"Tricarboxylic Acid Cycle and Pyruvate Dehydrogenase Complex" I. Cycle Overview

- The tricarboxylic acid cycle (TCA cycle) can also be referred to as:
 - · Citric acid cycle
 - · Krebs cycle
- It plays several roles in metabolism.
- It is the final pathway where the oxidative catabolism of the following converge:
 - · Carbohydrates
 - · Amino acids
 - Fatty acids
- The carbon skeletons of these macronutrients are converted to carbon dioxide (CO_2) .
- This oxidation provides energy for the production of the majority of ATP in most animals, including humans.
- The TCA cycle occurs totally in mitochondria, placing it in close proximity to the electron transport chain (ETC).

- The ETC oxidizes the following reduced coenzymes which are produced by the cycle:
 - Nicotinamide adenine dinucleotide (NADH)
 - Flavin adenine dinucleotide (FADH₂)
- The TCA cycle is an aerobic pathway, because oxygen (O_2) is required as the final electron acceptor.
- Reactions such as the catabolism of some amino acids generate intermediates of the cycle.
- These reactions are called anaplerotic (from the Greek for "filling up") reactions.
- The TCA cycle also provides intermediates for a number of important anabolic reactions, such as:
 - Glucose formation from the carbon skeletons of some amino acids
 - · Synthesis of some amino acids
 - · Synthesis of heme
- Therefore, this cycle should not be viewed as a closed system but, instead, as an open one with compounds entering and leaving as required.

II. Cycle Reactions

Overview of TCA Cycle Progression

- In the TCA cycle:
 - Oxaloacetate (OAA) is first condensed with an acetyl group from acetyl coenzyme A (CoA).
 - OAA is regenerated as the cycle is completed.
- Two carbons enter the cycle as acetyl CoA, and two leave as CO_2 .
- Therefore, the entry of one acetyl CoA into one round of the TCA cycle does not lead to the net production or consumption of intermediates.

A. Acetyl CoA Production

- The major source of acetyl CoA for the TCA cycle is the oxidative decarboxylation of pyruvate by the multienzyme pyruvate dehydrogenase complex (PDH complex, or PDHC).
- · However, the PDHC is not a component of the TCA cycle.

- Pyruvate, the end product of glycolysis, is transported from the cytosol into the mitochondrial matrix by the pyruvate mitochondrial carrier of the inner mitochondrial membrane.
- In the mitochondrial matrix, the PDHC converts pyruvate to acetyl CoA.
- (Note: Fatty acid oxidation is another source of acetyl CoA.

1. PDHC Component Enzymes

- The PDHC is a protein aggregate of multiple copies of three enzymes:
 - Pyruvate decarboxylase ([EI] sometimes called PDH)
 - Dihydrolipoyl transacetylase (E2)
 - Dihydrolipoyl dehydrogenase (E3)
- Each enzyme catalyzes a part of the overall reaction.
- Their physical association links the reactions in proper sequence without the release of intermediates.

- In addition to the enzymes participating in the conversion of pyruvate to acetyl CoA, the PDHC also contains two regulatory enzymes:
 - · Pyruvate dehydrogenase kinase (PDH kinase)
 - Pyruvate dehydrogenase phosphatase (PDH phosphatase)

2. Coenzymes

- The PDHC contains five coenzymes that act as carriers or oxidants for the intermediates of the reactions.
- Coenzyme requirements by PDHC enzymes:
 - o El requires: Thiamine pyrophosphate (TPP)
 - E2 requires: Lipoic acid and CoA
 - E3 requires: FAD and NAD+
- (Note: TPP, lipoic acid, and FAD are tightly bound to the enzymes and function as coenzymes-prosthetic groups.
- Deficiencies of thiamine or niacin can cause serious central nervous system problems.

- This is because brain cells are unable to produce sufficient ATP via the TCA cycle if the PDHC is inactive.
- Wernicke-Korsakoff, an encephalopathy-psychosis syndrome due to thiamine deficiency, may be seen in persons with alcohol use disorder.

3. Regulation

Covalent Modification of El

- Covalent modifications by the two regulatory enzymes of the PDHC alternately activate and inactivate El.
- PDH kinase:
 - Phosphorylates and inactivates El.
- PDH phosphatase:
 - o Dephosphorylates and activates El.

Allosteric Regulation of PDH Kinase

- The kinase is allosterically activated by:
 - O ATP
 - · Acetyl CoA
 - · NADH
- Therefore, in the presence of these high-energy products, the PDHC is turned off.
- (Note: It is actually the rise in the ratios of the following that affects enzymic activity.):
 - ATP/ADP (adenosine diphosphate)
 - · NADH/NAD+
 - · Acetyl CoA/CoA

Inhibition and Activation of PDH Kinase and Phosphatase

- Pyruvate is a potent inhibitor of PDH kinase.
- Therefore, if pyruvate concentrations are elevated, El will be maximally active.

