (PK)
- Reaction: Phosphoenolpyruvate (PEP) + ADP → Pyruvate
 + ATP
- Type of Reaction:
 - · Irreversible (third irreversible step of glycolysis)
 - · Substrate-level phosphorylation
- Energy Source:
 - High-energy enol phosphate bond in PEP drives ATP synthesis
- Net Gain:
 - 0 2 ATP (I per PEP, 2 PEP per glucose)
- 2. Regulation of Pyruvate Kinase (PK)
- A. Feedforward Regulation
 - Activator: Fructose 1,6-bisphosphate (product of PFK-1 reaction)

· Mechanism:

- Links upstream kinase (PFK-1) to downstream kinase (PK)
- Increased PFK-1 activity → ↑ Fructose 1,6-BP →
 Activates PK
- Inhibitor: ATP (indicates high energy state)

B. Covalent Regulation (in Liver Only)

- Inactivator: cAMP-dependent protein kinase A (PKA)
- · Mechanism:
 - ↓ Blood glucose → ↑ Glucagon → ↑ cAMP
 - cAMP activates PKA → Phosphorylates & inactivates PK (liver isozyme only)

• Effect:

- · PEP diverted to gluconeogenesis, not glycolysis
- · Explains glucagon's inhibition of hepatic glycolysis

- Reactivation:
 - Dephosphorylation by a phosphatase restores PK activity
- 3. Clinical Relevance: Pyruvate Kinase (PK) Deficiency
- A. Dependence of RBCs on Glycolysis
 - ullet RBCs lack mitochondria ullet depend solely on glycolysis for ATP
 - · ATP needed for:
 - · Metabolic functions
 - Ion pumps (maintain cell shape and flexibility for capillary passage)
- B. Consequences of PK Deficiency
 - \downarrow PK activity \rightarrow \downarrow Glycolysis \rightarrow \downarrow ATP \rightarrow \downarrow Membrane integrity

• Effects on RBCs:

- Membrane deformity → Phagocytosis by splenic macrophages
- Hemolysis → Mild to severe hemolytic anemia
- Severe cases: Require regular transfusions

C. Genetic Notes

- PK gene is shared between liver and RBC isozyme
 - · Liver unaffected due to:
 - Higher PK synthesis capacity
 - Ability to make ATP via oxidative phosphorylation
- · Severity depends on:
 - Degree of deficiency (5%-35% of normal PK activity)
 - RBC compensation via 1 2,3-BPG levels
- Enzyme Defect: Mutant PK has altered kinetics or reduced stability

D. Evolutionary Advantage

Heterozygous individuals show resistance to severe malaria

Tissue-Specific Expression of Pyruvate Kinase (PK)

- Gene Expression:
 - · Same gene encodes PK in RBCs and liver
 - Different transcription start sites used in each tissue
- · Result:
 - · Tissue-specific PK isozymes
 - Explains differing regulation and expression in liver vs RBC

K. Pyruvate Reduction to Lactate (Anaerobic Glycolysis)

- 1. Enzyme: Lactate Dehydrogenase (LDH)
 - Reaction: Pyruvate + NADH + H⁺ → Lactate + NAD⁺
 - Purpose: Regenerates NAD+ required for glycolysis to continue

- · Occurs in:
 - · Anaerobic conditions
 - Cells/tissues lacking mitochondria or with limited oxygen supply
- Final Product: Lactate (under anaerobic conditions in eukaryotes)
- 2. Major Sites of Anaerobic Lactate Formation
 - ullet RBCs: Lack mitochondria o exclusively use lactate pathway
 - Poorly vascularized tissues:
 - · Lens and cornea of the eye
 - · Renal medulla
- 3. Lactate Formation in Exercising Muscle
 - Cause: NADH production > ETC capacity
 - From glycolysis (glyceraldehyde 3-phosphate DH)
 - From TCA cycle (3 NAD+-linked dehydrogenases)