- Calcium (Ca²⁺) is a strong activator of PDH phosphatase, stimulating El activity.
- This is particularly important in skeletal muscle, where Ca²⁺ release during contraction:
 - · Stimulates the PDHC
 - Enhances energy production
- (Note: Although covalent regulation by the kinase and phosphatase is primary, the PDHC is also subject to product inhibition by:
 - · NADH
 - Acetyl CoA)

4. Deficiency

PDHC El a-Subunit Deficiency

 A deficiency of the a subunits of the tetrameric El component of the PDHC, although very rare, is the most common biochemical cause of congenital lactic acidosis.

- This deficiency leads to:
 - A decreased ability to convert pyruvate to acetyl
 CoA.
 - Shunting of pyruvate to lactate via lactate dehydrogenase.
- Consequences:
 - · Particularly problematic for the brain, which:
 - Relies on the TCA cycle for most of its energy.
 - Is particularly sensitive to acidosis.
- Symptoms are variable, and may include:
 - · Neurodegeneration
 - Muscle spasticity
 - o In neonatal-onset form: early death

Genetic Basis

 The gene for the a-subunit is located on the X chromosome.

- Inheritance pattern: X-linked dominant
 - · Both males and females are affected.
 - Inheritance of just one X chromosome with the mutation results in disease.

Management

- No proven treatment for PDHC deficiency.
- Possible symptomatic relief in select patients with:
 - · Dietary restriction of carbohydrate
 - · Supplementation with thiamine

Leigh Syndrome

- Leigh syndrome (also known as subacute necrotizing encephalomyelopathy) is a:
 - Rare
 - · Progressive
 - Neurodegenerative disorder

- Caused by:
 - Defects in mitochondrial ATP production, primarily due to mutations in genes encoding:
 - PDHC proteins
 - Electron Transport Chain (ETC) proteins
 - ATP synthase
- Both nuclear DNA and mitochondrial DNA can be affected.

S. Arsenic Poisoning

Mechanism of Action

- Pentavalent arsenic (arsenate) interferes with glycolysis at the glyceraldehyde 3-phosphate step → decreases ATP production.
- · However, arsenic poisoning primarily results from:
 - Inhibition of enzyme complexes that require lipoic acid as a coenzyme.

Enzymes Inhibited by Arsenite

- Pyruvate dehydrogenase complex (PDH)
- a-Ketoglutarate dehydrogenase
- Branched-chain α-keto acid dehydrogenase

Mechanism of Inhibition

- · Arsenite (trivalent form of arsenic):
 - Forms a stable complex with thiol (-SH) groups of lipoic acid.
 - Makes lipoic acid unavailable to function as a coenzyme.

· Result:

- \circ Inhibition of PDHC \rightarrow accumulation of pyruvate and lactate.
- Neurologic disturbances and death, particularly affecting the brain (similar to PDHC deficiency).

B. Citrate Synthesis

Reaction

- Irreversible condensation of:
 - Acetyl CoA + Oxaloacetate (OAA) → Citrate (a tricarboxylic acid)
- Enzyme: Citrate synthase (initiating enzyme of TCA cycle)
- Reaction Type: Aldol condensation
 - \circ Highly negative $\Delta G^{\circ} \rightarrow$ strongly favors citrate formation

Regulation of Citrate Synthase

- Product inhibition: Inhibited by citrate.
- Substrate availability:
 - OAA binding greatly increases the enzyme's affinity for acetyl CoA.

Metabolic Roles of Citrate (Note)

- Intermediate in the TCA cycle
- Source of acetyl CoA for:
 - o Fatty acid synthesis (cytosolic)
 - · Cholesterol synthesis
- Regulates metabolism:
 - Inhibits PFK-I (rate-limiting enzyme of glycolysis)
 - Activates acetyl CoA carboxylase (rate-limiting enzyme of fatty acid synthesis)

C. Citrate Isomerization

Reaction

- Citrate → Isocitrate via hydroxyl group migration
- Enzyme: Aconitase (also called aconitate hydratase)
 - o Type: Iron-sulfur protein

Inhibition

- Fluoroacetate:
 - · A plant toxin used as a pesticide
 - Converted in vivo to fluoroacetyl CoA
 - Fluoroacetyl CoA condenses with OAA → forms fluorocitrate
 - · Fluorocitrate is a potent inhibitor of aconitase

D. Oxidative Decarboxylation of Isocitrate

Reaction

- Isocitrate $\rightarrow \alpha$ -Ketoglutarate
- Enzyme: Isocitrate dehydrogenase
- Reaction type: Irreversible oxidative decarboxylation

Products

- 1st NADH of the TCA cycle (total of 3 NADH per cycle)
- 1st CO2 released

Regulation

- Rate-limiting step of the TCA cycle
- Allosterically activated by:
 - ADP (signals low-energy state)
 - ∘ Ca²+
- Inhibited by:
 - O ATP
 - NADH (both elevated in energy-rich conditions)