- Effect: ↑ NADH/NAD+ ratio → favors pyruvate → lactate conversion
- · Outcome:
 - Lactate accumulation → ↓ intracellular pH
 - · Can cause muscle cramps
- · Lactate fate:
 - · Diffuses into blood
 - · Transported to liver for gluconeogenesis
- 4. Lactate Utilization in Other Tissues
- A. Factors Affecting LDH Reaction Direction
 - Depends on:
 - · Pyruvate/lactate concentrations
 - · NADH/NAD+ ratio
- B. In Liver and Heart
 - Low NADH/NAD+ ratio (compared to muscle)
 - Action: Lactate → Pyruvate (oxidation)

i. Liver

- Pyruvate converted to:
 - O Glucose (via gluconeogenesis)
 - · Acetyl-CoA (oxidized in TCA cycle)

ii. Heart

• Exclusive pathway: Lactate \rightarrow Pyruvate \rightarrow CO₂ + H₂O via TCA cycle

3. Lactic Acidosis

- · Definition:
 - · Elevated plasma lactate levels
 - · A form of metabolic acidosis
- Causes (Circulatory Collapse):
 - · Myocardial infarction
 - Pulmonary embolism
 - · Uncontrolled hemorrhage
 - Shock (any form)

· Pathophysiology:

- ○ Dxygen delivery → impaired oxidative
 phosphorylation
- ↓ ATP production via ETC
- \circ \uparrow Anaerobic glycolysis for survival \rightarrow \uparrow lactic acid production

Clinical Significance:

- Even small ATP amounts from glycolysis can be life-saving temporarily
- \circ Oxygen debt = extra O_2 needed to restore metabolic balance after hypoxia

• Oxygen Debt Importance:

- · Strongly related to morbidity and mortality
- · Lactic acid levels in blood help in:
 - Early detection of O2 debt
 - Monitoring recovery

- L Energy Yield from Glycolysis
- 1. Anaerobic Glycolysis
 - · Net ATP Yield:
 - 2 ATP per glucose (via substrate-level phosphorylation)
 - No net NADH gain or loss
 - · End Product:
 - o 2 Lactate per glucose
 - · Occurs in absence of oxygen
- 2. Aerobic Glycolysis
 - · Net ATP Yield:
 - Same as anaerobic: 2 ATP per glucose
 - · Additional Yield:
 - 2 NADH per glucose (from glyceraldehyde 3phosphate DH step)
 - \circ Each NADH \rightarrow ~3 ATP via ETC

• Important Note:

- · NADH cannot cross inner mitochondrial membrane
- Shuttle systems (e.g., malate-aspartate shuttle)
 are needed to transfer reducing equivalents

VI. HORMONAL REGULATION OF GLYCOLYSIS

A. Short-Term Regulation

- · Mechanism:
 - · Allosteric activation/inhibition
 - Covalent modification:
 phosphorylation/dephosphorylation
- · Time Scale:
 - · Minutes to hours
- Target Enzymes (Irreversible steps):
 - Glucokinase
 - PFK-I (Phosphofructokinase-I)
 - Pyruvate kinase (PK)

B. Long-Term Regulation

- · Mechanism:
 - \circ Changes in gene transcription \to new enzyme synthesis
- Time Scale:
 - · Hours to days
- Trigger:
 - · High-carbohydrate meals
 - · Insulin administration
- · Effect:
 - T Synthesis of glucokinase, PFK-1, and PK in the liver
 - Favors conversion of glucose to pyruvate (absorptive state)

C. Transcription Factors Involved

- SREBP-Ic (Sterol regulatory element-binding protein-Ic):
 - · Activated by insulin
- ChREBP (Carbohydrate response element-binding protein):
 - · Activated by glucose
- · Function:
 - · Both regulate transcription of:
 - Glycolytic enzymes
 - Fatty acid synthesis enzymes
- D. Fasting/Diabetic State
 - · Hormonal Profile:
 - · High glucagon, low insulin

- · Effect:
 - ↓ Gene expression of:
 - Glucokinase
 - PFK-I
 - Pyruvate kinase
- Metabolic Consequence:
 - ↓ Glycolysis
 - · Promotes glucose conservation