E. Oxidative Decarboxylation of a-Ketoglutarate

Reaction

- α -Ketoglutarate \rightarrow Succinyl CoA
- Enzyme: α-Ketoglutarate dehydrogenase complex

Enzyme Complex Details

- Multienzyme complex (like PDHC):
 - · Contains multiple copies of 3 enzymes
- Mechanism similar to PDH complex (Pyruvate → Acetyl CoA)

Products

- · 2nd CO2 released
- · 2nd NADH of the cycle

Required Coenzymes (Same as PDHC)

- Thiamine pyrophosphate (TPP)
- Lipoic acid
- FAD
- · NAD+
- · CoA

Thermodynamics

- Large negative $\Delta G^{\circ} \rightarrow$ strongly favors succinyl CoA formation
- Succinyl CoA is a high-energy thioester (similar to acetyl CoA)

Regulation

- Inhibited by:
 - · NADH
 - · Succinyl CoA (product inhibition)
- · Activated by:
 - Ca²+
- Not regulated by phosphorylation/dephosphorylation, unlike PDHC

Additional Note

- a-Ketoglutarate can also be produced by:
 - · Oxidative deamination
 - · Transamination of glutamate

F. Succinyl CoA Cleavage

Reaction

- Succinyl CoA → Succinate
- Enzyme: Succinate thiokinase (also called succinyl CoA synthetase)

Mechanism

- · Cleaves high-energy thioester bond of succinyl CoA
- · Coupled to:
 - GDP → GTP (substrate-level phosphorylation)
 - Enzyme uses energy from thioester bond to phosphorylate GDP

GTP to ATP Conversion

• Catalyzed by nucleoside diphosphate kinase:

Significance

 Another example of substrate-level phosphorylation (direct ATP/GTP generation without ETC involvement)

Additional Sources & Fate of Succinyl CoA

- · Also formed from:
 - · Propionyl CoA (from odd-chain fatty acids)
 - · Several amino acids
- · Can be:
 - Converted to pyruvate for gluconeogenesis
 - Used in heme synthesis

G. Succinate Oxidation

Reaction

- Succinate → Fumarate
- Enzyme: Succinate dehydrogenase
- Coenzyme: $FAD \rightarrow FADH_2$

Key Features

- Only TCA enzyme embedded in inner mitochondrial membrane
- Also functions as Complex II of the electron transport chain

Why FAD instead of NAD+?

- Succinate's reducing power is insufficient to reduce NAD+
- Hence, FAD is used as the electron acceptor

H. Fumarate Hydration

Reaction

- Enzyme: Fumarase (also called fumarate hydratase)
- Freely reversible hydration reaction

Other Sources of Fumarate

- · Produced in:
 - Urea cycle
 - · Purine synthesis
 - · Catabolism of phenylalanine and tyrosine

I. Malate Oxidation

Reaction

- Malate → Oxaloacetate (OAA)
- Enzyme: Malate dehydrogenase
- Produces: 3rd and final NADH of TCA cycle

Thermodynamics

- ΔG° is positive (unfavorable)
- Driven forward by:
 - Highly exergonic citrate synthase reaction (removal of OAA pulls the reaction forward)

Other Sources of OAA

Also formed by transamination of aspartate

III. Energy Produced by the TCA Cycle

Electron Transfers

- · Total: 4 pairs of electrons transferred per turn
 - \circ 3 NAD+ \rightarrow 3 NADH
 - I FAD → I FADH₂

ATP Yield from Electron Transport Chain

- I NADH → 3 ATP
- I FADH₂ → 2 ATP

Total ATP Yield from One Acetyl CoA

Product	Quantity	ATP Yield
3 NADH	3	9 ATP
I FADH₂	1	2 ATP
I GTP (\Rightarrow ATP)	1	I ATP
Total	_	12 ATP

Carbon Balance

- 2 carbon atoms enter as acetyl CoA
- \bullet 2 CO₂ released no net gain or loss of carbon skeletons

IV. Regulation of the TCA Cycle

Key Differences from Glycolysis

- Glycolysis mainly regulated by: PFK-I
- TCA cycle is regulated at multiple enzymatic steps

Key Regulatory Enzymes (High $-\Delta G^{\circ}$)

- 1. Citrate synthase
- 2. Isocitrate dehydrogenase
- 3. a-Ketoglutarate dehydrogenase complex

Regulatory Triggers

- Low ATP/ADP ratio (i.e., low energy state):
 - Upregulates PDHC and TCA cycle
 - Increases reducing equivalents for oxidative phosphorylation

TCA Cycle Flowchart

Products per cycle

- 2 molecules of CO₂
- 3 molecules of NADH
- 1 molecules of FADH₂
- 1 molecules of ATP