VII. ALTERNATE FATES OF PYRUVATE

A. Oxidative Decarboxylation to Acetyl CoA

- Enzyme:
 - Pyruvate dehydrogenase complex (PDHC)
- · Nature of reaction:
 - · Irreversible

- Tissues active in this pathway:
 - Tissues with high oxidative capacity (e.g., cardiac muscle)
- · Function:
 - Converts pyruvate → acetyl CoA
 - · Acetyl CoA enters the TCA cycle
 - · Provides carbon source for fatty acid synthesis
- B. Carboxylation to Oxaloacetate
 - Enzyme:
 - · Pyruvate carboxylase
 - · Cofactor required:
 - · Biotin
 - · Nature of reaction:
 - · Irreversible

· Functions:

- · Anaplerotic (replenishes TCA cycle intermediates)
- · Provides substrate for gluconeogenesis

C. Reduction to Ethanol (in Microorganisms Only)

- · Occurs in:
 - · Yeast and certain microorganisms
 - · Not in humans
- · Step 1:
 - · Enzyme: Pyruvate decarboxylase
 - Reaction: Pyruvate → Acetaldehyde
 - o Cofactor: Thiamine (Vitamin BI)
- Step 2:
 - Acetaldehyde → Ethanol
 - Uses NADH to regenerate NAD+

Flowchart

GLYCOLYSIS: QUICK REVIEW

10 Steps
Glucose (6C) → 2 Pyruvate (3C)
Occurs in the cytoplasm of all cells.
Net yield (aerobic): 2 ATP, 2 NADH

1. Glucose \rightarrow Glucose-6-phosphate (G6P)

- Enzyme: Hexokinase (all cells) / Glucokinase (liver, pancreas)
- · ATP used
- · Promoters:
 - · Glucokinase: Insulin
- · Inhibitors:
 - Hexokinase: G6P (product inhibition)
 - Glucokinase: Fructose-6-P (via GKRP)

- 2. G6P \rightarrow Fructose-6-phosphate (F6P)
 - Enzyme: Phosphoglucose isomerase
 - · Promoters/Inhibitors: None significant
- 3. $F6P \rightarrow Fructose-1,6-bisphosphate (F1,6BP)$
 - Enzyme: Phosphofructokinase-1 (PFK-1)
 - · ATP used
 - Key regulatory step (rate-limiting)
 - · Promoters:
 - AMP, Fructose-2,6-bisphosphate, Insulin
 - Inhibitors:
 - ATP, Citrate, Glucagon (via ↓ F2,6BP)

4. FI,6BP \rightarrow Glyceraldehyde-3-phosphate (G3P) + Dihydroxyacetone phosphate (DHAP)

- Enzyme: Aldolase
- · Promoters/Inhibitors: None significant

S. DHAP = G3P

- Enzyme: Triose phosphate isomerase
- · Reversible step

6. G3P \rightarrow 1,3-Bisphosphoglycerate (1,3-BPG)

- Enzyme: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
- Produces: I NADH per G3P
- · Requires: Pi
- Inhibited by: Arsenate

7. 1,3-BPG \rightarrow 3-Phosphoglycerate (3PG)

- Enzyme: Phosphoglycerate kinase
- Produces: I ATP per G3P (substrate-level phosphorylation)
- · Promoters/Inhibitors: None significant

8. $3PG \rightarrow 2$ -Phosphoglycerate (2PG)

- Enzyme: Phosphoglycerate mutase
- · Promoters/Inhibitors: None significant

9. 2PG → Phosphoenolpyruvate (PEP)

- Enzyme: Enolase
- Produces: H₂O (dehydration step)
- Inhibitors: Fluoride (F-)

10. PEP → Pyruvate

- Enzyme: Pyruvate kinase (PK)
- Produces: 1 ATP per G3P
- · Promoters:
 - o FI,6BP (feedforward activation), Insulin
- Inhibitors:
 - o ATP, Alanine, Glucagon (via phosphorylation by PKA)